
ECE/CS 3700
Digital System Design

Lecture Slides for Chapter 2: Universal Logic

Priyank Kalla
Professor

Electrical & Computer Engineering

Universal Logic
• A set of logical operators that can implement any arbitrary

Boolean function

• � : collectively implement any Boolean
function: universal logic

• ANDs and NOTs implement on-set minterms

• OR of on-set minterms = function

• Example: Majority function �

• Only NAND gates = universal logic [important, PLAs]

• Only NOR gates = universal logic [important, PLAs]

• Only MUXes = universal logic [important FPGAs]

• � is also universal logic [important, to show off
your mathematical reasoning prowess!]

{AND, OR, NOT}

f = a′�bc + ab′�c + abc′� + abc

{AND, XOR}

Boolean functions implemented with
only NAND gates

• Relies on DeMorgan’s laws: �

• �

x ⋅ y = x + y

f = ab + ac + bc

December 31, 2012 09:08 vra80547_ch02 Sheet number 37 Page number 57 magenta black

2.7 NAND and NOR Logic Networks 57

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

Figure 2.27 Using NAND gates to implement a sum-of-products.

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

Figure 2.28 Using NOR gates to implement a product-of-sums.

Maxterms and product of
sum (POS) form

December 31, 2012 09:08 vra80547_ch02 Sheet number 28 Page number 48 magenta black

48 C H A P T E R 2 • Introduction to Logic Circuits

As illustrated by Examples 2.7 to 2.9, there are multiple ways in which a logic expres-
sion can be minimized by using Boolean algebra. This process can be daunting, because it
is not obvious which rules, identities, and properties should be applied, and in what order.
Later in this chapter, in Section 2.11, we will introduce a graphical technique, called the
Karnaugh map, that clarifies this process by providing a systematic way of generating a
minimal-cost logic expression for a function.

2.6.1 Sum-of-Products and Product-of-Sums Forms

Having introduced the synthesis process by means of simple examples, we will now present
it in more formal terms using the terminology that is encountered in the technical literature.
We will also show how the principle of duality, which was introduced in Section 2.5, applies
broadly in the synthesis process.

If a function f is specified in the form of a truth table, then an expression that realizes
f can be obtained by considering either the rows in the table for which f = 1, as we have
already done, or by considering the rows for which f = 0, as we will explain shortly.

Minterms
For a function of n variables, a product term in which each of the n variables appears

once is called a minterm. The variables may appear in a minterm either in uncomplemented
or complemented form. For a given row of the truth table, the minterm is formed by
including xi if xi = 1 and by including xi if xi = 0.

To illustrate this concept, consider the truth table in Figure 2.22. We have numbered the
rows of the table from 0 to 7, so that we can refer to them easily. From the discussion of the
binary number representation in Section 1.5, we can observe that the row numbers chosen
are just the numbers represented by the bit patterns of variables x1, x2, and x3. The figure
shows all minterms for the three-variable table. For example, in the first row the variables

Row
number x1 x2 x3 Minterm Maxterm

0 0 0 0 m0 = x1x2x3 M0 = x1 + x2 + x3
1 0 0 1 m1 = x1x2x3 M1 = x1 + x2 + x3
2 0 1 0 m2 = x1x2x3 M2 = x1 + x2 + x3
3 0 1 1 m3 = x1x2x3 M3 = x1 + x2 + x3
4 1 0 0 m4 = x1x2x3 M4 = x1 + x2 + x3
5 1 0 1 m5 = x1x2x3 M5 = x1 + x2 + x3
6 1 1 0 m6 = x1x2x3 M6 = x1 + x2 + x3
7 1 1 1 m7 = x1x2x3 M7 = x1 + x2 + x3

Figure 2.22 Three-variable minterms and maxterms.

Maxterms and POS forms

December 31, 2012 09:08 vra80547_ch02 Sheet number 29 Page number 49 magenta black

2.6 Synthesis Using AND, OR, and NOT Gates 49

have the values x1 = x2 = x3 = 0, which leads to the minterm x1x2x3. In the second row
x1 = x2 = 0 and x3 = 1, which gives the minterm x1x2x3, and so on. To be able to refer to
the individual minterms easily, it is convenient to identify each minterm by an index that
corresponds to the row numbers shown in the figure. We will use the notation mi to denote
the minterm for row number i. Thus m0 = x1x2x3, m1 = x1x2x3, and so on.

