
ECE/CS 3700
Digital System Design

Lecture Slides for Chapter 2: Formal Procedures
for SOP minimization and Karnaugh Maps

Priyank Kalla
Professor

Electrical & Computer Engineering

With more variables, Logic simplification
becomes infeasible using algebraic/symbolic
manipulation. We need formal techniques …

December 31, 2012 09:14 vra80547_ch08 Sheet number 23 Page number 513 magenta black

8.3 Alternative Representations of Logic Functions 513

0000 1000

1010

0110

0011

0010

0111 1111

0x1x

x0x0

x111

Figure 8.18 Representation of function f3 from Figure 2.54

is not difficult to extend the ideas introduced above to a general n-variable case. Because
visual interpretation is not possible and because we normally use the word cube only for
a three-dimensional structure, many people use the word hypercube to refer to structures
with more than three dimensions. We will continue to use the word cube in our discussion.

It is convenient to refer to a cube as being of a certain size that reflects the number of
vertices in the cube. Vertices have the smallest size. Each variable has a value of 0 or 1 in
a vertex. A cube that has an x in one variable position is larger because it consists of two
vertices. For example, the cube 1x01 consists of vertices 1001 and 1101. A cube that has
two x’s consists of four vertices, and so on. A cube that has k x’s consists of 2k vertices.

An n-dimensional cube has 2n vertices. Two vertices are adjacent if they differ in the
value of only one coordinate. Because there are n coordinates (axes in the n-dimensional
cube), each vertex is adjacent to n other vertices. The n-dimensional cube contains cubes of
lower dimensionality. Cubes of the lowest dimension are vertices. Because their dimension
is zero, we will call them 0-cubes. Edges are cubes of dimension 1; hence we will call them
1-cubes. A side of a three-dimensional cube is a 2-cube. An entire three-dimensional cube
is a 3-cube, and so on. In general, we will refer to a set of 2k adjacent vertices as a k-cube.

From the examples in Figures 8.17 and 8.18, it is apparent that the largest possible
k-cubes that exist for a given function are equivalent to its prime implicants. In Section 8.4
we will discuss minimization techniques that use the cubical representation of functions.

A 4-dimensional cube

x 2

(a) Truth table (b) Karnaugh map

0

1

0 1

m 0 m 2

m 3 m 1

x 1 x 2

0 0
0 1
1 0
1 1

m 0

m 1

m 3

m 2

x 1

Figure 2.49. Location of two-variable minterms.

Figure 2.50. The function of Figure 2.19.

x 1 x 2

1 0

1 1
f x 2 x 1 + =

0

1

0 1
1

Figure 2.51. Location of three-variable minterms.

x 1 x 2 x 3 00 01 11 10

0

1

(b) Karnaugh map

x 2 x 3

0 0
0 1
1 0
1 1

m 0
m 1

m 3

m 2

0
0
0
0

0 0
0 1
1 0
1 1

1
1
1
1

m 4
m 5

m 7

m 6

x 1

(a) Truth table

m 0

m 1 m 3

m 2 m 6

m 7

m 4

m 5

Figure 2.52. Examples of three-variable Karnaugh maps.

Figure 2.53. A four-variable Karnaugh map.

x 1 x 2 x 3 x 4 00 01 11 10

00

01

11

10

x 2

x 4

x 1

x 3

m 0

m 1 m 5

m 4 m 12

m 13

m 8

m 9

m 3

m 2 m 6

m 7 m 15

m 14

m 11

m 10

Terminology

Binary Variable = symbol. Represents a co-ordinate of Boolean
space spanned by n-variables (called Bn), where n = the number of
variables of the function

Literal: Boolean variable, or its complement

f = a + a′b has how many literals? 3 literals: a, a′ are different
literals.

Minterm: a point in the Boolean space
A product of all n literals

Cube: a point, or a set of points in Bn

A product of literals, may contain fewer than n literals

f (a, b, c) = a′bc + abc : 2 cubes. But f = bc is a larger cube
containing both.

Implementation Cost: Number of literals in expression,
rough estimate of area. 1 literals = 2 CMOS transistors.

P. Kalla (Univ. of Utah) Two-Level Logic Optimization 2 / 5

Figure 2.54. Examples of four-variable Karnaugh maps.

More terminology
Implicants of a Function

Implicant: Same thing as an ON-SET cube; “implies” the value of
the function (= 1)

Prime Implicant: Not contained in any other implicant

Prime implicant cannot be expanded

Prime implicant is a largest cube

One solution for logic minimization: F = all prime implicants

Problem: Redundancy! Too many (≤ 3n/n) primes

Still have to make choices...

Greedy strategy does not always work

Quine-McCluskey gave a systematic solution to find a minimum cost

cover of a function

P. Kalla (Univ. of Utah) Two-Level Logic Optimization 4 / 5

Figure 2.54. Examples of four-variable Karnaugh maps.

Exact Logic Minimization

Prime Cover: A Cover containing only prime implicants

Quine’s Theorem:

There exists a minimum cover that is prime!

Thats why, analyze only prime implicants
Quickly generate all prime implicants: Expand all ON-set cubes as
much as possible!
Identify all essential primes
Now select a minimum number of primes from the remaining ones.

“Minimum number of primes” versus “A minimum number of primes
with minimum cost”. See Fig. 2.57.

