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Notation

N natural numbers {0, 1, 2, . . . }
Z, Zn ring of integers, integers (mod n)

F any field
R,Q,C reals, fractions, complex numbers

Fq finite (Galois) field of q elements
B, Bk Boolean, k-dimensional Boolean space
F2k the Galois field of 2k elements
Z2k finite integer ring (mod 2k)

F the algebraic closure of F
f : A→ B function mapping from A to B

F[x1, . . . , xn] multi-variate polynomial ring with coefficients in F
J = 〈f1, . . . , fs〉 ideal generated by polynomials

VF(J) variety of ideal J over the field F
I(V(J)) ideal of polynomials that vanish on V(J)

J0 ideal of polynomials that vanish on all inputs
Mn×m n×m matrices
V ∼=W isomorphic spaces

Zn×m or Z, In×n or I zero matrix, identity matrix
|T | determinant of the matrix



Preface

As of October 29, 2014, this is book is a work in progress. Likewise, this Preface
a work in progress too.....

I am writing this book for the benefit of my students, electrical and computer
engineers, computer scientists, and all those who are interested in learning
about Hardware Datapath Verification using Symbolic Computer Algebra and
Algebraic Geometry.

I started investigating datapath verification when I was a PhD student. While
at the end of my PhD work, I began to realize that commutative algebra over
finite integer rings or finite fields might be an appropriate model for finite-
precision arithmetic datapath verification. I reasoned: “since a k-bit vector
represents integer values (mod 2k), we should be able to model datapaths as
polynomial functions over finite rings of the type f : Z2k → Z2k or over Galois
fields f : F2k → F2k . Then we should be able to employ some theoretical
concepts from ring algebra, along with computer algebra algorithms, and derive
decision procedures for verification. That would not only enable verification at
the word-level, but also allow to model the bit-precise semantics of bit-vector
arithmetic.”

Algebra and geometry provide a unified framework to reason about systems
at higher-levels of abstraction, moving from bits to k-bit words. However, to
devise bit-precise and word-level verification decision procedures, there are both
theoretical and practical challenges to overcome. On the one hand, the modeling
of verification problems over rings Z2k requires commutative algebra knowledge
beyond what is available in basic algebra textbooks. These rings are non-
unique factorization domains, they have zero divisors, which renders most of the
Euclidean-type algorithms inapplicable. On the other hand, modeling over F2k

allows the application of algebraic geometry based concepts (e.g. Nullstellensatz);
however, overcoming the complexity of computer algebra algorithms becomes a



major challenge. In this textbook, I have tried to address both the theoretical
(mathematical) and practical (computational) issues.

Unfortunately, for someone who wants to study (or explore) this area, there
is no one single reference that explains the mathematical concepts, as well as the
application of these concepts to design verification. Contemporary electrical
and computer engineering education does not cover any of these concepts in its
curriculum. I do not want my students and other beginners to suffer as much as
I did – to search for and read papers and books, only to realize that they are
not really relevant to the problem. That is one of the reasons I decided to write
this book.

There is scepticism about being able to apply computer algebra to practical
datapath verification problems. The scepticism is justified to some extent, in that
verification of many control-dominated applications can be solved by SAT and
SMT solvers, whereas computer algebra algorithms do exhibit their worst-case
complexity. However, for datapath-dominated applications, our contributions
have shown how these techniques can be engineered in an efficient way – by
mining more information from the circuits – to solve many large word-level
verification problems where SAT and SMT solvers fail. Therefore, the other
reason to write this book is to educate the community about how to apply
computer algebra techniques to solve practical verification problems.

I have attempted to write the book in a way that it is relevant both as a
textbook as well as a reference for verification engineers. The book does not
assume any knowledge of number theory, commutative and computer algebra,
nor any knowledge of algebraic geometry. I have also tried my best to emphasize
how these techniques should be applied for hardware verification. Examples are
used extensively to demonstrate the concepts. I have tried not to waste time
and energy on proofs of many fundamental results that are available in standard
algebra textbooks. Wherever appropriate, I have tried to provide outlines of
proofs and their demonstration with examples that help devise algorithms to
solve verification problems.

This book is typeset using LATEX, of course. However, the formatting of
the book is borrowed entirely from Jim Hefferon’s Linear Algebra textbook,
which he has made available for free on the Internet at http://joshua.smcvt.
edu/linearalgebra. Jim did an outstanding job with the page styles, margins,
the formatting of headings, examples, definitions, theorems, etc., including the
excellent choice of fonts. I was so impressed by his effort that I just borrowed his
LATEXstyle files to format this book. The formatting makes this mathematically
intense text so much more pleasing on the eyes, and a pleasure to read. Thank
you for your efforts, Jim.

http://joshua.smcvt.edu/linearalgebra
http://joshua.smcvt.edu/linearalgebra


For now, this book is being made available for free. You are free to download
and use this book any which way you want! If you find any errors or typos, feel
free to email them to me.

I can dedicate this book to any number of people. However, I will fill this
out later.

I hope you enjoy reading the book! If you like the book, and want to boost
my ego: send me a note, and forward this book to anyone else who will read it.

Some filler for the moment: Lorem ipsum dolor sit amet, consectetuer adipiscing
elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur
dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id,
vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant
morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris
ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla
ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est,
iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices
bibendum. Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at,
mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus.
Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci
sit amet orci dignissim rutrum.

