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With more variables, Logic simplification
becomes infeasible using algebraic/symbolic
manipulation. We need formal techniques ...

0110

Ox1x
x111

0111 1111

0011

1010
0010 x0x0

0000 1000

Figure 8.18  Representation of function f; from Figure 2.54

A 4-dimensional cube
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Figure 2.49. Location of two-variable minterms.
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Figure 2.50. The function of Figure 2.19.
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Figure 2.51. Location of three-variable minterms.



(a) The function of Figure 2.23
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(b) The function of Figure 2.48

Figure 2.52. Examples of three-variable Karnaugh maps.



Figure 2.53.
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A four-variable Karnaugh map.






Terminology

@ Binary Variable = symbol. Represents a co-ordinate of Boolean
space spanned by n-variables (called B"), where n = the number of
variables of the function

@ Literal: Boolean variable, or its complement
@ f = a+ a’b has how many literals? 3 literals: a, a’ are different
literals.
@ Minterm: a point in the Boolean space
@ A product of all n literals
@ Cube: a point, or a set of points in B”
@ A product of literals, may contain fewer than n literals

@ f(a,b,c) = a'bc+ abc: 2 cubes. But f = bc is a larger cube
containing both.

@ Implementation Cost: Number of literals in expression,
rough estimate of area. 1 literals = 2 CMQOS transistors.

P. Kalla (Univ. of Utah) Two-Level Logic Optimization
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Figure 2.54. Examples of four-variable Karnaugh maps.



More terminology

Implicants of a Function

@ Implicant: Same thing as an ON-SET cube; “implies” the value of
the function (= 1)

Prime Implicant: Not contained in any other implicant
Prime implicant cannot be expanded

Prime implicant is a largest cube

One solution for logic minimization: F = all prime implicants
Problem: Redundancy! Too many (< 3"/n) primes

Still have to make choices...

Greedy strategy does not always work

Quine-McCluskey gave a systematic solution to find a minimum cost
cover of a function

P. Kalla (Univ. of Utah) Two-Level Logic Optimization
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Figure 2.54. Examples of four-variable Karnaugh maps.



Exact Logic Minimization

@ Prime Cover: A Cover containing only prime implicants
@ Quine’s Theorem:
@ There exists a minimum cover that is prime!

@ Thats why, analyze only prime implicants
@ Quickly generate all prime implicants: Expand all ON-set cubes as
much as possible!
@ ldentify all essential primes
@ Now select a minimum number of primes from the remaining ones.
@ “Minimum number of primes” versus “A minimum number of primes
with minimum cost”. See Fig. 2.57.

@ A Minimum Cost cover is NOT unique, see Fig. 2.54 (iv)
So, the strongest problem formulation is: Find a minimum cost cover from

among the prime implicants that also comprises a minimum number of
primes!

P. Kalla (Univ. of Utah) Two-Level Logic Optimization
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Figure 2.57. Four-variable function f ( x,,..., X,) =
>m(2,3,5,6,7,10, 11, 13, 14).
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Figure 2.55. A five-variable Karnaugh map.
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Figure 2.58. The function f ( x;,..., X,) =
2m(0, 4,8, 10, 11, 12, 13, 15).
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Figure 2.59. The function f ( x,,..., X,) =
>m(0, 2,4,5,10, 11, 13, 15).



Don’t care conditions (DC)

» Sometimes, a circuit may not receive all
possible mput assignments

» Then, the output value for that assignment does
not matter, or we don’t care about the output

» That input assignment 1s called a don’t care
condition

» Such functions are called “incompletely
specified” Boolean functions

» f:B" > {0,1,*} instead of f: B" - B



» Don’t care condition = input minterm

» Don’t care value = output could be assigned 0 or 1, depending
on what leads to better simplification

____r'i / <L C f/
s (
"/bc 7T 6 ob |
o o\ \
Swppse azbecze © 1P|
Ye vey O\m\f%? - :
\)ga |

ftar 2, SEH/‘ (




Where do DCs come from?
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(a) SOP implementation

Figure 2.62. Two implementations of the function f( x,,...,x,) =
Zm(2,4,5,6,10)+ D(12, 13, 14, 15).
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(@) Determination of the SOP expression
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(b) Determination of the POS expression

(X +xy)



