Ideals，Varieties and Symbolic Computation

Priyank Kalla

THE
 UNIVERSITY OF UTAH

Associate Professor
Electrical and Computer Engineering，University of Utah
kalla＠ece．utah．edu
http：／／www．ece．utah．edu／～kalla
Lectures：Sept 25， 2017 onwards

Agenda:

- Wish to build a polynomial algebra model for hardware
- Modulo arithmetic model is versatile: can represent both bit-level and word-level constraints
- To build the algebraic/modulo arithmetic model:
- Rings, Fields, Modulo arithmetic
- Polynomials, Polynomial functions, Polynomial Rings
- Ideals, Varieties, Symbolic Computing and Gröbner Bases
- Decision procedures in verification

Ideals in Rings

$R=$ ring, Ideal $J \subseteq R$,
s.t.:

- $0 \in J$
- $\forall x, y \in J, x+y \in J$
- $\forall x \in J, z \in$

$$
R, x \cdot z \in J
$$

Ideals in Rings

$R=$ ring, Ideal $J \subseteq R$,
s.t.:

- $0 \in J$
- $\forall x, y \in J, x+y \in J$
- $\forall x \in J, z \in$
$R, x \cdot z \in J$

- Examples of Ideals: $R=\mathbb{Z}, J=2 \mathbb{Z}, 3 \mathbb{Z}, \ldots, n \mathbb{Z}$
- Ideals versus Subrings: $\mathbb{Z} \subset \mathbb{Q}$, but \mathbb{Z} not an ideal in \mathbb{Q}
- $1 \in$ Ring R, but 1 need not be in ideal J

Polynomial Ideals

Definition

Ideals of Polynomials: Let $f_{1}, f_{2}, \ldots, f_{s} \in R=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$. Let

$$
J=\left\langle f_{1}, f_{2} \ldots, f_{s}\right\rangle=\left\{f_{1} h_{1}+f_{2} h_{2}+\cdots+f_{s} h_{s}: h_{1}, \ldots, h_{s} \in R\right\}
$$

$J=\left\langle f_{1}, f_{2} \ldots, f_{s}\right\rangle$ is an ideal generated by f_{1}, \ldots, f_{s} and the polynomials are called the generators (basis) of J. [Note, h_{i} : arbitrary elements in R]

Polynomial Ideals

Definition

Ideals of Polynomials: Let $f_{1}, f_{2}, \ldots, f_{s} \in R=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$. Let

$$
J=\left\langle f_{1}, f_{2} \ldots, f_{s}\right\rangle=\left\{f_{1} h_{1}+f_{2} h_{2}+\cdots+f_{s} h_{s}: h_{1}, \ldots, h_{s} \in R\right\}
$$

$J=\left\langle f_{1}, f_{2} \ldots, f_{s}\right\rangle$ is an ideal generated by f_{1}, \ldots, f_{s} and the polynomials are called the generators (basis) of J. [Note, h_{i} : arbitrary elements in R]

Given the above definition, prove that J is indeed an ideal.

Polynomial Ideals

Definition

Ideals of Polynomials: Let $f_{1}, f_{2}, \ldots, f_{s} \in R=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$. Let

$$
J=\left\langle f_{1}, f_{2} \ldots, f_{s}\right\rangle=\left\{f_{1} h_{1}+f_{2} h_{2}+\cdots+f_{s} h_{s}: h_{1}, \ldots, h_{s} \in R\right\}
$$

$J=\left\langle f_{1}, f_{2} \ldots, f_{s}\right\rangle$ is an ideal generated by f_{1}, \ldots, f_{s} and the polynomials are called the generators (basis) of J. [Note, h_{i} : arbitrary elements in R]

Given the above definition, prove that J is indeed an ideal. Is $0 \in J$?