Priyank Kalla
Electrical and Computer Engineering
University of Utah
Salt Lake City, Utah USA 84112
http://www.ece.utah.edu/~kalla

http://www.ece.utah.edu/~kalla
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Chapter One

Galois Fields and
Hardware Design

A field is a set of elements over which addition, multiplication and division by
non-zero elements can be performed. Examples of fields include R,Q,C, all of
which have an infinite number of elements. It is also possible to construct fields
with a finite number of elements. Such finite fields are also called Galois fields
(GFs), and they have applications in many areas in electrical and computer
engineering – such as in cryptography, error control coding, VLSI testing, etc. In
fact, every digital circuit or a word-level RTL description represents a function
over GFs, even though we rarely think about arbitrary digital designs in that
fashion. In this chapter, we will study some fundamental properties of GFs
that will educate us about hardware design and verification over GFs using
algebraic geometry. Since GFs are fields, Buchberger’s algorithm can be applied
to compute Gröbner bases of polynomial ideals over GFs. GFs also have very
interesting properties that allow the application of algebraic geometry (e.g.
Nullstellensatz) in a mathematically elegant fashion that also makes it practical.
For a more detailed study of GFs, the reader may refer to textbooks [1] and [2].

I Introduction

Galois fields are denoted as Fq, where q corresponds to the number of elements
of the field (including the elements 0, 1). The number of elements q is always
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Table One.1: Additive and multiplicative inverses in Z5.
element additive inverse multiplicative inverse
0 0 undefined
1 4 1

2 3 3

3 2 2

4 1 4

a power of a prime integer, i.e. q = pk, where p is a prime integer and
k ∈ Z>1 is an integer. Note that when k = 1, we have q = p. Then, the
fields of prime cardinality p are nothing but the rings of integers (mod p): i.e.
Fp = Zp = {0, 1, . . . , p − 1}, where addition and multiplication are performed
(mod p).

0.1 Example Consider the field F5 = Z5. The additive and multiplicative inverses
of each element in Z5 (except 0) are also elements in Z5, as shown in Table
One.1. In contrast, Z4 is not a field, as 2 does not have a multiplicative inverse
in Z4. However, there does exist a field of 4 elements, denoted F4, but F4 6= Z4.

We will consider the more general case of GFs of the type Fpk . Such fields
are called extension fields as they are k-dimensional extensions of the base field
Fp. Of particular interest in hardware design are fields of the type F2k where
p = 2 and k > 1. These GFs are fields of 2k elements, and they are of interest
to us because a bit-vector of size k represents 2k distinct elements. Such fields
F2k are also called binary Galois extension fields and are particularly useful in
hardware design.

0.2 Definition The characteristic of a finite field Fq with unity element 1 is the
smallest integer n such that 1+ · · ·+ 1 (n times) = 0.

The characteristic of Fp is, not surprisingly, the prime integer p. What is
interesting is the fact that all fields Fpk also have the characteristic p. The
reason for this will become apparent in the following sections.

So how are Fpk described? How are they constructed? What are their
constituent elements? To answer these questions, let us first understand how
does one construct any field. For this purpose, let us review integral and Euclidean
domains.



Section II. Integral and Euclidean Domains 3

II Integral and Euclidean Domains

An integral domain is a generalization of integers where no product of non-zero
elements is equal to 0. More formally:

0.3 Definition An integral domain R is a set with two operations (+, ·) such
that:

(1) The elements of R form an abelian group under + with additive identity 0.

(2) The multiplication is associative and commutative, with multiplicative
identity 1.

(3) The distributive law holds: a(b+ c) = ab+ ac.

(4) The cancellation law holds: if ab = ac and a 6= 0, then b = c.

Notice that the first three conditions make R a commutative ring with unity.
The last condition is what makes a ring also an integral domain. Now, a
Euclidean domain is an integral domain with an added feature – a notion of size
or degree or a valuation function associated with its elements.

0.4 Definition A Euclidean domain D is an integral domain where:

(1) associated with each non-zero element a ∈ D is a non-negative integer f(a)
s.t. f(a) 6 f(ab) if b 6= 0; and

(2) ∀a, b (b 6= 0), ∃(q, r) s.t. a = qb+ r, where either r = 0 or f(r) < f(b).

Over Euclidean domains, one can apply the Euclid’s algorithm to compute
the gcd of a finite set of elements. Moreover, if g = GCD(g1, . . . , gt) then g
can be written as a linear combination of g1, . . . , gt as g =

∑
i uigi.

0.5 Remark While studying Gröbner bases over univariate polynomial rings
with coefficients from a field (which are Euclidean domains!), we have seen
that the Gröbner basis of a set of polynomials {g1, . . . , gt} is their gcd: g =

gcd(g1, . . . , gt). Obviously, g can be represented as a combination of g1, . . . , gt
as g ∈ J = 〈g1, . . . , gt〉.

If two elements a, b ∈ D are relatively prime, then their gcd(a, b) = 1. Every
non-unit element of a Euclidean domain can be uniquely factorized as a product
of (powers of) primes. This should not be surprising as Euclidean domains are
also unique factorization domains.
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Some examples that differentiate integral domains from Euclidean domains:

0.6 Example Let D = Z, and let g1 = 39, g2 = 65, their gcd is 13, and 13 =

2 · 39+ (−1) · 65, a linear combination of g1, g2. The set Z is both an integral
and a Euclidean domain.