Sum-of-Products Form
A function f can be represented by an expression that is a sum of minterms, where each

minterm isANDed with the value of f for the corresponding valuation of input variables. For
example, the two-variable minterms are m0 = x1x2, m1 = x1x2, m2 = x1x2, and m3 = x1x2.
The function in Figure 2.19 can be represented as

f = m0 · 1 + m1 · 1 + m2 · 0 + m3 · 1

= m0 + m1 + m3

= x1x2 + x1x2 + x1x2

which is the form that we derived in the previous section using an intuitive approach. Only
the minterms that correspond to the rows for which f = 1 appear in the resulting expression.

Any function f can be represented by a sum of minterms that correspond to the rows
in the truth table for which f = 1. The resulting implementation is functionally correct and
unique, but it is not necessarily the lowest-cost implementation of f . A logic expression
consisting of product (AND) terms that are summed (ORed) is said to be in the sum-of-
products (SOP) form. If each product term is a minterm, then the expression is called a
canonical sum-of-products for the function f . As we have seen in the example of Figure 2.20,
the first step in the synthesis process is to derive a canonical sum-of-products expression
for the given function. Then we can manipulate this expression, using the theorems and
properties of Section 2.5, with the goal of finding a functionally equivalent sum-of-products
expression that has a lower cost.

As another example, consider the three-variable function f (x1, x2, x3), specified by the
truth table in Figure 2.23. To synthesize this function, we have to include the minterms m1,

Row
number x1 x2 x3 f x1 x2 x3

0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

(, ,)

Figure 2.23 A three-variable function.

December 31, 2012 09:08 vra80547_ch02 Sheet number 32 Page number 52 magenta black

52 C H A P T E R 2 • Introduction to Logic Circuits

Maxterms
The principle of duality suggests that if it is possible to synthesize a function f by

considering the rows in the truth table for which f = 1, then it should also be possible to
synthesize f by considering the rows for which f = 0. This alternative approach uses the
complements of minterms, which are called maxterms. All possible maxterms for three-
variable functions are listed in Figure 2.22. We will refer to a maxterm Mj by the same row
number as its corresponding minterm mj as shown in the figure.

Product-of-Sums Form
If a given function f is specified by a truth table, then its complement f can be rep-

resented by a sum of minterms for which f = 1, which are the rows where f = 0. For
example, for the function in Figure 2.19

f (x1, x2) = m2

= x1x2

If we complement this expression using DeMorgan’s theorem, the result is

f = f = x1x2

= x1 + x2

Note that we obtained this expression previously by algebraic manipulation of the canonical
sum-of-products form for the function f . The key point here is that

f = m2 = M2

where M2 is the maxterm for row 2 in the truth table.
As another example, consider again the function in Figure 2.23. The complement of

this function can be represented as

f (x1, x2, x3) = m0 + m2 + m3 + m7

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

Then f can be expressed as

f = m0 + m2 + m3 + m7

= m0 · m2 · m3 · m7

= M0 · M2 · M3 · M7

= (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

This expression represents f as a product of maxterms.
A logic expression consisting of sum (OR) terms that are the factors of a logical product

(AND) is said to be of the product-of-sums (POS) form. If each sum term is a maxterm, then
the expression is called a canonical product-of-sums for the given function. Any function
f can be synthesized by finding its canonical product-of-sums. This involves taking the
maxterm for each row in the truth table for which f = 0 and forming a product of these
maxterms.

December 31, 2012 09:08 vra80547_ch02 Sheet number 32 Page number 52 magenta black

52 C H A P T E R 2 • Introduction to Logic Circuits

Maxterms
The principle of duality suggests that if it is possible to synthesize a function f by

considering the rows in the truth table for which f = 1, then it should also be possible to
synthesize f by considering the rows for which f = 0. This alternative approach uses the
complements of minterms, which are called maxterms. All possible maxterms for three-
variable functions are listed in Figure 2.22. We will refer to a maxterm Mj by the same row
number as its corresponding minterm mj as shown in the figure.

