ECE/CS 5745/6745: Testing and Verification
of Digital Circuits
Hardware Verification Using Symbolic
Computation

Prepared by Priyank Kalla
Fall 2024, Homework # 4
Due Date: Thursday Oct 26, 2023. Upload on Canvas by midnight.

C
- EDH
g
—
./

C

:D z2

b
Fig. 1: Test for faults b/1, tests for distinguishing a/0 from c¢/0 and test for multi-fault {a/0,b/1}.

1) [ATPG: 15 points] For the circuit shown in Fig. 1:
a) Find the set of all tests that detect single stuck-at fault b s-a-1.
b) Find the set of all tests that distinguish between single stuck-at faults (i.e. their fault effects)
a s-a-0 and ¢ s-a-0.
c) Derive a test for the multi-fault { a s-a-0, b s-a-1 }.
d) Based on the outcome of the above three tests, state your observations regarding the (un)testability

of single and multi-faults. [If you are confused, refer to the appropriate class slides on multiple

stuck-at faults].

2) [ATPG Checkpoints: 25 points] For the circuit shown in Fig. 2, solve the following:

a) (10 pts) Suppose we wish to derive a set of tests to distinguish between all distinguishable

single stuck-at faults in the circuit of Fig. 2. Identify a set of faults for which tests need not

be derived.
b) (5 pts) List all the checkpoint faults of this circuit.
c) (10 pts) Find a smallest/minimal subset of checkpoint faults that must be targeted for

test generation if the detection of all single stuck-at faults is the goal.

a Gael Gae3
)
. .
m
.| Cae2 Gate 6
c g k |
n r
Gate 4

h > q E
d Gate 5

Fig. 2: The circuit diagram related to Checkpoint faults

3) [Stuck-at faults at fanout stems and branches: 20 points] For the circuit shown in Fig. 2:

a) (15 pts) Derive a test that detects the following single faults (i) k/1; (ii) m/1; and (iii)
n/1. You should use path-sensitization to derive these tests. Of course, you can check your
answer by setting up the problem as a miter between a fault-free and a faulty circuit, and
use the 'cec’ command of ABC!

b) (5 pts) If any of the above faults is undetectable, remove the redundancy by removing

redundant gates and/or lines.

4) [20 points] This question is for ECE/CS 6745 students. ECE/CS 5745 students may solve it for extra
credit. Let N be a combinational circuit composed only of NAND gates. Assume that all the
primary inputs of the circuit have a fanout of exactly one (1). Show that any test set T that
detects all single stuck-at-1 faults in the circuit, detects all single stuck-at-0 faults as well. Note:
Do not assume that the circuit s fanout-free. Only the primary inputs (PIs) are fanout
free. (A fanout of 1 means that the gate output is connected to only 1 other gate input,

and this gate s also referred to as betng fanout-free).

5) [10 points: Equivalence checking versus bug-detection in arithmetic circuits]. On the class website,
along with this HW, I have uploaded two BLIF files. They correspond to a 16-bit Mastro-
vito GF multiplier (MastrovitoF_ql6.b1if) and another 16-bit Montgomery GF multiplier
(MontgomeryF_q16.b1if). As described in my book chapter, (which we will study in the next
few lectures) these architectures perform modulo-multiplication, but are based on different
mathematical concepts; due to which these designs do not exhibit any internal structural or
functional equivalences. As a result, SAT/AIG-based techniques are unable to prove equiva-
lence between them. Instead of taking my word for it, you will gain a first-hand experience for

yourself.

o Input the two designs into the ABC tool, and miter them.
e Using print_stats, strash, ifraig, print_stats, identify the structural similarity

in the design. Let N; be the number of AIG nodes in the miter before fraiging, and N,

Ni1—N»

N roughly depicts the structural

be the number of AIG nodes after fraiging. Then
similarity as a percentage.

« Solve sat on the miter (or equivalently run the ’cec’ command) to perform the combi-
national equivalence check. How many years does it take to prove equivalence of (fairly
small) 16-bit datapath circuits? ©

o Now introduce a bug in any one of these circuits, by making any modification to any one of
the BLIF files. Now run ABC-CEC and report whether bug catching or correctness proofs

for arithmetic circuits is easier.

