Gröbner Bases & their Computation Definitions + First Results #### Priyank Kalla Professor Electrical and Computer Engineering, University of Utah kalla@ece.utah.edu http://www.ece.utah.edu/~kalla Slides updated Oct 22, 2019 ## Agenda: - Now that we know how to perform the reduction $f \xrightarrow{F=\{f_1,...,f_s\}} + r$ - Study Gröbner Bases (GB) - Motivate GB through ideal membership testing - Study how they are related to ideal of leading terms - Study various definitions of GB - Study Buchberger's S-polynomials and the Buchberger's algorithm to compute GB - Minimal and Reduced GB - Application to ideal membership testing ## From the last lecture: Multivariate Division Algorithm ``` Inputs: f, f_1, \ldots, f_s \in \mathbb{F}[x_1, \ldots, x_n], f_i \neq 0 Outputs: u_1, \ldots, u_s, r s.t. f = \sum f_i u_i + r where r is reduced w.r.t. F = \sum f_i u_i + r \{f_1, \ldots, f_s\} and \max(Ip(u_1)Ip(f_1), \ldots, Ip(u_s)Ip(f_s), Ip(r)) = Ip(f) 1: u_i \leftarrow 0: r \leftarrow 0, h \leftarrow f 2: while (h \neq 0) do if \exists i s.t. lm(f_i) \mid lm(h) then choose i least s.t. Im(f_i) \mid Im(h) u_i = u_i + \frac{lt(h)}{lt(f)} h = h - \frac{lt(h)}{lt(f)}f_i else r = r + lt(h) h = h - lt(h) g. end if 10: 11: end while ``` **Algorithm 1:** Multivariate Division of f by $F = \{f_1, \dots, f_s\}$ 3 / 29 #### Motivate Gröbner basis Let $F = \{f_1, \dots, f_s\}$; $J = \langle f_1, \dots, f_s \rangle$ and let $f \in J$. Then we should be able to represent $f = u_1 f_1 + \dots + u_s f_s + r$ where r = 0. If we were to divide f by $F = \{f_1, \dots, f_s\}$, then we will obtain an intermediate remainder (say, h) after every one-step reduction. Note $h \in J$ because f, f_1, \dots, f_s are all in J. The leading term of every such remainder (LT(h)) should be divisible by the leading term of at least one of the polynomials in F. Only then we will have r = 0. #### Definition Let $$F = \{f_1, \dots, f_s\}$$; $G = \{g_1, \dots, g_t\}$; $J = \langle f_1, \dots, f_s \rangle = \langle g_1, \dots, g_t \rangle$. Then G is a **Gröbner Basis** of J $$\iff$$ $$\forall f \in J \ (f \neq 0), \quad \exists i : \operatorname{Im}(g_i) \mid \operatorname{Im}(f)$$ #### Gröbner Basis #### Definition $$G = \{g_1, \ldots, g_t\} = GB(J) \iff \forall f \in J, \exists g_i \text{ s.t. } Im(g_i) \mid Im(f)$$ As a consequence of the above definition: #### Definition $$G = GB(J) \iff \forall f \in J, f \xrightarrow{g_1, g_2, \dots, g_t} \downarrow_+ 0$$ - Implies a "decision procedure" for ideal membership - To check if $f \in \langle f_1, \ldots, f_s \rangle$: - ullet Compute $GB(f_1,\ldots,f_s)=G=\{g_1,\ldots,g_t\}$ - Reduce $f \xrightarrow{g_1,\dots,g_t} r$, and check if r=0 # Understanding GB through some examples - $J = \langle f_1, f_2 \rangle \subset \mathbb{Q}[x, y]$, DEGLEX y > x - $f_1 = yx y$, $f_2 = y^2 x$ and let $f = y^2x x$ - $f = yf_1 + f_2$ so $f \in J$ - ullet Apply division: i.e. REDUCE $f \xrightarrow{f_1,f_2}_+ r_1$ - Solve it in classroom: $r_1 = 0$ - Now try: $f \xrightarrow{f_2, f_1} r_2 = x^2 x$ - Does there exist f_i s.t. $Im(f_i) \mid Im(r_2)$? - $G = \{f_1, f_2, x^2 x\}$ is a GB. Why? ## It has got to do with Leading Monomials - Let $f \in J = \langle f_1, f_2 \rangle$: so $f = h_1 f_1 + h_2 f_2$ - Consider only leading terms: - If $lt(f) \in \langle lt(f_1), lt(f_2) \rangle$, then some $lm(f_i) \mid lm(f)$ [observe: this has to be true!] - But, what if $lt(f) \notin \langle lt(f_1), lt(f_2) \rangle$? - Refer to the example on the previous slide ## It has got to do with Leading Monomials - Let $f \in J = \langle f_1, f_2 \rangle$: so $f = h_1 f_1 + h_2 f_2$ - Consider only leading terms: - If $It(f) \in \langle It(f_1), It(f_2) \rangle$, then some $Im(f_i) \mid Im(f)$ [observe: this has to be true!] - But, what if $lt(f) \notin \langle lt(f_1), lt(f_2) \rangle$? - Refer to the example on the previous slide ## Cancellation of Leading Terms When f is a polynomial combination of (say) $h_i f_i + h_j f_j$, such that the leading terms of $h_i f_i$ and $h_j f_j$ cancel each other, then $lt(f) \notin \langle lt(f_i), lt(f_j) \rangle$. When does this happen? This happens when the leading term of some combination of f_i , f_j ($ax^{\alpha}f_i - bx^{\beta}f_j$) cancel! # Buchberger's S-polynomial $$S(f,g) = \frac{L}{lt(f)} \cdot f - \frac{L}{lt(g)} \cdot g$$ - L = LCM(Im(f), Im(g)) - How to compute LCM of leading monomials? Let $\operatorname{multideg}(f) = X^{\alpha}$, $\operatorname{multideg}(g) = X^{\beta}$, where $X^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$, and let $\gamma = (\gamma_1, \dots, \gamma_n)$, where $\gamma_i = \max(\alpha_i, \beta_i)$. Then the $x^{\gamma} = \operatorname{LCM}(\operatorname{Im}(f), \operatorname{Im}(g))$. # Buchberger's S-polynomial $$S(f,g) = \frac{L}{lt(f)} \cdot f - \frac{L}{lt(g)} \cdot g$$ - L = LCM(Im(f), Im(g)) - How to compute LCM of leading monomials? Let $\operatorname{multideg}(f) = X^{\alpha}$, $\operatorname{multideg}(g) = X^{\beta}$, where $X^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$, and let $\gamma = (\gamma_1, \dots, \gamma_n)$, where $\gamma_i = \max(\alpha_i, \beta_i)$. Then the $x^{\gamma} = \operatorname{LCM}(\operatorname{Im}(f), \operatorname{Im}(g))$. This S-polynomial (S = syzygy) cancels lt(f), lt(g), gives a polynomial h = S(f,g) with a new lt(h). This S-polynomial with a new lt() is the missing piece of the GB puzzle! ## Understanding *S*-poly some more... - While S-poly gives new lt(h), it may still have some redundant information - $f = x^3y^2 x^2y^3$; $g = 3x^4 + y^2$ - $Spoly(f,g) = -x^3y^3 + x^2 \frac{1}{3}y^3$ - x^3y^3 can be composed of It(f) - Reduce: $Spoly(f,g) \xrightarrow{f,g}_+ r$ - IN this case: $r = -x^2y^4 1/3y^3$ - If $r \neq 0$ then r provides "new information" regarding the basis ## Buchberger's Theorem ## Theorem (Buchberger's Theorem [1]) Let $G = \{g_1, \dots, g_t\}$ be a set of non-zero polynomials in $\mathbb{F}[x_1, \dots, x_n]$. Then G is a Grobner basis for the ideal $J = \langle g_1, \dots, g_t \rangle$ if and only if **for** all $i \neq j$ $$S(g_i,g_i) \stackrel{G}{\longrightarrow}_+ 0$$ ## Buchberger's Theorem ## Theorem (Buchberger's Theorem [1]) Let $G = \{g_1, \dots, g_t\}$ be a set of non-zero polynomials in $\mathbb{F}[x_1, \dots, x_n]$. Then G is a Grobner basis for the ideal $J = \langle g_1, \dots, g_t \rangle$ if and only if **for all** $i \neq j$ $$S(g_i,g_j) \stackrel{G}{\longrightarrow}_+ 0$$ Can you think of an algorithm to compute GB(J)? ## Buchberger's Algorithm Computes a Gröbner Basis #### Buchberger's Algorithm INPUT : $$F = \{f_1, \dots, f_s\}$$ OUTPUT : $G = \{g_1, \dots, g_t\}$ $G := F$; REPEAT $G' := G$ For each pair $\{f, g\}, f \neq g$ in G' DO $S(f, g) \xrightarrow{G'} r$ IF $r \neq 0$ THEN $G := G \cup \{r\}$ UNTIL $G = G'$ $$S(f,g) = \frac{L}{lt(f)} \cdot f - \frac{L}{lt(g)} \cdot g$$ L = LCM(Im(f), Im(g)), Im(f): leading monomial of f #### With some more detail... ``` Inputs: F = \{f_1, \dots, f_s\} \subset \mathbb{F}[x_1, \dots, x_n], f_i \neq 0 Outputs: G = \{g_1, \dots, g_t\}, a Gröbner basis for \langle f_1, \dots, f_s \rangle 1: Initialize: G := F; G := \{\{f_i, f_i\} \mid f_i \neq f_i \in G\} 2: while \mathcal{G} \neq \emptyset do 3: Pick a pair \{f,g\} \in \mathcal{G} 4: G := G - \{\{f,g\}\}\} 5: Spoly(f,g) \xrightarrow{G}_{\perp} h 6: if h \neq 0 then \mathcal{G} := \mathcal{G} \cup \{\{u,h\} \mid \forall u \in G\} G := G \cup \{h\} end if Q٠ 10: end while ``` **Algorithm 2:** Buchberger's algorithm from [2] # Examples: From [2] - $F = \{f_1, f_2\} \in \mathbb{Q}[x, y]$, LEX y > x; $f_1 = xy x$; $f_2 = -y + x^2$ - Run Buchberger's algorithm: - Polynomial Pair: there's only one $\{f_1, f_2\}$ - $Spoly(f_1, f_2) = \frac{xy}{xy} f_1 \frac{xy}{-y} f_2$ - $Spoly(f_1, f_2) = xy x xy + x^3 = x^3 x \neq 0$ - Spoly $(f_1, f_2) \xrightarrow{f_1, f_2} x^3 x$ - New basis: $\{f_1, f_2, f_3 = x^3 x\}$ - New pairs: $\{f_1, f_3\}, \{f_2, f_3\}$ - $Spoly(f_1, f_3) \xrightarrow{f_1, f_2, f_3} + yx x^3 \xrightarrow{f_1, f_2, f_3} + 0$ - Spoly $(f_2, f_3) \xrightarrow{f_1, f_2, f_3} + 0$ - No more polynomial pairs remaining, so f_1, f_2, f_3 is the GB ## Change the term order • $$F = \{f_1, f_2\} \in \mathbb{Q}[x, y]$$, DEGLEX $x > y$; $f_1 = xy - x$; $f_2 = -y + x^2$ - Then: $f_1 = xy x$; $f_2 = x^2 y$ - Spoly $(f_1, f_2) \xrightarrow{f_1, f_2}_{+} = -x^2 + y^2 \xrightarrow{f_1, f_2}_{+} y^2 y = f_3;$ - $Spoly(f_1, f_3) \xrightarrow{f_1, f_2, f_3} += 0$ - Spoly $(f_2, f_3) \xrightarrow{f_1, f_2, f_3} + 0$ ## A more interesting example • $$f_1 = x^2 + y^2 + 1$$; $f_2 = x^2y + 