0.7 Example The ring F[x] is a Euclidean domain where F is any field. The size
of all non-zero elements (polynomials) in F[x] is the degree of the polynomial.

0.8 Example Now consider the polynomial ring R[x, y]. It is an integral domain,
but it is not a Euclidean domain. As a counter-example, consider elements
x, y ∈ R[x, y]. They are relatively prime, so their gcd(x, y) = 1. It is not possible
to write 1 as a linear combination of x and y: i.e. f1(x, y) · x+ f2(x, y) · y = 1 is
not possible if f1, f2 ∈ R[x, y].
0.9 Example The finite integer rings Z2k , k > 1 are neither integral domains nor
Euclidean domains, as they contain zero divisors. As an example, consider the
ring Z8, where elements 4 6= 0, 2 6= 0 but 4 · 2 = 0.

With this knowledge, we are now ready to understand extension fields.

III Constructing Extension Fields

0.10 Definition Let D be a Euclidean domain, and p ∈ D be a prime element.
Then D (mod p) is a field.

So, when D = Z, Z (mod p) = Zp is a field (and Def. 0.10 is precisely the
reason why Zp is field!). The univariate polynomial ring R[x] is also a Euclidean
domain. So, if we take a prime element p from R[x] and compute R[x] (mod p),
we will obtain a field. The meaning of “R[x] (mod p)” is: take any and all
elements (polynomials) from R[x], divide by p, and take the remainders. In
other words, R[x] (mod p) = {f(x) | ∀g(x) ∈ R[x], f(x) = g(x) (mod p)}.

0.11 Remark In the case of polynomials, the term prime is usually replaced with
irreducible. A prime element in a polynomial ring is nothing but an irreducible
polynomial, which cannot be factored into a product of two or more polynomials
of positive degree.

Notice that x2+1 is irreducible over R. So, let us compute R[x] (mod x2+1).
This generates nothing but the field of complex numbers: C = R[x] (mod x2+1).
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Not convinced? Then, consider any element f(x) ∈ R[x] (mod x2 + 1). Since f
is the remainder of division by x2 + 1, it has to be a linear expression of the
form f = ax+ b where the coefficients a, b ∈ R. Similarly, let g = cx+ d ∈ R[x]
(mod x2 + 1). Multiply f, g keeping in mind that we are operating in R[x]
(mod x2 + 1), where every result has to be reduced (divided by) x2 + 1. Then:

f · g = (ax+ b)(cx+ d) (mod x2 + 1)

= acx2 + (ad+ bc)x+ bd (mod x2 + 1)

= (ad+ bc)x+ (bd− ac) after reducing by x2 = −1

Replace x with i, and you will notice that we just multiplied (ai+b)(ci+d)

with i2 = −1. So, in conclusion C = R[x] (mod x2 + 1), where C is a 2-
dimensional extension of the base field R, where 2 = degree(x2 + 1).

Now the following set inclusions should become amply clear: Rings ⊃ Integral
Domains ⊃ Unique Factorization Domains ⊃ Euclidean Domains ⊃ Fields

III.1 Galois Extension Fields

Galois fields Fpk are also k-dimensional extensions of the base field Fp = Zp.
Consider the ring Fp[x] and let P(x) ∈ Fp[x] be an irreducible polynomial of
degree k. Then Fpk = Fp[x] (mod P(x)).

Let us focus on F2k = F2[x] (mod P(x)), where P(x) is the irreducible
polynomial of degree k. Note that P(x) ∈ F2[x], so its coefficients are in {0, 1}.
Irreducible polynomials of any degree k always exist, so F2k can be constructed
for arbitrary k > 1. Given in the table below are some examples of irreducible
polynomials in F2[x] for degree k = 1, . . . , 4.

Table One.2: Some irreducible polynomials in F2[x].
Degree Irreducible Polynomials
1 x; x+ 1
2 x2 + x+ 1

3 x3 + x+ 1; x3 + x2 + 1
4 x4 + x+ 1; x4 + x3 + 1; x4 + x3 + x2 + x+ 1

Coming back to F2k = F2[x] (mod P(x)), let α be a root of P(x), i.e. P(α) = 0.
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Note that P(x) has no roots in F2 as it is irreducible in F2[x]; however, the
root lies in its algebraic extension F2k . Any element A ∈ F2k can therefore be
represented as:

A =

k−1∑
i=0

(ai · αi) = a0 + a1 · α+ · · ·+ ak−1 · αk−1 (One.1)

where ai ∈ F2 are the coefficients and P(α) = 0. The degree of any element A
in F2k is always less than k. This is because A is always computed modulo P(x),
and P(x) has degree k. The remainder (mod P(x)) can be of degree at most
k − 1. For this reason, the field F2k can be viewed as a k-dimensional vector
space over F2. The example below explains the construction of F24 .

1.1 Example Let us construct F24 as F2[x] (mod P(x)), where P(x) = x4+x3+1 ∈
F2[x] is an irreducible polynomial of degree k = 4. Let α be a root of P(x), i.e.
P(α) = 0.