Polynomial Ideals

Definition

Ideals of Polynomials: Let $f_{1}, f_{2}, \ldots, f_{s} \in R=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$. Let

$$
J=\left\langle f_{1}, f_{2} \ldots, f_{s}\right\rangle=\left\{f_{1} h_{1}+f_{2} h_{2}+\cdots+f_{s} h_{s}: h_{1}, \ldots, h_{s} \in R\right\}
$$

$J=\left\langle f_{1}, f_{2} \ldots, f_{s}\right\rangle$ is an ideal generated by f_{1}, \ldots, f_{s} and the polynomials are called the generators (basis) of J. [Note, h_{i} : arbitrary elements in R]

Given the above definition, prove that J is indeed an ideal. Is $0 \in J$? Put $h_{i}=0$

Polynomial Ideals

Definition

Ideals of Polynomials: Let $f_{1}, f_{2}, \ldots, f_{s} \in R=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$. Let

$$
J=\left\langle f_{1}, f_{2} \ldots, f_{s}\right\rangle=\left\{f_{1} h_{1}+f_{2} h_{2}+\cdots+f_{s} h_{s}: h_{1}, \ldots, h_{s} \in R\right\}
$$

$J=\left\langle f_{1}, f_{2} \ldots, f_{s}\right\rangle$ is an ideal generated by f_{1}, \ldots, f_{s} and the polynomials are called the generators (basis) of J. [Note, h_{i} : arbitrary elements in R]

Given the above definition, prove that J is indeed an ideal.
Is $0 \in J$? Put $h_{i}=0$
Given $f_{i}, f_{j} \in J$ is $f_{i}+f_{j} \in J$?

Polynomial Ideals

Definition

Ideals of Polynomials: Let $f_{1}, f_{2}, \ldots, f_{s} \in R=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$. Let

$$
J=\left\langle f_{1}, f_{2} \ldots, f_{s}\right\rangle=\left\{f_{1} h_{1}+f_{2} h_{2}+\cdots+f_{s} h_{s}: h_{1}, \ldots, h_{s} \in R\right\}
$$

$J=\left\langle f_{1}, f_{2} \ldots, f_{s}\right\rangle$ is an ideal generated by f_{1}, \ldots, f_{s} and the polynomials are called the generators (basis) of J. [Note, h_{i} : arbitrary elements in R]

Given the above definition, prove that J is indeed an ideal.
Is $0 \in J$? Put $h_{i}=0$
Given $f_{i}, f_{j} \in J$ is $f_{i}+f_{j} \in J$? Put $h_{i}, h_{j}=1$

Polynomial Ideals

Definition

Ideals of Polynomials: Let $f_{1}, f_{2}, \ldots, f_{s} \in R=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$. Let

$$
J=\left\langle f_{1}, f_{2} \ldots, f_{s}\right\rangle=\left\{f_{1} h_{1}+f_{2} h_{2}+\cdots+f_{s} h_{s}: h_{1}, \ldots, h_{s} \in R\right\}
$$

$J=\left\langle f_{1}, f_{2} \ldots, f_{s}\right\rangle$ is an ideal generated by f_{1}, \ldots, f_{s} and the polynomials are called the generators (basis) of J. [Note, h_{i} : arbitrary elements in R]

Given the above definition, prove that J is indeed an ideal.
Is $0 \in J$? Put $h_{i}=0$
Given $f_{i}, f_{j} \in J$ is $f_{i}+f_{j} \in J$? Put $h_{i}, h_{j}=1$ Given $f_{i} \in J, h_{i} \in R$ is $f_{i} \cdot h_{i} \in J$?

Generators of Ideals

- An ideal may have many different generators
- It is possible to have:
$J=\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle p_{1}, \ldots, p_{l}\right\rangle=\cdots=\left\langle g_{1}, \ldots, g_{t}\right\rangle$
- Where $f_{i}, p_{j}, g_{k} \in \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$ and $J \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$
- Does there exist a Canonical representation of an ideal?
- A Gröbner Basis is a canonical representation of the ideal, with many nice properties that allow to solve many polynomial decision questions
- Buchberger's Algorithm allows to compute a Gröbner Basis
- Given $F=\left\{f_{1}, \ldots, f_{s}\right\} \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$