2xy + x$ in $\mathbb{Z}_5[x, y]$ LEX $x > y$ - $S(f_1, f_2) \xrightarrow{f_1, f_2} f_3 = 3xy + 4x + y^3 + y$ - $G := \{\{f_1, f_3\}, \{f_2, f_3\}\}$ - $G = \{f_1, f_2, f_3\}$ - $S(f_1, f_3) \xrightarrow{f_1, f_2, f_3} + f_4 = 4y^5 + 3y^4 + y^2 + y + 3$ - $\bullet \ \mathcal{G} := \{ \{f_1, f_3\}, \{f_2, f_3\}, \{f_1, f_4\}, \{f_2, f_4\}, \{f_3, f_4\} \}$ - $G = \{f_1, \ldots, f_4\}$ - ullet Now, all *Spoly* in ${\mathcal G}$ reduce to 0, so $GB=\{f_1,\ldots,f_4\}$ ## Complexity of Gröbner Bases - Gröbner basis complexity is not very pleasant - For $J = \langle f_1, \dots, f_s \rangle \subseteq \mathbb{F}[x_1, \dots, x_n]$: n variables, and let d be the degree of J - Complexity of Gröbner basis - Degree of polynomials in G is bounded by $2(\frac{1}{2}d^2 + d)^{2^{n-1}}$ [3] - Doubly-exponential in n and polynomial in the degree d - This is the complexity of the GB problem, not of Buchberger's algorithm – that's still a mystery - In many practical cases, the behaviour is not that bad but it is still challenging to overcome this complexity - Our objective: to glean more information from circuits to overcome this complexity — we'll study these concepts a little later - In general DEGREVLEX orders show better performance than LEX orders — but for Boolean circuits, our experience is slightly different Slides updated Oct 22, 2019 #### Minimal GB A Gröbner basis $G = \{g_1, \dots, g_t\}$ is minimal if for all i, $lc(g_i) = 1$, and for all $i \neq j$, $lm(g_i)$ does not divide $lm(g_j)$. - Obtain a minimal GB: Test if $Im(g_i)$ divides $Im(g_j)$, remove g_j . Then normalize the LC: Divide each g_i by $Ic(g_i)$. - Unfortunately, minimality is not unique - Minimal GBs have same number of terms - Minimal GBs have same leading terms #### Make a GB minimal • Over $\mathbb{Z}_5[x,y]$, LEX x>y A Gröbner basis: $$f_1 = x^2 + y^2 + 1$$ $$f_2 = x^2y + 2xy + x$$ $$f_3 = 3xy + 4x + y^3 + y$$ $$f_4 = 4y^5 + 3y^4 + y^2 + y + 3$$ #### Make a GB minimal • Over $\mathbb{Z}_5[x,y]$, LEX x>y A Gröbner basis: $$f_1 = x^2 + y^2 + 1$$ $$f_2 = x^2y + 2xy + x$$ $$f_3 = 3xy + 4x + y^3 + y$$ $$f_4 = 4y^5 + 3y^4 + y^2 + y + 3$$ A minimal Gröbner basis: $$f_1 = x^2 + y^2 + 1$$ $$\frac{f_3}{3} = xy + 3x + 2y^3 + 2y$$ $$\frac{f_4}{4} = y^5 + 2y^4 + 4y^2 + 4y + 2$$ 18 / 29 ## A Reduced (Minimal) GB A **reduced GB** for a polynomial ideal J is a GB G such that: - lc(p) = 1, \forall polynomials $p \in G$ - $\forall p \in G$, no monomial of p lies in $\langle LT(G \{p\}) \rangle$. In other words, no non-zero term in g_i , is divisible by any $Im(g_j)$, for $i \neq j$. Reduced, minimal GB is a unique, canonical representation of an ideal! ## To Reduce a Minimal GB, do the following: - Compute a G.B. Make it minimal: remove g_i if $lp(g_j)$ divides $lp(g_i)$. Make all LC = 1. - Reduce it: $G = \{g_1, \dots, g_t\}$ is minimal G.B. Get $H = \{h_1, \dots, h_t\}$: - $g_1 \xrightarrow{H_1} h_1$, where h_1 is reduced w.r.t. $H_1 = \{g_2, \dots, g_t\}$ - $g_2 \xrightarrow{H_2} h_2$, where h_2 is reduced w.r.t. $H_2 = \{h_1, g_3, \dots, g_t\}$ - $g_3 \xrightarrow{H_3} h_3$, where h_3 is reduced w.r.t. $H_3 = \{h_1, h_2, g_4, \dots, g_t\}$ - $g_t \xrightarrow{H_t} h_t$, where h_t is reduced w.r.t. $H_t = \{h_1, h_2, h_3, \dots, h_{t-1}\}$ - Then $H = \{h_1, \dots, h_t\}$ is a unique, minimal, reduced GB. #### Reduce this minimal GB $$f_1 = x^2 + y^2 + 1$$ $$f_2 = xy + 3x + 2y^3 + 2y$$ $$f_3 = y^5 + 2y^4 + 4y^2 + 4y + 2$$ #### Reduce this minimal GB $$f_1 = x^2 + y^2 + 1$$ $f_2 = xy + 3x + 2y^3 + 2y$ $f_3 = y^5 + 2y^4 + 4y^2 + 4y + 2$ It is already reduced! ## Example: Non-uniqueness of minimal GB DEGLEX y > x in $\mathbb{Q}[x, y]$: $$f_1 = y^2 + yx + x^2$$ $$f_2 = y + x$$ $$f_3 = y$$ $$f_4 = x^2$$ $$f_5 = x$$ ## Example: Non-uniqueness of minimal GB DEGLEX y > x in $\mathbb{Q}[x, y]$: $$f_1 = y^2 + yx + x^2$$ $$f_2 = y + x$$ $$f_3 = y$$ $$f_4 = x^2$$ $$f_5 = x$$ $\{\mathit{f}_{3},\mathit{f}_{5}\}$ and $\{\mathit{f}_{2},\mathit{f}_{5}\}$ are minimal GBs (non-unique) ## Example: Non-uniqueness of minimal GB DEGLEX y > x in $\mathbb{Q}[x, y]$: $$f_1 = y^2 + yx + x^2$$ $$f_2 = y + x$$ $$f_3 = y$$ $$f_4 = x^2$$ $$f_5 = x$$ $\{f_3, f_5\}$ and $\{f_2, f_5\}$ are minimal GBs (non-unique) $\{f_3, f_5\}$ is a reduced GB ## One (last) more definition of GB #### Gröbner bases as ideals of leading terms - Let $I = \langle f_1, \dots, f_s \rangle$ be an ideal - Denote by LT(I) the set of leading terms of all elements of I. - LT(I) = $\{cx^{\alpha} : \exists f \in I \text{ with } LT(f) = cx^{\alpha}\}$ - $\langle LT(I) \rangle$ denotes the (monomial) ideal generated by elements of LT(I). ## Contrast $\langle LT(I) \rangle$ with: - $\langle It(f_1), It(f_2), \ldots, It(f_s) \rangle$ - Is $\langle LT(I) \rangle = \langle It(f_1), It(f_2), \dots, It(f_s) \rangle$? - Not always. Equality holds only when the set $\{f_1, \ldots, f_s\}$ is a Gröbner basis! ## See this example.... - Let $f_1 = x^3 2xy$; $f_2 = x^2y 2y^2 + x$ DEGLEX x > y - Note: $F = \{f_1, f_2\}$ is not a GB! - $I = \langle f_1, f_2 \rangle$, and $x^2 = x \cdot f_2 yf_1 \in I$ - $x^2 = lt(x^2) \in LT(I)$ - But, is $x^2 \in \langle lt(f_1), lt(f_2) \rangle$? - Aside: BTW, what is a GB of a set of monomials? - Compute $GB(f_1, f_2) = \{g_1 : 2y^2 x, g_2 : xy, g_3 : x^2\}$ - Note that $\langle LT(I) \rangle = \{ It(g_1) = 2y^2, \ It(g_2) = xy, \ It(g_3) = x^2 \}$ #### Definition $$G = \{g_1, \ldots, g_t\} \iff \langle It(I) \rangle = \langle It(g_1), \ldots, It(g_t) \rangle$$ ## Finally, to recap... - Every ideal over $\mathbb{F}[x_1,\ldots,x_n]$ is finitely generated - $\bullet \ J = \langle f_1, \ldots, f_s \rangle \subset \mathbb{F}[x_1, \ldots, x_n]$ - ullet Every such ideal J has a Gröbner basis $G=\{g_1,\ldots,g_t\}$ which can always be computed - $J = \langle f_1, \ldots, f_s \rangle = \langle g_1, \ldots, g_t \rangle$ #### Definition $$G = \{g_1, \dots, g_t\} = GB(J) \iff \forall f \in J, \exists g_i \text{ s.t. } Im(g_i) \mid Im(f)$$ #### Definition $$G = GB(J) \iff \forall f \in J, f \xrightarrow{g_1, g_2, \dots, g_t} \downarrow_+ 0$$ #### Definition $$G = \{g_1, \dots, g_t\} = GB(J) \iff \langle It(J) \rangle = \langle It(g_1), \dots, It(g_t) \rangle$$ #### Recap some more - Buchberger's algorithm computes Gröbner basis - $Spoly(f,g) \xrightarrow{G}_+ r$ cancels the leading terms of f,g and gives a polynomial with a new leading term - A GB is computed when ALL $Spoly(f,g) \xrightarrow{G}_{+} 0$ - GB should be made minimal and then reduced - Reduced GB = unique, canonical form (subject to the term order) - GB as a decision procedure for ideal membership testing - Compute G = GB(J), reduce $f \xrightarrow{G}_+ r$, and check if r = 0 # Definition (Ideal Membership Testing Algorithm) $$f \in J \iff f \xrightarrow{G}_+ 0 \text{ where } G = \{g_1, \dots, g_t\}$$ #### Some more GB results Remainder modulo a Gröbner basis is unique, w.r.t. a given monomial order - Fix a term order >, and let $G = \{g_1, \ldots, g_t\} = GB(J)$ be a Gröbner basis - If $f \xrightarrow{G}_+ r_1$ and $f \xrightarrow{G}_+ r_2$, then $r_1 = r_2 = r$ - Then r is called the *normal form* of f modulo G: $r = \overline{NF(f)}^G$ - ullet Then r is a unique canonical signature modulo a Gröbner basis #### Extended Gröbner Basis Let $F = \{f_1, \ldots, f_s\}$, $J = \langle F \rangle$ and compute $G = GB(J) = \{g_1, \ldots, g_t\}$ using Buchberger's algorithm. Then it is possible to extend Buchberger's algorithm to output not just G, but also a $t \times s$ matrix M with polynomial entries such that: $$\begin{bmatrix} g_1 \\ g_2 \\ \vdots \\ g_t \end{bmatrix} = M \cdot \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_s \end{bmatrix}$$ (1) Entries of M can be found by recording the "quotients of division" in Buchberger's algorithm. The "lift" command in Singular can solve that. # Extended Ideal Membership - Let $F = \{f_1, \dots, f_s\}, J = \langle F \rangle$ and compute $G = GB(J) = \{g_1, \dots, g_t\}$ - Let $f \in J$, then we know that $f \xrightarrow{G}_+ r = 0$ - Then $f = h_1g_1 + h_2g_2 + \cdots + h_tg_t$ - From Eqn. (1) each g_i is some combination of f_1, \ldots, f_s - Substitute g_i 's: $f = u_1 f_1 + u_2 f_2 + \cdots + u_s f_s$ - [1] B. Buchberger, "Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen Polynomideal," Ph.D. dissertation, University of Innsbruck, 1965. - [2] W. W. Adams and P. Loustaunau, *An Introduction to Gröbner Bases*. American Mathematical Society, 1994. - [3] T. W. Dube, "The Structure of Polynomial Ideals and Gröbner bases," *SIAM Journal of Computing*, vol. 19, no. 4, pp. 750–773, 1990.