Any element A ∈ F2[x] (mod x4 + x3 + 1) has a representation of the type:
A = a3x

3 + a2x
2 + a1x+ a0 (degree < 4) where the coefficients a3, . . . , a0 are

in F2 = {0, 1}. Since there are only 16 such polynomials, we obtain 16 elements
in the field F24 . Each element in F24 can then be viewed as a 4-bit vector over
F2: F24={(0000), (0001), . . . (1110),(1111)}. If α is a root of P(x), then each
element also has an exponential representation; all three representations are
shown in Table One.3. For example, consider the element α12. Computing
α12 (mod α4 + α3 + 1) = α + 1 = (0011); hence we have the three equivalent
representations.

Table One.3: Bit-vector, Exponential and Polynomial representation of elements
in F24 = F2[x] (mod x4 + x3 + 1)

a3a2a1a0 Exponential Polynomial a3a2a1a0 Exponential Polynomial
0000 0 0 1000 α3 α3

0001 1 1 1001 α4 α3 + 1

0010 α α 1010 α10 α3 + α

0011 α12 α+ 1 1011 α5 α3 + α+ 1

0100 α2 α2 1100 α14 α3 + α2

0101 α9 α2 + 1 1101 α11 α3 + α2 + 1

0110 α13 α2 + α 1110 α8 α3 + α2 + α

0111 α7 α2 + α+ 1 1111 α6 α3 + α2 + α+ 1

1.2 Remark It should be clear by now that the characteristic of Fpk is the prime
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integer p. This is because Fpk ≡ Fp[x] (mod P(x)); since all coefficients in Fp[x]

(mod P(x)) are in Fp. Therefore, for binary GFs F2k = F2[x] (mod P(x)), all
coefficients are reduced modulo 2. Consequently, −1 = +1 in all fields F2k .

1.3 Example (Addition and Multiplication over F2k) From Example 1.1, let us
demonstrate addition and multiplication of GF elements. Addition of α5 + α11

α5 + α11 = α3 + α+ 1+ α3 + α2 + 1

= 2 · α3 + α2 + α+ 2

= α2 + α (as characteristic of F2k = 2)

= α13

Observe that this addition is nothing but a bit-vector xor operation. Mul-
tiplication can be performed using both the exponential and polynomial rep-
resentations. For example, α4 · α10 = α14 = α3 + α2 when reduced modulo
(mod α4 + α3 + 1). Likewise:

α4 · α10 = (α3 + 1)(α3 + α)

= α6 + α4 + α3 + α

= α4 · α2 + (α4 + α3) + α

= (α3 + 1) · α2 + (1) + α (as α4 = α3 + 1)

= α5 + α2 + α+ 1

= α4 · α+ α2 + α+ 1

= (α3 + 1) · α+ α2 + α+ 1

= α4 + α2 + 1

= α3 + α2

Just keep in mind that P(α) = α4+α3+1 = 0 implies that α4 = −(α3+1) =

(α3 + 1), as −1 = +1 in fields of characteristic 2.

The inverse of any element α can be computed using the extended Euclidean
algorithm. Euclid’s algorithm is used to compute the gcd of two elements a, b;
the algorithm can be used to find p1, p2 such that a · p1 + b · p2 = gcd(a, b) as
the gcd(a, b) can be written as a linear combination of a, b. When the field
Fp = Zp, then the inverse of an element a can be computed using the Euclidean
algorithm with arguments (a, p):
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a · p1 + p · p2 = gcd(a, p)

a · p1 + p · p2 = 1 (mod p), as a and p are co-prime

a · p1 + 0 = 1 (mod p)

So, a and p1 are inverses of each other. Similarly, to find the inverse of any
arbitrary element β ∈ F2k , compute gcd(β, P(α)) using the Euclidean algorithm
to find:

β · p1 + P(α) · p2 = gcd(β, P(α))

β · p1 + P(α) · p2 = 1 (as P(x) is irreducible)

β · p1 = 1

where β and p1 are inverses of each other.

There may exist more than one irreducible polynomials with degree k, as
observed in Table One.2. In such cases, any degree k irreducible polynomial can
be used for field construction. For example, both x3 + x2 + 1 and x3 + x+ 1 are
irreducible in F2 and either one can be used to construct F23 . This is due to
the following result:

1.4 Theorem There exists a unique field Fpk , for any prime p and any positive
integer k.

Theorem 1.4 implies that finite fields with the same number of elements are
isomorphic to each other up to the labeling of the elements. So, different irre-
ducible polynomials only lead to different labeling of the elements. This concept
will become very clear when we study conjugates and minimal polynomials.

III.2 Vanishing Polynomials of Fq

2.1 Lemma Let A be any non-zero element in Fq, then Aq−1 = 1.

As a consequence of Lemma 2.1, the following is a very important result that
we will use to investigate solutions to polynomial equations in Fq.
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2.2 Theorem [Generalized Fermat ′s Little Theorem] Given a finite field Fq,
each element A ∈ Fq satisfies:

Aq ≡ A

Aq −A ≡ 0 (One.2)

As a polynomial extension of the above consequence, let xq−x be a polynomial
in Fq[x]. Every element A ∈ Fq is a solution to xq − x = 0. Therefore, xq − x

always vanishes in Fq, and such polynomials are called vanishing polynomials of
the field Fq.

