ECE/CS 3700
Digital System Design

Lecture Slides for Chapters 1 & 2

THEU

UNIVERSITY
OF UTAH

Privank Kalla
Professor
Electrical & Computer Engineering



From Circuit to Logic and
System Design

Computer .- ~.

\

o0 3 Subcircuits

:l . in a chip I:I I:I

1| -' ‘- | |
©

|
j
i

2 Motherboard : 1

Integrated circuits, -~ R . .
connectors, and -” o

1

1

components .’ 3 X
’ 1

1

' EEEEE \ NS '

' pooononnn ' \ . >

00000
T

=
Q
S
@,
n
—
o
=
Q.
=
(@]
<
=

/’\

Z
5
N
S

oo

:| |:| 3 L Transistor
_|

\
.

’

\

' Motherboard ! ; on a chip




Learn Logic Design Fundamentals, as well
as Modern Computer-Aided Design

l
* Logic Design with Boolean
Algebra -»ld |
* Hardware Description Simulaion

Languages (HDL)

 We will study Verilog-
HDL

e Other HDLs exist: VHDL,
others extensions

e Use of CAD tools a8

Figure 1.3  The development process.



Field Programmable Gate
Array (FPGA)

Learn how to design logic
circuits

Design in Verilog, Simulate,
validate correctness

Synthesize the circuit and
implement on an FPGA

FPGA = reconfigurable
hardware, excellent for

prototyping
6 or 7 Lab assignments




Chapter 2: Intro to Logic
Circuits

Boolean Algebra fundamentals
Boolean functions and logical operations
Boolean logic gates and circuits

Logic Synthesis: Describe Boolean functions in the form
of truth tables, and synthesize a logic circuit from it

Perform logic optimization to reduce “cost of circuit
implementation” — area, speed/delay, power, etc.



Boolean Algebra and
Functions

Algebra = set and — —
: S
operations on the >

elements of the set v, > - K‘b - g
B = {0,1} is the | ; A
Boolean domain —

Boolean function: j@ .' 6\/—? &

Logic circuits implement
Boolean functions



Boolean functions: Truth Tables

* Simple Boolean functions: AND and OR functions

e Set complement: NOT function s
s e
‘AND:JC=.X1‘.X2:X1/\X2 o j}
L |
° OR :f=x1 +XZ = .xl Vx2

e NOT:f = x; =x; =X

—_— = O O
—_ o O O
—_ O
o
R\

_—O = O

AND OR l — O



Boolean functions

e Boolean functions: can have arbitrary inputs

® AND f=x1 ‘Xz‘x:))

° ORf= xl +x2+X3

X; Xy X3 || XpXyeX3 | Xpt+ X+ X3
0O 0 O 0 0
0O 0 1 0 |
0O 1 O 0 |
0 1 1 0 1
1 0 O 0 1
1 0 1 0 1
1 I 0 0 1
1 1 1 1 |

Figure 2.7

Three-input AND and OR operations.

\\(\? \}\(ES — Z \Y\?\’Ev

?Ogg%// b( ’\’



X
1
X2 °

(c) NOT gate

Figure 2.8  The basic gates.

xl D_L
X2
’—f = (x1+x2)~x3




NAND and NOR Functions
=

e We saw AND and OR functions

 Invert them, and you get NAND and NOR functions ED’

f
Avd sp iNank [ NoE

X; Xy X3 || XpXyeX3 | Xpt+ X+ X3 %\X’L?Q) 'x\’%?('y,{’xﬁ
0 0 0 0 0 \ C’)

O 0 1 0 1 \

0 1 0 0 ! \ G

0o 1 1 0 1 | o

I 0 O 0 1 ‘ O
10 1 0 1 \ 0

T 0 ! o
111 1 1 \ o

o
\
Figure 2.7  Three-input AND and OR operations.



Exclusive-OR (XOR) and
XNOR functions

e XOR and XNOR functions in two variables

e XOR: the function is true when the inputs are mutually exclusive: denoted

f=xDx

e XNOR: f=xl®X2=xl@X2

PN T | KRB < D
O o &, \
> | \ S
o | -
e




Boolean Algebra Axioms

Aa.

