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VLSI Logic Test, Validation and Verification
Lecture 7

Properties & Applications of Binary Decision
Diagrams

Instructor: Priyank Kalla
Department of Electrical and Computer Engineering

University of Utah, Salt Lake City, UT 84112
Email: kalla@ece.utah.edu

In this lecture, we will first analyze the effect of variable ordering on BDDs, and then look at some particular

applications of BDDs to problems in the VLSI-CAD domain.

I. EFFECT OF VARIABLE ORDERING ON BDDS

Just as a truth-table is a canonical form, subject to the constraint that the variables have a total ordering (also called

linear ordering) imposed on them, a Binary Decision Diagram (BDD) is also canonical form w.r.t. a variable order.

The characteristics of Reduced Ordered BDDs, also called ROBDDs, depends critically on the variable order. This is

not the case for a truth table, since a truth-table is an explicit representation of each and every point in the domain of

the function. The reduction operation on BDDs, on the other hand, performs some type of implicit minimization of

the function. Hence, ROBDDs represent the minterms of the function in some simplified form as cubes. From now

on, we will refer to ROBDDs as simply BDDs without diluting their meaning. The variable order defines how and

which minterms are simplified as cubes. Since each path from a root node to a terminal vertex in a BDD corresponds

to a cube of the function, reduction in the number of paths would imply reduction in the number of cubes. How do we

bring about a reduction in the number of paths in a BDD? By reducing the number of vertices in a BDD, of course.

And how do we reduce the number of vertices in a BDD? We can do that by computing an optimal order on the

variables of the BDD. See the example below that shows the effect of variable ordering on the size of the BDDs.
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A. BDD Reduction and Logic Minimization

A word of caution - Finding an optimum order on the variables of a BDD so that the size of the ROBDD is an

absolute minimum DOES NOT MEAN that we have performed exact logic minimization of the function (Karnaugh-

map type). This is actually a rather tricky issue. Going from a non-reduced, full-blown BDD, to a reduced ordered

BDD (ROBDD) does entail some logic simplification. However, the simplification is not complete in the sense that

the function is not exactly minimized. The reduction operation on the BDD does provide some logic minimization

but the extent of minimization really depends upon the character of the function.

B. Finding an Optimal Variable Order

Given an ROBDD, how do we recompute an ordering of its variables so that the size of the BDD is minimized?

Welcome to yet another intractable problem! Since it is impossible to precompute the effect of any variable order on

BDD size, unless we try all possible orderings, it is not possible to know which ordering is the best. However, there

are some observations that help in computing a good variable order:

� The variables upon which a large number of minterms depend, should be closer to the root. Why? This should be

intuitive.
� Variables that feed deep cones of logic should come first in the order, because they are important decision makers.

� It has been shown that for multipliers, it doesn’t matter what the order on the variables is, there will be at least

one particular output of the multiplier that will have an exponential size of the BDD. Note that exponential size of

the ROBDD means that in the original, full blown, non-reduced BDD, there was no possibility of reduction. For

multipliers, would there be any benefit of even trying to find a BDD order?
� When we use the APPLY (ITE) operator to compute a new BDD, we might require a new order on the variables to

minimize the size of all the BDDs in the manager.
� Suppose we are given two BDDs

�����
, and we wish to compute some arbitrary Boolean operation

�����
. It might so

happen that even though the final result ROBDD for
�	�
�

is small in size (i.e. does not have exponential complexity),

some intermediate result of the computation may be prohibitively large. In such a case, even if we could store the final

result in computer memory, the intermediate computation cannot be stored. This renders the entire computational

process a fiasco. In practise, this is usually where BDDs tend to show their bad behaviour.

For the above reasons, dynamic variable ordering is a technique that has been devised to recompute an order on

the variables every time a new ITE/APPLY computation is performed - hence dynamic. Reference [1] describes a

dynamic variable ordering algorithm that uses sifting of nodes to compute a good order. Notice that this is a trial and

error technique: it swaps nodes in adjacent levels and recomputes the size of the BDD. If swapping leads to fewer

nodes, it accepts the order and continues. Even though such a process is intractable in the worst-case, the technique

in [1] makes use of intelligent heuristics to compute a good variable order.

II. APPLICATIONS OF BDDS

In this section let us look at some applications of BDDs. First, we will look at BDDs as an implicit set represen-

tation, then exploit their canonicity property to prove equivalence of Boolean functions, then show how to solve the
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SAT and Tautology problems. Later on, during the progress of this course, we will analyze some other problems that

may be solved using BDDs. Perhaps, some of you might wish to work on a project that would encompass solving

some decision problem using BDDs.