2.3 Example Given F22 = {0, 1, α, α+ 1} with P(x) = x2 + x+ 1, where P(α) = 0.

02
2

= 0

12
2

= 1

α22

= α (mod α2 + α+ 1)

(α+ 1)2
2

= α+ 1 (mod α2 + α+ 1)

Every element of Fq is a solution to vanishing polynomials xq − x = 0.
Therefore, the variety VFq

(xq − x) = Fq itself. Note that the variety is being
considered over Fq and not over the algebraic closure Fq. By the way, we
will denote the ideal generated by the vanishing polynomial as J0 = 〈xq − x〉,
so that VFq

(J0) = Fq. Similarly, over multivariate polynomial rings, let J0 =

〈xq1 − x1, x
q
2 − x2, . . . , x

q
n − xn〉 ⊂ Fq[x1, . . . , xn]; then VFq

(J0) = (Fq)
n.

IV Irreducible and Primitive Polynomials

As shown in Table One.2, there may be more than one irreducible polynomials
in F2[x]. Some irreducible polynomials have an important property in that they
can generate all non-zero elements of the field. Such irreducible polynomials are
called primitive polynomials. If α is a root of the primitive polynomial, then
Fq = {0, 1 = αq−1, α, α2, α3, . . . , αq−2}. Here α is called the primitive element.
This property also highlights the multiplicative group structure of the field:
that all the non-zero elements of the field form a group under multiplication.
Actually, this group is also cyclic, in that multiplication by α generates all the
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elements and repeats. Both primitive and non-primitive polynomials can be
used for field construction, but if you have a choice, using a primitive polynomial
might be beneficial in this regard. A primitive polynomial P(x) of degree k has
the property that the smallest integer n for which P(x) | (xn + 1) is n = 2k − 1.

0.4 Example In Example 1.1, the irreducible polynomial x4 + x3 + 1 is primitive;
which is why every element of F24 is a power of α (see the exponential represen-
tation), and every non-zero element of the field can be generated using powers of
α. On the other hand, the irreducible polynomial P1(x) = x4 + x3 + x2 + x+ 1
is not primitive because if P1(α) = 0 then:

α4 = α3 + α2 + α+ 1

α5 = α4 · α
= (α3 + α2 + α+ 1)(α)

= (α4) + α3 + α2 + α

= (α3 + α2 + α+ 1) + (α3 + α2 + α)

= 1

So, powers of α can only generate a few elements, not all.

IV.1 Conjugates and Minimal Polynomials

Let f(x) ∈ F2[x] be an arbitrary polynomial, and let β be an element in F2k for
any k > 1. If β is a root of f(x), then for any l > 0, β2l is also a root of f(x).
The elements β2l are called conjugates of β. Since the field is finite, the number
of distinct conjugates is also finite. Raising β to powers 2l for l = 0, 1, 2, . . . will
cause the conjugates to repeat.

1.1 Example Let F16 = F2[x] (mod P(x) = x4 + x3 + 1). Let P(α) = 0. Let us
find conjugates of α as α2l .

l = 1 : α2

l = 2 : α4 = α3 + 1

l = 3 : α8 = α3 + α2 + α

l = 4 : α16 = α (conjugates start to repeat)
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So α,α2, α3 + 1, α3 + α2 + α are conjugates of each other.

Let e be the smallest integer such that β2e

= β. Construct the polynomial
f(x) =

∏e−1
i=0 (x + β

2i

). Then f(x) is an irreducible polynomial, and it is also
called the minimal polynomial of β.

1.2 Example Following on from Example 1.1, let us construct the minimal
polynomial of α, where P(α) = α4 + α3 + 1 = 0. We obtain f(x) = (x+ α)(x+

α2)(x + α3 + 1)(x + α3 + α2 + α). Simplifying f(x) (mod P(x)), we obtain
f(x) = x4 + x3 + 1. Is it surprising that you obtained the irreducible polynomial
that was used for field construction? After all, α is a root of this polynomial by
design, and all the conjugates of α are also its roots.

Now, let us take the element β = α3. Its conjugates are α6, α12 and α24.
Construct f(x) = (x + α3)(x + α6)(x + α12)(x + α24), simplify (mod P(α) =
α4 + α3 + 1), and you will observe that f(x) = x4 + x3 + x2 + x + 1. Refer to
table One.2 and observe that this is the other irreducible polynomial of degree 4.

Continuing in this fashion, consider element α7. Its conjugates are α14, α28, α56.
The minimal polynomial of these elements is f(x) = (x+α7)(x+α14)(x+α28)(x+

α56) = x4 + x+ 1. From Table One.2, this is the third irreducible polynomial.

Finally, let us now address the more interesting case – that of the element
α5 and its conjugates, (α5)2

l for l = 0, 1, . . . :

l = 0 :(α5)2
l

= α5

l = 1 :(α5)2
l

= α10

l = 2 :(α5)2
l

= α20

=α15 · α5

=(1) · α5 (due to Lemma 2.1)

This means α5 has only one other conjugate α10. Their minimal polynomial
f(x) = (x+α5)(x+α10) = x2 + x+ 1. This is not a degree-4 polynomial, rather
a degree-2 polynomial. In fact, it is the irreducible used to construct F4 = F2[x]

(mod x2 + x + 1). Similarly, f(x) = x + 1 is the minimal polynomial of unity
element (1). This implies that the elements α5 and α10 are also elements of F4

such that F2 ⊂ F4 ⊂ F16. This is shown in Fig. One.1.

