VLSI Logic Test, Validation and Verification
Lecture 6, Sep 2, 2002
Boolean Function Representation

Instructor: Priyank Kalla
Department of Electrical and Computer Engineering
University of Utah, Salt Lake City, UT 84112
Email: kalla@ece.utah.edu

There are many different ways of representing Boolean functions, most popular of them can be classified into
tabular forms, logic expressions, and binary decision diagrams. The truth table is the simplest and most prominent
of tabular form representations. It is a complete listing of all points in the Boolean space and of the corresponding
values of the outputs. While the truth table is a canonical® form representation, its size is exponential in the number
of input variables, and hence its use is restricted to functions of small size.

Scalar Boolean functions can also be represented by expressions of literals linked by the + and - operators. Common
examples of logic expressions are the two-level forms and multiple-level forms of logic expressions. Two-level forms
are sum-of-products or product-of-sums of literals and they can be used to represent any Boolean function. Are SOP
and POS forms canonical? Multiple-level forms involve arbitrary nesting of Boolean operators using parentheses.
Factored forms representation are one example of multiple-level forms.

Definition .1: A factored form is one and only one of the following:

« A literal.
« A sum of factored forms.
« A product of factored forms.

While the above representations are quite compact, the computational complexity of checking for elementary prop-
erties of the functions (such as containment, satisfaction, tautology, etc.) from such representation is quite high [1]
[2]. One representation that can represent a large class of functions succinctly, while simultaneously allowing efficient
manipulation of these functions, is the Binary Decision Diagram [3] which is described below.

I. BINARY DECISION DIAGRAMS

Binary Decision Diagrams, henceforth called BDDs, were originally proposed in [4] [5] to represent Boolean func-
tions. A BDD represents a set of binary-valued decisions, culminating in an overall decision that can be either TRUE
or FALSE. They are a graph-based representation based on trees or rooted Directed Acyclic Graphs (DAGS). There
exists a one-to-one mapping between a truth-table and a full-blown BDD. Hence, both are canonical form represen-
tations. See the figure below. The nodes in the BDD represent variables, and the edges correspond to assignment of 0
(dotted-edge) or 1 (solid-edge) to the variable. The terminal nodes contain numeric leaf values: 0 or 1, corresponding
to the value of the Boolean function. When you traverse any path from the root node to the terminal vertex, it is
equivalent to selecting any minterm from the truth table. A BDD with an order imposed on the variables is called an
ordered binary decision diagram, or OBDD.

LA representation is canonical if there exists one and only one, unique, representation for afunction and all its equivalents.

Fig. 1. One to one mapping between truth table and BDDs

In [3], it was shown that by imposing a total order on the variables of the BDD and subsequently removing any
redundancies from them, they get reduced in size and yet retain their canonical form representation. First, let us
review basic definitions related to OBDDs, and analyze some interesting features that are the key to understanding
BDDs, and the relationship between the structure of the BDD and the characteristics of the Boolean functions that it

represents.
Definition 1.1: An OBDD is a rooted directed graph with vertex set V. Each non-leaf vertex has as attributes a
pointer index(v) € {1,2,...,n} to an input variable in the set {z1,z2,...,z,}, and two children low(v), high(v)

€ V. Aleaf vertex v has as an attribute a value, value(v) € B.

For any non-leaf vertex pair {v, low(v)} and {v, high(v)}, index(v) < index(low(v)) and index(v) < index(high(v)),
respectively.

Definition 1.2: An OBDD with root v denotes a function £ such that:

o Ifvis aleaf with value(v) =1, f” = 1.
o Ifvis a leaf with value(v) =0, f” =0.
« If v is a non-leaf node with index(v) =i, f¥ = 2 - flow(®) 4 g, . fhightv),

From the above definition it can be inferred that the decomposition principle associated with OBDDs corresponds
to recursive application of the Shannon’s expansion.

Two OBDDs are isomorphic if there is a one-to-one mapping between the vertex sets that preserve adjacency,
indices and leaf values. Thus, two isomorphic OBDDs represent the same function. While an OBDD uniquely
identifies a Boolean function, the converse is not true. In order to make an OBDD canonical, any redundancy in the
OBDD must be eliminated.

Definition 1.3: An OBDD is said to be reduced if it contains no vertex v with low(v) = high(v), nor any vertex
pair {u, v} such that subgraphs rooted at » and v are isomorphic. A reduced OBDD is referred to as an ROBDD.

In [3], an algorithm to reduce the OBDDs was presented, and it was proved that ROBDDs are a canonical repre-
sentation. The algorithm traverses the OBDD bottom-up, identifies and removes all the nodes that are redundant (if
low(v) = high(v)) and merges all isomorphic subgraphs (if low(u) = low(v) and high(u) = high(v)) present in
the OBDD. The algorithm terminates when the root is reached. Fig. 2 depicts the reduce operation performed on the
OBDDs. The isomorphic subgraphs are merged in Fig. 2(b) and the resulting redundant node is deleted in to obtain

the ROBDD shown in Fig. 2(c).
/ Redundant
/ Node
ORI

/E
/
/

(a (b) (c)

Fig. 2. Reduce operation on an OBDD. Dotted edges in the OBDD correspond to the assignment of 0 to the variable correspond-
ing to the vertex. Solid edges represent an assignment of the value 1 to the variable.