A. BDDs as an Implicit Set Representation

Believe it or not, you already have solved this problem - it is that of Boolean function representation. Consider the

Boolean function as a set of minterms. By using BDDs as an implicit set representation, you are indeed representing

the minterms or cubes of the Boolean function implicitly. Why implicitly and not explicitly? An explicit representa-

tion would, as the word suggest, explicitly represent each and every point in the Boolean space. Because the reduction

operation on BDDs performs some implicit minimization, ROBDD representation of a Boolean function represents

cubes (simplified minterms) of the function (implicitly).

Another interesting application of BDDs as an implicit set representation is the use of characteristic functions.

Given a set � , the elements of � can be represented by a characteristic function of � , �������	� , which satisfies the

property: ��
���
���� � ���	��� 1. In simple English, the formula means that if an element � belongs to � ( ��
�� ),

then � evaluates the characteristic function �������	� to 1 and vice-versa. This seemingly obvious result can come in very

handy when using set operations using BDDs. For example, let ��� � ��� be two flip-flops of a sequential circuit. The

total number of possible states of the circuit is � � ��� . Assume that the underlying state machine of the circuit only

has 3 states, out of which, say �����! � ���"�# be the illegal state. So the characteristic function of the legal (also

called reachable) states has the following elements: �$�%�& � �����('*)+�,�-�(' � �.���/ $) and �,�0�(' � �.���(' . In other

words, � � �1� � � � � �2� � �43 � ��5 � �43 � ��5 � ��3 � � is the characteristic function of the set of legal states. What would the

BDD for this characteristic function look like? Draw it and see if the representation is explicit or implicit?

B. Equivalence Verification

This is simple! In the last lecture we have already seen how we can prove or disprove the equivalence of two

combinational circuits using BDDs I think this need no further mention.
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C. SAT using BDDs

Let us revisit the circuit satisfiability problem that was introduced in the previous chapters. The circuit is reproduced

in Fig. 1. Let us suppose that it is required to compute input assignments to the circuit in order to satisfy the output

requirements: ��� � ' ��� � ' ��� � '�� . Computing the conjunction of the individual constraints ( � ��� ��� ) provides all

satisfying assignments. Let
� ��� 3 � 3 � represent the solutions, then

� �
	�� 5�
 � 5 	 
 .
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Fig. 1. An example circuit.

Each of the individual constraints, in the above case � ��� ��� , can be represented using an ROBDD. The conjunction

of all the constraints can be performed by computing the Boolean product of � ��� ��� . The resulting ROBDD would

contain all satisfying solutions. The ROBDD for
� ��� 3 � 3 � ��	�� 5�
 � 5 	 
 is shown in Fig. 2. Selecting any of

the cubes as a SAT solution amounts to traversing any path from the root node to the terminal vertex 1. For example,

as shown in the Fig. 2, traversing the path ��	 � ' � 
 � ' � � � '�� from the root leads to the terminal vertex 1; thus the

cube 	 3�
23 � is a SAT solution to the problem.
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Fig. 2. Satisfiability using path traversal on a BDD.

Since an ROBDD is a DAG, the shortest path problem can be solved using the root node as the source and the

terminal 1 as the sink. Note that traversing the shortest path amounts to exercising the largest cube in the BDD [2]

[3]. Note that in the above ROBDD, 	 3 
 is the shortest path (and hence the largest cube) from the root to terminal 1.

C.1 Tautology using BDDs

The dictionary meaning of tautology which I gathered from www.dictionary.com, is:
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An empty or vacuous statement composed of simpler statements in a fashion that makes it logically

true whether the simpler statements are factually true or false; for example, the statement “Either

it will rain tomorrow or it will not rain tomorrow” is a tautology.

In other words, if a Boolean function is always TRUE, then the function is tautology; ���
�
�
� � ��	 5 	 � is an obvious

tautology. What would a BDD for a tautology look like? Draw the BDD for
� ��	 5 	 � and see for yourself.

All the elements of the set, i.e. all paths of the BDD should go to terminal vertex 1. A reduction operation

would eleminate ALL nodes from the BDD except the terminal node one. (Do you know why do all the BDDs

representing tautology have only the terminal vertex 1? Because of canonicity!) Tautology checking is much like the

SAT problem. The only difference is that: SAT problem checks for the existence of the truth assignment, whereas the

tautology problem checks for the universality of the truth assignment.

The non-tautology problem questions the existence of an assignment that makes the expression FALSE. How would

you solve the non-tautology problem on a BDD?

Can you think of any other decision/optimization/representation problems that you can solve using BDDs?
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