In this fashion, all the irreducible polynomials associated with all the elements
of F16 can be generated, which can also give you the information about all the
fields that are contained in it.
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Figure One.1: Containment of fields: F2 ⊂ F4 ⊂ F16

IV.2 Containment and Algebraic Closure of F2k

Fig. One.1 shows that F2 ⊂ F4 ⊂ F16, which also shows the containment of
elements. A field is closed under addition and multiplication; this fact can also
be demonstrated on these elements. Addition α5 + α10 = 1 and multiplication
α5 · α10 = 1 also leads to elements within F4. Containment of Galois fields is
based on the following result:

2.1 Theorem F2n ⊂ F2m if n divides m.

Therefore:

• F2 ⊂ F22 ⊂ F24 ⊂ F28 . . . ,

• F2 ⊂ F23 ⊂ F26 ⊂ . . . ,

• F2 ⊂ F25 ⊂ F210 ⊂ . . . , and so on.

The algebraic closure of the Galois field F2k is the union of all fields F2n

such that k | n.

Let us revisit the issue of vanishing polynomials xq−x, and look at where do
their solutions lie. Let Fq denote the field, Fq denote its algebraic closure, and
denote by J0 = 〈xq − x〉 the ideal of vanishing polynomials. It is clear that the
variety VFq

(J0) = Fq. What is also interesting is that the variety of vanishing
polynomials does not change over the field or over the closure:

2.2 Lemma
VFq

(J0) = VFq
(J0) = V(x

q − x) = Fq (One.3)
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2.3 Example Consider α5 ∈ F16. Due to Theorem 2.2, (α5)16 = α5. However,
we also saw in the previous example that α5 ∈ F4. Noting that F16 is in the
algebraic closure of F4 as F4 ⊂ F16, we also observe that (α5)4 = α5.

With this information, we are now ready to study hardware designs over
Galois fields.

V Hardware Implementations of Arithmetic
over F2k

In some cases, finite field (primitive) computations such as add, mul, etc., are
implemented in hardware, and algorithms are then implemented in software (e.g.
cryptoprocessors [3] [4]). In other cases, the entire design can be implemented
in hardware – such as a one-shot Reed-Solomon encoder-decoder chip [5] [6],
or the point multiplication circuitry [7] used in elliptic curve cryptosystems.
Therefore, there has been a lot of research in VLSI implementations of finite
field arithmetic. We describe the design of such primitive computations to shed
some light on the architectures and their design and verification complexity.

Addition in F2k is performed by correspondingly adding the polynomials
together, and reducing the coefficients of the result modulo the characteristic 2.

0.4 Example Given A = α3 + α2 + 1 = (1101) and B = α2 + 1 = (0101) in F24 ,

A+ B = (α3 + α2 + 1) + (α2 + 1)

= (α3) + (α2 + α2) + (1+ 1)

= α3 = (1000)

0.5 Example A 4-bit adder in F24 is given in Figure One.2. It takes as inputs
two 4-bit vectors: A = (a3a2a1a0), B = (b3b2b1b0) and computes the result
Z = (z3z2z1z0). Note an adder circuit is trivial and only consists of XOR gates.

Conceptually, the multiplication Z = A × B (mod P(x)) in F2k consists of
two steps. In the first step, the multiplication A × B is performed, and in
the second step, the result is reduced modulo the irreducible polynomial P(x).
Multiplication procedure is shown in Example 0.6.

0.6 Example Consider the field F24 . We take as inputs: A = a0 + a1 · α +
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Figure One.2: 4-bit adder over F24 .

a2 · α2 + a3 · α3 and B = b0 + b1 · α + b2 · α2 + b3 · α3, along with the
irreducible polynomial P(x) = x4+x3+1. We have to perform the multiplication
Z = A × B (mod P(x)). The coefficients of A = {a0, . . . , a3}, B = {b0, . . . , b3}

are in F2 = {0, 1}. Multiplication can be performed as shown below:

a3 a2 a1 a0
× b3 b2 b1 b0

a3 · b0 a2 · b0 a1 · b0 a0 · b0
a3 · b1 a2 · b1 a1 · b1 a0 · b1

a3 · b2 a2 · b2 a1 · b2 a0 · b2
a3 · b3 a2 · b3 a1 · b3 a0 · b3
s6 s5 s4 s3 s2 s1 s0

The result Sum = s0 + s1 · α+ s2 · α2 + s3 · α3 + s4 · α4 + s5 · α5 + s6 · α6,

s0 = a0 · b0
s1 = a0 · b1 + a1 · b0
s2 = a0 · b2 + a1 · b1 + a2 · b0
s3 = a0 · b3 + a1 · b2 + a2 · b2 + a3 · b1
s4 = a1 · b3 + a2 · b1 + a3 · b1
s5 = a2 · b3 + a3 · b2
s6 = a3 · b3

Here the multiply “ ·” and add “+” operations are performed modulo 2, so they
can be implemented in a circuit using AND and XOR gates. Note that unlike
integer multipliers, there are no carry-chains in the design, as the coefficients are
always reduced modulo p = 2. However, the result is yet to be reduced modulo
the primitive polynomial P(x) = x4 + x3 + 1. This is shown below, where higher
degree coefficients are reduced (mod P(x)).
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s3 s2 s1 s0

s4 0 0 s4 s4 · α4 (mod P(α)) = s4 · (α3 + 1)

s5 0 s5 s5 s5 · α5 (mod P(α)) = s5 · (α3 + α+ 1)

s6 s6 s6 s6 s6 · α6 (mod P(α)) = s6 · (α3 + α2 + α+ 1)

z3 z2 z1 z0

The final result (output) of the circuit is: Z = z0+ z1α+ z2α
2+ z3α

3; where
z0 = s0 + s4 + s5 + s6; z1 = s1 + s5 + s6; z2 = s2 + s6; z3 = s3 + s4 + s5 + s6.