1b.
2a.

2b.
_Ja.
3b.
4a.
4b.

6/ﬁ\‘© O-N =
0-0=0 — -
14+1=1 - e
1-1=1 \ |
— - A

0+0=0 7
0-1=1-0=0 %wf//

1+0=0+1=1 \

[f x=0,thenx =1 \ _—
J—
Ifx=1,thenx=0 /—>
A
- P
g
—



NOT operators



Design Problem: Going from a
Specification to a circuit implementation

e Design a circuit with three inputs a, b, ¢ and one output f

 Function f = TRUE when majority of inputs are TRUE,
FALSE otherwise

e First job = write a truth table

e (Collect the product terms (input product) that evaluates f
=1

e SUM (OR) of all these product terms






]

£ Zbc +abl abZ +abce




Boolean Algebra Properties

| 7 —
0a. x-y=y-x Commutative |

-3
10b. x+y=y+x - :{)/

Ha. x-(y-2)=(x-y)-z Assocmtlve .
Vi_i_b. x+(y+2)=k+y) +z

u?g; : ;DlD qy




Boolean Algebra Properties

12a. x-(y4+2)=x-y+x-2 Distributive

N SN I >L
e T
%3 j}f

D 2ok SEW&V\Y‘@/ Jam € %MY\C:GBV\\



Boolean Algebra Properties

13a. x+x-y=x Absorption

f/ﬂ\_—f—&\“& — %(\*‘3) — X | =

13b. x-(x+y)=x
N 2 -&-QL'j

:’X’m&

— X



DeMorgan’s Law

F——/_//

e Break the line and change the sign X 'Fj - :&

* Make the line and change the sign

X yllx-y|x-y||lx|Vy|x+Yy
0O O 0 1 1 |1 1
0O 1 0 1 110 1
1 O 0 1 011 1
1 1 1 0 010 0

LHS RHS



Logic Simplification

e Simplify(x-y+x-y)and (x+y)(x+Y)
/ | 7’6;’%—&2-3%73 *‘J‘j
ch*'jD — X Arxi rz] +0
o ) —
= [ = (15
— - C\> — 2

/

| =

—_—

2

(= :&4{“‘*;)



Looking at Algebraic Simplification more Formally

Consider an n-dimensional Boolean space

Boolean variable: co-ordinate of the space

Literal: occurrence of a variable: x or x’

Minterm: product of all literals, denotes a
point in the Boolean space

e ON-set minterm = minterm where

f=1
e QOFF-set minterm = minterm where
f=0

Cube is a product of literals that
represents a point or a set of points in the
design space

e Hamming distance: how many bits are
changing between any 2 points?

¢\

O

R




Looking at Algeb?ic Simplification more Formally

xjhvﬁ ;¥ ™

- -
ol || N o
\ ® \\\ Q /(j
[ v
2%+
e (Consider the OR function :9" Z/j j
R = A~
. f=xy’+x’y+xyz)>x+y —
e-on-Sel ?‘S'W\t — X +7L(j*’j>

O;%M ’ = %7 4 2



Looking at Algebraic Simplification more Formally

e (Consider the XOR function
e f=x®y=xy' +x'y

* No simplification?



Apply DeMorgan’s Laws: XOR/XNOR

—
e (Consider the XOR function %‘ >\L~ | ‘X\@/%_. 1 ><\ @ 7%)/
* fEXx@y=xy +XYy ,O = A | \
f=xy"+x7y C> | \ ~
=xy' - x'y \ ’D \
= @'+ y)(x+y) O
=xx+xyV +xy+yy \ \ C) / l

=xy+xy=x®y



Interesting 3-variable Boolean functions

e 3-variable XOR, Majority Function, Multiplexors «/—->>/
/
 We've already seen the majority function — 7 /M