A. Efficient Construction and Manipulation of ROBDDs

OBDDs of large designs can be prohibitive in size, and the reduction operation upon them can become infeasible.
It is important to construct ROBDDs for the Boolean functions directly, thus avoiding the reduction step. This is made
possible by using a hash table called the unique table, which contains a key for each vertex of the ROBDD. The key
is a triple (v, low(v), high(v)). The function associated with each vertex is uniquely identified by the key. During

the OBDD construction, when a new vertex is to be created, a look-up in the unique table is performed to determine
if another vertex in the table implements the same function. If such a vertex is found, its key is returned, otherwise a
new vertex is added into the table. This disallows any duplication of equivalent vertices in the OBDD.

Let us follow the “direct” construction of ROBDDs for two equivalent functions f; = ac + bc and fo = a(b + c).
We are going to cover this example in class. Please follow this example carefully to observe how the hash table
disallows creation of duplicated vertices - and this is how it guarantees a canonical representation.

In [6], one such implementation of the unique table was presented and it was shown to be a strong canonical form.
Strong canonical form is a form of pre-conditioning which reduces the complexity of an equivalence test between
elements in a set. A unique identifier is assigned to each unique element in the set so that an equivalence test is a
simple scalar test between the identifiers of each element.

B. How to operate upon two BDDs?

The ROBDD construction principle implemented in the unique table is defined according to the ITE (IF-THEN-
ELSE) operator. ITE is a Boolean function defined for three inputs f, g, h as follows:

ITE is the logical function performed at each node in the ROBDD and its recursive application can be used to
perform any Boolean operation. Let Z = ite(f, g, h) and let v be the top variable corresponding to the ROBDDs of
f,g and h. Applying the Shannon’s expansion on Z with respect to variable v, and using the ITE operator, we get:

Z = vZy+v'Zy)
= o(ite(f,g,h))y + ' (ite(f, 9,) 3)
= o(fg+ f'h)y+ ' (fg+ f'h)w (4)
= (fogv + o) + 0" (for gu + forhar) (5)
= ite(v,ite(fo, gv, ho), ite(fur, gt har)) (6)

= (v,ite(fv, Gv, o), ite(for, Gors Bor)) (7)

The terminal cases for the above recursion are: ite(1, f, g) = ite(0, g, f) = ite(f,1,0) = f. Based on the above
principle, any Boolean operation on functions can be performed using the ITE operator recursively. For example, it
can be used to check implication between two functions. If f — g, then f’ + g is tautology. Tautology checking can
be performed by checking whether or not ite(f,g,1) = TRUE. Similarly, f - g can be computed as ite(f,g,0). f’
can be computed as ite(f,0, 1), and so on.

A few points before we proceed further: What the above equations mean, quite simply is that if v is the variable
associated with the topmost nodes of f, g, h, then the resulting function Z = ite(f, g, h) also has v as the top variable
associated with its root. Furthermore, notice the “recursive” nature of the ITE operator. Following from the first to
the last equation, it is clear that we began to apply the ITE operator on the top nodes (corresponding to variable v)
of f, g, h, and ended-up applying the ITE operator to their cofactors: f,, gy, hy and f;, g, ., h.. Now, a question for
you: Where do the co-factors of f, g, k reside in the BDD? In their children nodes, of course. This implies that the
ITE operator applied to the top nodes results in its application to the children nodes. This would ultimately lead to the
terminal nodes. Hence the recursion!

C. Complexity of BDDs

The complexity of the ite(f, g, h) operation is polynomial in the number of nodes. To perform any Boolean
operation on OBDDs, the ITE is invoked at most once for each combination of nodes in f, g, h, or O(| f||g||h|) times.
This means that in the worst case, the new ROBDD created is as large as the product of the sizes of the original
ROBDDs. This complexity in the worst-case is quite high - it is polynomial (cubic) in the number of nodes of f, g, h.
But you should realize, in the worst case, the size of each f, g, h can be exponential w.r.t. the number of variable
in their support set. In other words, complexity of ROBDDs is exponential in the worst-case. Judged by their worst
case performance, ROBDDs may not appear to be very useful, but in many commonly encountered functions their
performance does not exhibit worst-case behaviour. This has enabled their application to a large number of problems
encountered in the area of VLSI design, test and verification - check for equivalence, satisfiability and tautology,
etc. In the next chapter, we will analyze the power and limitations of ROBDDs when applied in the context of many
different problems in CAD.

REFERENCES

[1] R. Boppana and M. Sipser, “The Complexity of Finit Functions”, in J. van Leeuwen, editor, Algorithms and Complexity,
vol. A of Handbook of Theoretical Computer Science. MIT Press, 1990.

[2] C. H. Papadimitriou, Computational Complexity, Addison-Wesley, 1994.

[3] R. E. Bryant, “Graph Based Algorithms for Boolean Function Manipulation”, I1EEE Trans. on Computers, vol. C-35, pp.
677-691, August 1986.

[4] C. Lee, “Representation of Switching Circuits by Binary Decision Diagrams”, Bell Systems Technical Journal, vol. 38, pp.
985-999, July 1959.

[5] S. Akers, “Binary Decision Diagrams”, |EEE Transactions on Computers, vol. C-27, pp. 509-516, June 1978.

[6] K.S. Brace, R. Rudell, and R. E. Bryant, “Efficient Implementation of the BDD Package”, in DAC, pp. 40-45, 1990.