A Minimum Cost cover is NOT unique, see Fig. 2.54 (iv)

So, the strongest problem formulation is: Find a minimum cost cover from

among the prime implicants that also comprises a minimum number of

primes!

P. Kalla (Univ. of Utah) Two-Level Logic Optimization 5 / 5

Figure 2.57. Four-variable function f (x1,…, x4) =
 Σ m(2, 3, 5, 6, 7, 10, 11, 13, 14).

x 1 x 2 x 3 x 4 00 01 11 10

1 1

1 1

1 1

00

01

11

10

x 1 x 3

1 1

1

x 3 x 4

x 1 x 2 x 4

x 2 x 3

x 2 x 3 x 4

Figure 2.55. A five-variable Karnaugh map.

x 1 x 2 x 3 x 4 00 01 11 10

1 1

1 1

1 1

00

01

11

10

x 1 x 2 x 3 x 4 00 01 11 10

1

1 1

1 1

1 1

00

01

11

10

f 1 x 1 x 3 x 1 x 3 x 4 x 1 x 2 x 3 x 5 + + =

x 5 1 = x 5 0 =

Figure 2.58. The function f (x1,…, x4) =
 Σ m(0, 4, 8, 10, 11, 12, 13, 15).

x 1 x 2 x 3 x 4 00 01 11 10

1

1 1 1 1

1

00

01

11

10

x 1 x 2 x 4

1

1

x 3 x 4

x 1 x 2 x 4

x 1 x 2 x 3

x 1 x 2 x 3

x 1 x 3 x 4

Figure 2.59. The function f (x1,…, x4) =
 Σ m(0, 2, 4, 5, 10, 11, 13, 15).

x 1 x 2
x 3 x 4 00 01 11 10

1

1

1

1

1

1

00

01

11

10 1

1

x 1 x 3 x 4

x 2 x 3 x 4

x 2 x 3 x 4

x 1 x 3 x 4

x 1 x 2 x 4 x 1 x 2 x 4

x 1 x 2 x 3 x 1 x 2 x 3

Don’t care conditions (DC)

» Sometimes, a circuit may not receive all
possible input assignments

» Then, the output value for that assignment does
not matter, or we don’t care about the output

» That input assignment is called a don’t care
condition

» Such functions are called “incompletely
specified” Boolean functions

» ! instead of !f : 𝔹n → {0,1,*} f : 𝔹n → 𝔹

» Don’t care condition = input minterm
» Don’t care value = output could be assigned 0 or 1, depending

on what leads to better simplification

Where do DCs come from?

4

10

de

0
0

0
b
a 0

1
0
0 0 1 1 1 1

01

00 1

0

0

0

1

1

0

1

1

0

0

0

1

1

0

0 0

1

1

0

0

0

0

1 0

1

1

1

01

1

1

(i) F(a, b, c, d, e)

a
b
c

a
b
c

d
e

g

g

h F

don’t care
conditions?

0

1 00 1
11 1 1

1 0
0 0

c

1

(ii) A decomposed implementation of F(a,b,c,d,e)

11

Fig. 2. Decomposition of F (a, b, c, d, e) = h(g0(a, b, c), g1(a, b, c), d, e). Compute the don’t cares at the input of the h(g0, g1, d, e) block

and simplify the SOP form of h.

3

D(8, 12, 13, 14). Working on a K-map, first generate and list all the prime implicants of the function.

Subsequently, from among these primes, identify the essential primes, and then derive a minimum (literal)

cost SOP form Boolean expression. How many product-terms does the min-cost SOP form have? What is

the total literal cost of the min-cost SOP?

7) (Synthesis of a decomposed Boolean function by exploiting don’t care conditions - 20 points) Consider

the Boolean function F (a, b, c, d, e) whose K-map is shown below in Fig. 2 (i). Now suppose that a logic

synthesis algorithm decomposes F as F (a, b, c, d, e) = h(g0(a, b, c), g1(a, b, c), d, e), shown in Fig. 2, where

the SOP representations are:

• Functions g0 = a′bc+ ab′c+ abc′ and g1 = a′b′c+ abc

• Function h = g′0g
′

1e
′ + g0g

′

1d
′ + g′0g1e

You are asked to solve the following:

a) From the K-map of F (a, b, c, d, e), identify a minimum SOP form representation of F in its undecom-

posed form in terms of the primary inputs {a, b, c, d, e}. What is the SOP literal cost of F ?

b) Now assume the a decomposition is applied as shown in Fig. 2. Minimize the SOP form of g0, g1, h.

Are they already given in minimal form?

c) This decomposition creates don’t care conditions at the input of the h(g0, g1, d, e) block. Identify the

don’t care conditions at the input of h.

d) Using the don’t care conditions, minimize the SOP form of h. What is the total SOP literal cost of

g0, g1 and h. Do the don’t care conditions result in further logic simplification with literal cost savings?

x 1 x 2 x 3 x 4

0

00 01 11 10

1 d 0

0 1 d 0

0 0 d 0

1 1 d 1

00

01

11

10

x 2 x 3

x 3 x 4

(a) SOP implementation

Figure 2.62. Two implementations of the function f (x1,…, x4) =
 Σ m(2, 4, 5, 6, 10) + D(12, 13, 14, 15).