Generators of Ideals

- An ideal may have many different generators
- It is possible to have:
$J=\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle p_{1}, \ldots, p_{l}\right\rangle=\cdots=\left\langle g_{1}, \ldots, g_{t}\right\rangle$
- Where $f_{i}, p_{j}, g_{k} \in \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$ and $J \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$
- Does there exist a Canonical representation of an ideal?
- A Gröbner Basis is a canonical representation of the ideal, with many nice properties that allow to solve many polynomial decision questions
- Buchberger's Algorithm allows to compute a Gröbner Basis
- Given $F=\left\{f_{1}, \ldots, f_{s}\right\} \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$
- It finds $G=\left\{g_{1}, \ldots, g_{t}\right\}$, such that

Generators of Ideals

- An ideal may have many different generators
- It is possible to have:
$J=\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle p_{1}, \ldots, p_{\prime}\right\rangle=\cdots=\left\langle g_{1}, \ldots, g_{t}\right\rangle$
- Where $f_{i}, p_{j}, g_{k} \in \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$ and $J \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$
- Does there exist a Canonical representation of an ideal?
- A Gröbner Basis is a canonical representation of the ideal, with many nice properties that allow to solve many polynomial decision questions
- Buchberger's Algorithm allows to compute a Gröbner Basis
- Given $F=\left\{f_{1}, \ldots, f_{s}\right\} \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$
- It finds $G=\left\{g_{1}, \ldots, g_{t}\right\}$, such that
- $J=\langle F\rangle=\langle G\rangle$

Generators of Ideals

- An ideal may have many different generators
- It is possible to have:
$J=\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle p_{1}, \ldots, p_{l}\right\rangle=\cdots=\left\langle g_{1}, \ldots, g_{t}\right\rangle$
- Where $f_{i}, p_{j}, g_{k} \in \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$ and $J \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$
- Does there exist a Canonical representation of an ideal?
- A Gröbner Basis is a canonical representation of the ideal, with many nice properties that allow to solve many polynomial decision questions
- Buchberger's Algorithm allows to compute a Gröbner Basis
- Given $F=\left\{f_{1}, \ldots, f_{s}\right\} \in \mathbb{R}\left[x_{1}, \ldots, x_{d}\right]$
- It finds $G=\left\{g_{1}, \ldots, g_{t}\right\}$, such that
- $J=\langle F\rangle=\langle G\rangle$
- Why is this important? [We'll see a little later....]

Example of Ideal Generators

- $I_{1}=\left\langle f_{1}, f_{2}\right\rangle \subset Q[x, y]$

Example of Ideal Generators

- $I_{1}=\left\langle f_{1}, f_{2}\right\rangle \subset Q[x, y]$
- $f_{1}=x^{2}-4 ; \quad f_{2}=y^{2}-1$

Example of Ideal Generators

- $I_{1}=\left\langle f_{1}, f_{2}\right\rangle \subset Q[x, y]$
- $f_{1}=x^{2}-4 ; \quad f_{2}=y^{2}-1$
- $I_{2}=\left\langle g_{1}, g_{2}\right\rangle \subset Q[x, y]$

Example of Ideal Generators

- $I_{1}=\left\langle f_{1}, f_{2}\right\rangle \subset Q[x, y]$
- $f_{1}=x^{2}-4 ; \quad f_{2}=y^{2}-1$
- $I_{2}=\left\langle g_{1}, g_{2}\right\rangle \subset Q[x, y]$
- $g_{1}=2 x^{2}+3 y^{2}-11 ; \quad g_{2}=x^{2}-y^{2}-3$;

Example of Ideal Generators

- $I_{1}=\left\langle f_{1}, f_{2}\right\rangle \subset Q[x, y]$
- $f_{1}=x^{2}-4 ; \quad f_{2}=y^{2}-1$
- $I_{2}=\left\langle g_{1}, g_{2}\right\rangle \subset Q[x, y]$
- $g_{1}=2 x^{2}+3 y^{2}-11 ; \quad g_{2}=x^{2}-y^{2}-3$;
- Is $g_{1} \in I_{1}$? Is $g_{2} \in I_{1}$?