_LJ!\

. 3varXOR: (x ®y) @ 2 §_b
<Y % XK x{j@rﬁf
0 0 0 0 0 S
0 0 1 0 l *Q ®%”>
01 0 [ 0 | 1  _ -~ s
0 1 1 1 0 AR
Loo | o | 1 = xek
0 1 A 0
1 0 0 = »@IB0
11 1




Slmpllfy the Majorlty Functlon

—abc+abc+abc + abc

e =ab+ bc+ ac

Wﬁacébgs




Interesting 3-variable Boolean functions

e  Multiplexors = MUX(x, y, 2) — 27/& + 2L } <
* Whenx=0,f=y H\/ ;
e Whenx=1,f=2z :D/r Jj

e
Z 2 B} (waé
0 0 0 0 0 [“

0 1 0 0 1| =10
o011 | o/\_é\"yj[
roo [ o [ 1o F7.
0 1 | 1 0| 1 A
1o | 1 0/ o
11 | Ll




Use of Multiplexors

e MUX: multiplexer, multiplexor = multiple xor

e MUXes are everywhere

A OX - 3(3’\’7(6 &\ \
\_/
ARE R+ A [}
- g AL ﬁ? &
N7 AR ;ﬂ/&
7<’/\/§; A"S //? 7\

A D
Moz 1 - then-else




Use of Multiplexors

* One-bit control, 2 data inputs

e 2-bit control, 4 data inputs

e N-bit control, 2" data inputs

3~—?>

—>

\l
F3 A,

>



Logic Optimization: One more example




Sum of Product (SOP) form of Boolean functions

e F(x,...,x,) = sum of ON-set minterms

e Simplify ON-set minterms into “larger cubes”: combine minterms that are one
hamming distance apart, and keep on combining them as much as possible

e Algebraically: factorize and simplify

* |dentify a minimum number of largest cubes that cover all the ON-set minterms.
[Often called a “minimum cover” of F]

e “Smallest” cover exists, find it!

e Larger cubes = smaller AND gates = fewer transistors = fewer literals
e Minimum number of cubes = smallest OR gate

* Smaller area, faster circuit (less RC to charge/discharge)

e SOP form = two-level logic: one-level of AND gates, and one-level of (possibly
big!) OR-gate. [Ignore the level corresponding to inverters)



Simplify the Maj
A

= a'bc + ab'c +

abc’ +

abc

ority Function




SOP-form, contd.

Given F(xq, X,, X3, . . . ), with variable order

X15 X2, X3 ...
I can be specified as a sum of ON-set Row |
minterms number | x; X, X3 Minterm
o _ 1 0O O 1 m; = X|X,X3
E.g., majority function: 2 0 1 0 || my= X x73
3 0 1 1 My = X[ XrX3
_ 5 1 0 1 Ms = X[ X,X3
o F(x;,x5,x3) = Z (ms, ms, mg, m;) 6 11 0 | mg= xx,%,
7 1 1 1 M7 = X[ XyX3

Self-study assignment for you: Sec 2.6.1,
product of sum forms, and Maxterms




Two-level logic versus multi-level logic

e f=ab+ ac+ bc =SOP form = 2-level

* Obijective: minimum number of largest cubes = minimum cover

e Factorize: f = ab + c(a+b) = factored form # SOP form
* Multi-level logic: minimize the number of “literals”

e Some technologies are suitable for 2-level logic (such as PLAs), whereas others are suitable
for multi-level logic (contemporary CMOS technologies)

o We’ll study this a little later, in appendix B, in the textbook!

e Multi-level logic optimization often utilizes 2-level optimization techniques, so study of 2-
level SOP form minimization is a must!

" — E, %L (o)

j—
5 A e
C

9 —
=) =




With more variables, Logic simplification becomes
infeasible using algebraic/symbolic manipulation. We
need algorithmic techniques, which we’ll study a bit
later...

0110

Ox1x
x111

0111 1111

0011

1010

0010 <0x0

0000 1000

Figure 8.18  Representation of function f; from Figure 2.54

A 4-dimensional cube