The above multiplier design is called the Mastrovito multiplier [8] which is
the most straightforward way to design a multiplier over F2k . A logic circuit for
a 4-bit Mastrovito multiplier over finite field F24 is illustrated in Fig. One.3.
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Figure One.3: Mastrovito multiplier over F24 .

Modular multiplication is at the heart of many public-key cryptosystems,
such as Elliptic Curve Cryptography (ECC) [9]. Due to the very large field
size (and hence the datapath width) used in these cryptosystems, the above
Mastrovito multiplier architecture is inefficient, especially when exponentiation
and repeat multiplications are performed. Therefore, efficient hardware and
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Figure One.4: Montgomery multiplier over F2k

software implementations of modular multiplication algorithms are used to
overcome the complexity of such operations. These include the Montgomery
reduction [10] [11] and the Barrett reduction [12].

Montgomery Reduction: Montgomery reduction (MR) computes:

G =MR(A,B) = A · B · R−1 (mod P(x)) (One.4)

where A,B are k-bit inputs, R = αk, R−1 is multiplicative inverse of R in F2k ,
and P(x) is the irreducible polynomial for F2k . In general, R is a power of a base;
over GFs, R is usually selected as R = αk. Since Montgomery reduction cannot
directly compute A · B, to compute A · B (mod P(x)), we need to pre-compute
A · R and B · R, as shown in Fig. One.4.

Each MR block in Fig. One.4 represents a Montgomery reduction step which
is a hardware implementation of the algorithm shown in Algorithm 1.

Algorithm 1: Montgomery Reduction Algorithm [11]
Input: A(x), B(x) ∈ F2k ; irreducible polynomial P(x).
Output: G(x) = A(x) · B(x) · x−k (mod P(x)).
G(x) :=0
for (i = 0; i 6 k− 1; ++i ) do
G(x) := G(x) +Ai · B(x) /*Ai is the ith bit of A*/;

G(x) := G(x) +G0 · P(x) /*G0 is the lowest bit of G*/;

G(x) := G(x)/x /*Right shift 1 bit*/;

end

The design of Fig. One.4 is an overkill to compute just A · B (mod P(x)).
However, when these multiplications are performed repeatedly, such as in iterative
squaring, then the Montgomery approach speeds-up the computation. As shown
in [13], the critical path delay and gate counts of a squarer designed using the
Montgomery approach are much smaller than the traditional approaches.



Section V. Hardware Implementations of Arithmetic over F2k 17

Barrett Reduction: Barrett reduction is the other widely used multiplier design
method adopted in cryptography system designs. Similar to Montgomery reduc-
tion, the traditional Barrett reduction, proposed in [14], needs a pre-computed
value of the reciprocal/inverse of modulus P(x). This pre-computation requires
extra computational time and memory space. To overcome this limitation, the
recent approach of [12] avoids such a pre-computation of inverses and there-
fore greatly simplifies the hardware design implementation. This algorithmic
computation is shown in Algorithm 2.

Algorithm 2: Barrett Reduction Without Pre-Computation Algorithm [12]

Input: R(x) ∈ F2k ; irreducible polynomial P(x) = xn +

l∑
i=0

mi · xi

satisfying l = bn
2
c,mi ∈ {0, 1}.

Output: G(x) = R(x) (mod P(x)).
Q1(x) =

R(x)
xn /*Right shift n bit*/;

Q2(x) = P(x) ·Q1(x) ;
Q3(x) =

Q2(x)
xn ;

G1(x) = R(x) (mod xn) /*Keep the lower n bits of R(x)*/;

G2(x) = P(x) ·Q3(x) (mod xn) ;
G(x) = G1(x) +G2(x) ;

Based on Barrett reduction, a multiplier can be designed with two simple
steps: multiplication R = A × B and a subsequent Barrett reduction G = R

(mod P). This is shown in Fig. One.5. As we can see, a Barrett multiplier is
similar to a Mastrovito multiplier except for the reduction step.
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Figure One.5: Barrett multiplier over F2k .