Example of Ideal Generators

- $I_{1}=\left\langle f_{1}, f_{2}\right\rangle \subset Q[x, y]$
- $f_{1}=x^{2}-4 ; \quad f_{2}=y^{2}-1$
- $I_{2}=\left\langle g_{1}, g_{2}\right\rangle \subset Q[x, y]$
- $g_{1}=2 x^{2}+3 y^{2}-11 ; \quad g_{2}=x^{2}-y^{2}-3$;
- Is $g_{1} \in I_{1}$? Is $g_{2} \in I_{1}$?
- $g_{1}=2 f_{1}+3 f_{2} ; g_{2}=f_{1}-f_{2} ; \Longrightarrow g_{1}, g_{2} \in I_{1}$, so $I_{2} \subseteq I_{1}$.

Example of Ideal Generators

- $I_{1}=\left\langle f_{1}, f_{2}\right\rangle \subset Q[x, y]$
- $f_{1}=x^{2}-4 ; \quad f_{2}=y^{2}-1$
- $I_{2}=\left\langle g_{1}, g_{2}\right\rangle \subset Q[x, y]$
- $g_{1}=2 x^{2}+3 y^{2}-11 ; \quad g_{2}=x^{2}-y^{2}-3$;
- Is $g_{1} \in I_{1}$? Is $g_{2} \in I_{1}$?
- $g_{1}=2 f_{1}+3 f_{2} ; g_{2}=f_{1}-f_{2} ; \Longrightarrow g_{1}, g_{2} \in I_{1}$, so $I_{2} \subseteq I_{1}$.
- Similarly, show that $f_{1}, f_{2} \subseteq I_{2}$

Example of Ideal Generators

- $I_{1}=\left\langle f_{1}, f_{2}\right\rangle \subset Q[x, y]$
- $f_{1}=x^{2}-4 ; \quad f_{2}=y^{2}-1$
- $I_{2}=\left\langle g_{1}, g_{2}\right\rangle \subset Q[x, y]$
- $g_{1}=2 x^{2}+3 y^{2}-11 ; \quad g_{2}=x^{2}-y^{2}-3$;
- Is $g_{1} \in I_{1}$? Is $g_{2} \in I_{1}$?
- $g_{1}=2 f_{1}+3 f_{2} ; g_{2}=f_{1}-f_{2} ; \Longrightarrow g_{1}, g_{2} \in I_{1}$, so $I_{2} \subseteq I_{1}$.
- Similarly, show that $f_{1}, f_{2} \subseteq I_{2}$
- If $I_{1} \subset I_{2}$, and $I_{2} \subset I_{1}$ then $I_{1}=I_{2}$

Example of Ideal Generators

- $I_{1}=\left\langle f_{1}, f_{2}\right\rangle \subset Q[x, y]$
- $f_{1}=x^{2}-4 ; \quad f_{2}=y^{2}-1$
- $I_{2}=\left\langle g_{1}, g_{2}\right\rangle \subset Q[x, y]$
- $g_{1}=2 x^{2}+3 y^{2}-11 ; \quad g_{2}=x^{2}-y^{2}-3$;
- Is $g_{1} \in I_{1}$? Is $g_{2} \in I_{1}$?
- $g_{1}=2 f_{1}+3 f_{2} ; g_{2}=f_{1}-f_{2} ; \Longrightarrow g_{1}, g_{2} \in I_{1}$, so $I_{2} \subseteq I_{1}$.
- Similarly, show that $f_{1}, f_{2} \subseteq I_{2}$
- If $I_{1} \subset I_{2}$, and $I_{2} \subset I_{1}$ then $I_{1}=I_{2}$