Product-of-Sums Form
If a given function f is specified by a truth table, then its complement f can be rep-

resented by a sum of minterms for which f = 1, which are the rows where f = 0. For
example, for the function in Figure 2.19

f (x1, x2) = m2

= x1x2

If we complement this expression using DeMorgan’s theorem, the result is

f = f = x1x2

= x1 + x2

Note that we obtained this expression previously by algebraic manipulation of the canonical
sum-of-products form for the function f . The key point here is that

f = m2 = M2

where M2 is the maxterm for row 2 in the truth table.
As another example, consider again the function in Figure 2.23. The complement of

this function can be represented as

f (x1, x2, x3) = m0 + m2 + m3 + m7

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

Then f can be expressed as

f = m0 + m2 + m3 + m7

= m0 · m2 · m3 · m7

= M0 · M2 · M3 · M7

= (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

This expression represents f as a product of maxterms.
A logic expression consisting of sum (OR) terms that are the factors of a logical product

(AND) is said to be of the product-of-sums (POS) form. If each sum term is a maxterm, then
the expression is called a canonical product-of-sums for the given function. Any function
f can be synthesized by finding its canonical product-of-sums. This involves taking the
maxterm for each row in the truth table for which f = 0 and forming a product of these
maxterms.

December 31, 2012 09:08 vra80547_ch02 Sheet number 33 Page number 53 magenta black

2.6 Synthesis Using AND, OR, and NOT Gates 53

Returning to the preceding example, we can attempt to reduce the complexity of the
derived expression that comprises a product of maxterms. Using the commutative property
10band the associative property 11bfrom Section 2.5, this expression can be written as

f = ((x1 + x3) + x2)((x1 + x3) + x2)(x1 + (x2 + x3))(x1 + (x2 + x3))

Then, using the combining property 14b, the expression reduces to

f = (x1 + x3)(x2 + x3)

The corresponding network is given in Figure 2.24b. The cost of this network is 13. While
this cost happens to be the same as the cost of the sum-of-products version in Figure 2.24a,
the reader should not assume that the cost of a network derived in the sum-of-products form
will in general be equal to the cost of a corresponding circuit derived in the product-of-sums
form.

Using the shorthand notation, an alternative way of specifying our sample function is

f (x1, x2, x3) = !(M0, M2, M3, M7)

or more simply

f (x1, x2, x3) = !M (0, 2, 3, 7)

The ! sign denotes the logical product operation.
The preceding discussion has shown how logic functions can be realized in the form

of logic circuits, consisting of networks of gates that implement basic functions. A given
function may be realized with various different circuit structures, which usually implies
a difference in cost. An important objective for a designer is to minimize the cost of the
designed circuit. We will discuss strategies for finding minimum-cost implementations in
Section 2.11.

Example 2.12Consider again the function in Example 2.10. Instead of using the minterms, we can specify
this function as a product of maxterms for which f = 0, namely

f (x1, x2, x3) = !M (0, 1, 5)

Then, the canonical POS expression is derived as

f = M0 · M1 · M5

= (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

A simplified POS expression can be derived as

f = (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

= ((x1 + x2) + x3)((x1 + x2) + x3)(x1 + (x2 + x3))(x1 + (x2 + x3))

= ((x1 + x2) + x3x3)(x1x1 + (x2 + x3))

= (x1 + x2)(x2 + x3)

December 31, 2012 09:08 vra80547_ch02 Sheet number 37 Page number 57 magenta black

2.7 NAND and NOR Logic Networks 57

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

Figure 2.27 Using NAND gates to implement a sum-of-products.

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

x1

x2

x3

x4

x5

Figure 2.28 Using NOR gates to implement a product-of-sums.

MUXes as Universal logic

a b c | f
0 0 0 | 0
0 0 1 | 0
0 1 0 | 0
0 1 1 | 1
1 0 0 | 0
1 0 1 | 1
1 1 0 | 1
1 1 1 | 1

Each node in the BDD
(graph) is a Mux

a b c | f
0 0 0 | 0
0 0 1 | 0
0 1 0 | 0
0 1 1 | 1
1 0 0 | 0
1 0 1 | 1
1 1 0 | 1
1 1 1 | 1

From a truth-table to a BDD to only MUXes: universal logic!
This is what FPGAs are like….

AND-XOR is universal logic

• �

• �

f = a + b = a ⊕ b ⊕ (a ⋅ b)

f = a = 1 ⊕ a