One of the most influential applications of finite fields is in elliptic curve
cryptography (ECC). ECC is an approach to public-key cryptography based on
the algebraic structure of elliptic curves over finite fields. The main operations of
encryption, decryption and authentication in ECC rely on point multiplications.
Point multiplication involves a series of addition and doubling of points on the
elliptic curve. A drawback of traditional point multiplication is that each point
addition and doubling involves a multiplicative inverse operation over finite fields.
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Representing the points in projective coordinate systems [7] eliminates the need
for multiplicative inverse operation and therefore increases the efficiency of point
multiplication operation. Let us consider designs based on the López-Dahab
(LD) coordinate system [15]:

0.7 Example Consider point addition in LD projective coordinate. Given an
elliptic curve: Y2 +XYZ = X3Z+aX2Z2 +bZ4 over F2k , where X, Y, Z are k-bit
vectors that are elements in F2k and similarly, a, b are constants from the field.
Let (X1, Y1, Z1) + (X2, Y2, 1) = (X3, Y3, Z3) represent point addition over the
elliptic curve. Then X3, Y3, Z3 can be computed as follows:

A = Y2 · Z2
1 + Y1

B = X2 · Z1 + X1

C = Z1 · B
D = B2 · (C+ aZ2

1)

Z3 = C2

E = A · C
X3 = A2 +D+ E

F = X3 + X2 · Z3

G = X3 + Y2 · Z3

Y3 = E · F+ Z3 ·G

0.8 Example Consider point doubling in projective coordinate system. Given an
elliptic curve: Y2 + XYZ = X3Z + aX2Z2 + bZ4. Let 2(X1, Y1, Z1) = (X3, Y3,
Z3), then

X3 = X4
1 + b · Z4

1

Z3 = X2
1 · Z2

1

Y3 = bZ4
1 · Z3 + X3 · (aZ3 + Y

2
1 + bZ4

1)

In the above examples, polynomoial multiplication and squaring operations
are implemented in hardware using Montgomery or Barrett reductions over finite
fields F2k . There also exist sequential multipliers over F2k , these are described
in later chapters on sequential verification.

The field size for such applications is generally very large. For exam-
ple, the U.S. National Institute for Standards and Technology (NIST) rec-
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ommends, for elliptic curve cryptography, fields F2k where the datapath size
k = 163, 233, . . . , 571 bits. Such large size and complicated arithmetic nature
of such circuits clearly shows the complexity of the formal verification problem.
Contemporary techniques lack the requisite power of abstraction to model and
verify such large systems. For this reason, I propose polynomial abstractions over
finite fields to model and verify such circuits using computer algebra techniques.
This is the subject of subsequent chapters. Before we get to those concepts, let
us study one more concept, that of polynomial functions over finite fields Fq.

VI Polynomial Functions f : Fq → Fq

A combinational logic circuit with k-bit inputs and k-bit outputs implements a
Boolean function that is a mapping of the type f : Bk → Bk, where B = {0, 1}.
Every such function can also be viewed as a mapping among 2k elements.
Therefore, these can be modeled as functions over f : F2k → F2k or over
f : Z2k → Z2k . We are interested in representing these functions f symbolically
by means of a (word-level) polynomial F — i.e. as polynomial functions over F2k

or Z2k .

A function is a polynomial function if the function (mapping) can be repre-
sented by means of a polynomial. Over finite integer rings, not every function
f : Zn → Zn, n ∈ N can be represented as a polynomial. However, over Fq,
every function is a polynomial function, i.e. every function can be represented
as a polynomial.

0.9 Theorem From [2]: Any function f : Fq → Fq is a polynomial function over
Fq, that is there exists a polynomial F ∈ Fq[x] such that f(a) = F(a), for all
a ∈ Fq.

By analyzing f over each of the q points, one can apply Lagrange’s interpolation
formula and interpolate a polynomial

F(x) =

q∑
n=1

∏
i 6=n(x− xi)∏
i 6=n(xn − xi)

· f(xn), (One.5)

which is a polynomial of degree at most q − 1 in x. One can easily see that
F(a) = f(a) for all a ∈ Fq, and F(x) is therefore the polynomial representation
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of the function f.

0.10 Example Let A = {a2, a1, a0} and Z = {z2, z1, z0} be 3-bit vectors. Con-
sider the function Z[2 : 0] = A[2 : 0] >> 1, i.e. a bit-vector right shift
operation on A. The function maps as follows:

{a2a1a0} A → {z2z1z0} Z

000 0 → 000 0
001 1 → 000 0
010 α → 001 1
011 α+ 1 → 001 1
100 α2 → 010 α

101 α2 + 1 → 010 α

110 α2 + α → 011 α+ 1

111 α2 + α+ 1 → 011 α+ 1

By applying Lagrange’s interpolation formula over F23 , we obtain Z =

(α2 + 1)A4 + (α2 + 1)A2, as the polynomial representation of the function,
where P(α) = α3 + α+ 1 = 0.

We know that for all elements A ∈ Fq, A
q = A, and hence Aq − A = 0.

Therefore, the polynomial Xq − X vanishes on all points in Fq. Consequently,
any polynomial F(X) can be reduced (mod Xq − X) to obtain a canonical
representation (F(X) (mod Xq − X)) with degree at most q− 1.

0.11 Definition Any function f : Fd
q → Fq has a unique canonical representation

(UCR) as a polynomial F ∈ Fq[x1, . . . , xd] such that all its nonzero monomials
are of the form xi11 · · · x

id
d where 0 6 ij 6 q− 1, for all j = 1, . . . , d.

Canonical representations of such polynomial functions are important as
they allow to perform verification of GF circuits. However, the point-wise
interpolation is infeasible over large fields. In later chapters, we will study
how the Gröbner basis engines can be employed on circuits, using specific term
orders derived from the circuit’s topology, to derive such canonical polynomial
representations over F2k .
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