Example of Ideal Generators

- $I_{1}=\left\langle f_{1}, f_{2}\right\rangle \subset Q[x, y]$
- $f_{1}=x^{2}-4 ; \quad f_{2}=y^{2}-1$
- $I_{2}=\left\langle g_{1}, g_{2}\right\rangle \subset Q[x, y]$
- $g_{1}=2 x^{2}+3 y^{2}-11 ; \quad g_{2}=x^{2}-y^{2}-3$;
- Is $g_{1} \in I_{1}$? Is $g_{2} \in I_{1}$?
- $g_{1}=2 f_{1}+3 f_{2} ; g_{2}=f_{1}-f_{2} ; \Longrightarrow g_{1}, g_{2} \in I_{1}$, so $I_{2} \subseteq I_{1}$.
- Similarly, show that $f_{1}, f_{2} \subseteq I_{2}$
- If $I_{1} \subset I_{2}$, and $I_{2} \subset I_{1}$ then $I_{1}=I_{2}$

The Ideal Membership Testing Problem

Given $R=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right], f_{1}, \ldots, f_{s}, \quad f \in R$, let $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq R$. Find out whether $f \in J$?

Example of Ideal Generators

- $I_{1}=\left\langle f_{1}, f_{2}\right\rangle \subset Q[x, y]$
- $f_{1}=x^{2}-4 ; \quad f_{2}=y^{2}-1$
- $I_{2}=\left\langle g_{1}, g_{2}\right\rangle \subset Q[x, y]$
- $g_{1}=2 x^{2}+3 y^{2}-11 ; \quad g_{2}=x^{2}-y^{2}-3$;
- Is $g_{1} \in I_{1}$? Is $g_{2} \in I_{1}$?
- $g_{1}=2 f_{1}+3 f_{2} ; g_{2}=f_{1}-f_{2} ; \Longrightarrow g_{1}, g_{2} \in I_{1}$, so $I_{2} \subseteq I_{1}$.
- Similarly, show that $f_{1}, f_{2} \subseteq I_{2}$
- If $I_{1} \subset I_{2}$, and $I_{2} \subset I_{1}$ then $I_{1}=I_{2}$

The Ideal Membership Testing Problem

Given $R=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right], f_{1}, \ldots, f_{s}, \quad f \in R$, let $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq R$. Find out whether $f \in J$?
$f=$ specification, $J=$ implementation, Do an equivalence check: Is $f \in J ?$ [Or something like that...]

Varieties of Ideals

Given $R=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right], f_{1}, \ldots, f_{s}, \in R$, let $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq R$. The set of all solutions to:

$$
f_{1}=f_{2}=\cdots=f_{s}=0
$$

is called the variety $V\left(f_{1}, \ldots, f_{s}\right)$

Varieties of Ideals

Given $R=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right], f_{1}, \ldots, f_{s}, \in R$, let $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq R$. The set of all solutions to:

$$
f_{1}=f_{2}=\cdots=f_{s}=0
$$

is called the variety $V\left(f_{1}, \ldots, f_{s}\right)$

Variety depends not just on the given set of polynomials f_{1}, \ldots, f_{s}, but rather on the ideal $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ generated by these polynomials.

Varieties of Ideals

Given $R=\mathbb{F}\left[x_{1}, \ldots, x_{d}\right], f_{1}, \ldots, f_{s}, \in R$, let $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq R$. The set of all solutions to:

$$
f_{1}=f_{2}=\cdots=f_{s}=0
$$

is called the variety $V\left(f_{1}, \ldots, f_{s}\right)$
Variety depends not just on the given set of polynomials f_{1}, \ldots, f_{s}, but rather on the ideal $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle$ generated by these polynomials.

$$
J=\left\langle f_{1}, \ldots, f_{s}\right\rangle=\left\langle g_{1}, \ldots, g_{t}\right\rangle, \text { then } V\left(f_{1}, \ldots, f_{s}\right)=V\left(g_{1}, \ldots, g_{t}\right)
$$

Prove that Variety depends on the Ideal

- Given $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$

Prove that Variety depends on the Ideal

- Given $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$
- Let $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)$ be a point in \mathbb{F}^{d}

Prove that Variety depends on the Ideal

- Given $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$
- Let $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)$ be a point in \mathbb{F}^{d}
- Let $\mathbf{a} \in V(J)$

Prove that Variety depends on the Ideal

- Given $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$
- Let $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)$ be a point in \mathbb{F}^{d}
- Let $\mathbf{a} \in V(J)$
- Then $f_{1}(\mathbf{a})=\cdots=f_{s}(\mathbf{a})=0$

Prove that Variety depends on the Ideal

- Given $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$
- Let $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)$ be a point in \mathbb{F}^{d}
- Let $\mathbf{a} \in V(J)$
- Then $f_{1}(\mathbf{a})=\cdots=f_{s}(\mathbf{a})=0$
- Let $f \in J$

Prove that Variety depends on the Ideal

- Given $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$
- Let $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)$ be a point in \mathbb{F}^{d}
- Let $\mathbf{a} \in V(J)$
- Then $f_{1}(\mathbf{a})=\cdots=f_{s}(\mathbf{a})=0$
- Let $f \in J$
- Is $f(\mathbf{a})=0$?

Prove that Variety depends on the Ideal

- Given $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$
- Let $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)$ be a point in \mathbb{F}^{d}
- Let $\mathbf{a} \in V(J)$
- Then $f_{1}(\mathbf{a})=\cdots=f_{s}(\mathbf{a})=0$
- Let $f \in J$
- Is $f(\mathbf{a})=0$?
- $f=f_{1} h_{1}+\cdots+f_{s} h_{s}$

Prove that Variety depends on the Ideal

- Given $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$
- Let $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)$ be a point in \mathbb{F}^{d}
- Let $\mathbf{a} \in V(J)$
- Then $f_{1}(\mathbf{a})=\cdots=f_{s}(\mathbf{a})=0$
- Let $f \in J$
- Is $f(\mathbf{a})=0$?
- $f=f_{1} h_{1}+\cdots+f_{s} h_{s}$
- $f(\mathbf{a})=f_{1}(\mathbf{a}) h_{1}+\cdots+f_{s}(\mathbf{a}) h_{s}=0$

Prove that Variety depends on the Ideal

- Given $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle \subseteq \mathbb{F}\left[x_{1}, \ldots, x_{d}\right]$
- Let $\mathbf{a}=\left(a_{1}, \ldots, a_{d}\right)$ be a point in \mathbb{F}^{d}
- Let $\mathbf{a} \in V(J)$
- Then $f_{1}(\mathbf{a})=\cdots=f_{s}(\mathbf{a})=0$
- Let $f \in J$
- Is $f(\mathbf{a})=0$?
- $f=f_{1} h_{1}+\cdots+f_{s} h_{s}$
- $f(\mathbf{a})=f_{1}(\mathbf{a}) h_{1}+\cdots+f_{s}(\mathbf{a}) h_{s}=0$
- Extend the argument to all $f \in J$ for all $\mathbf{a} \in V(J)$, and you can show that Variety depends on the ideal $J=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, not just on the set of polynomials $F=\left\{f_{1}, \ldots, f_{s}\right\}$

Example of Ideal Generators

- $I_{1}=\left\langle f_{1}, f_{2}\right\rangle \subset Q[x, y]$
- $f_{1}=x^{2}-4 ; \quad f_{2}=y^{2}-1$
- $I_{2}=\left\langle g_{1}, g_{2}\right\rangle \subset Q[x, y]$
- $g_{1}=2 x^{2}+3 y^{2}-11 ; \quad g_{2}=x^{2}-y^{2}-3$;
- Is $g_{1} \in I_{1}$? Is $g_{2} \in I_{1}$?
- $g_{1}=2 f_{1}+3 f_{2} ; g_{2}=f_{1}-f_{2} ; \Longrightarrow g_{1}, g_{2} \in I_{1}$, so $I_{2} \subseteq I_{1}$.
- Similarly, show that $f_{1}, f_{2} \subseteq I_{2}$
- If $I_{1} \subset I_{2}$, and $I_{2} \subset I_{1}$ then $I_{1}=I_{2}$

Note $V\left(I_{1}\right)=V\left(I_{2}\right)=\{(\pm 2, \pm 1)\}$

