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CDCL Solvers: Panacea?

@ Where does SAT fail?
@ For hard UNSAT instances, such as equivalence verification
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Prove UNSAT, or find a counter-example
Limitations: No internal structural equivalences
EDA-techniques: Circuit-SAT, AlG-reductions, constraint-learning

Key idea: identify internal structural equivalences
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Combinational Equivalence Checking (CEC)

@ Direct application of SAT to CEC is inefficient

@ Bug-catching (UNSAT) is easier, proof of correctness is harder

o Datapath-dominated circuits are particularly harder to verify

@ How to use the power of SAT, along with logic design, synthesis, and
optimization concepts, to efficiently solve the CEC problem?

How was CEC solved prior to SAT and BDDs?

@ Techniques borrowed heavily from circuit synthesis, testing and
simulation

@ Logic Synthesis = sequence of transformations

@ Verification = reverse these transformations? Kind of...
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Circuit-SAT solvers & AlGs

@ CSAT: SAT solvers, specifically tuned to operate on circuits
@ And-Invert-Graphs (AlGs): An engine to enable circuit-SAT

@ The origins of AlGs are in logic synthesis and technology
decompositions

@ AlGs are a versatile data-structure to represent Boolean functions and
circuits

@ AlGs can be functionally reduced (FRAIGs)
@ FRAIGs are semi-canonical, help to identify sub-circuit equivalences

@ The tool ABC from UC Berkeley (URL on class website): AlG based
logic synthesis and verification
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@ AlGs are Boolean networks composed of 2-input AND gates and
Inverters

@ Construction time proportional to circuit size (unlike BDDs)

@ Enhanced with Simulation, SAT & BDDs: very powerful for synthesis
and verification

@ Build AlGs from circuits, FRAIG-sweep, solve SAT, CEC, Synthesis,
etc.
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AlGs - Examples
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FRAIG: AIG re-write rules

@ Simple rules, non canonical, but very quick AIG rewriting
@ Swap inputs, merge nodes, look-up sub-structures
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AlG-based CEC

@ Construct FRAIGs, merge equivalent nodes
o Simulate for a few (say / = 21°) inputs
@ If nodes nq, ny evaluate the same for / inputs
o Miter sub-circuits at n; and n», solve sub-circuit CEC
o If ny = ny, simplify original miter: make n; = n, a primary input;
continue until CEC solved.
o Very simple, yet very successful approach, used in industry
@ AlGs can solve CEC for bit-level and synthesized designs
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Word-Level Verification

@ Imagine a Bit-Vector RTL description
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Word-Level Verification

@ Imagine a Bit-Vector RTL description
o (x#y)N((2xx<z2)Vallx—y =2 2)A(z<y)))
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Word-Level Verification

@ Imagine a Bit-Vector RTL description

o (x#y)AN((2xx<Z)V((x—y=2)A(z<y)))
@ How will you solve SAT on this formula?
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Word-Level Verification

@ Imagine a Bit-Vector RTL description
o (x#y)N((2xx<z2)Vallx—y =2 2)A(z<y)))
@ How will you solve SAT on this formula?

@ Also, x,y, z are bit-vectors: [31: 0]
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Word-Level Verification

@ Imagine a Bit-Vector RTL description

o (x#y)N((2xx<z2)Vallx—y =2 2)A(z<y)))

@ How will you solve SAT on this formula?

@ Also, x,y, z are bit-vectors: [31 : (]

° (x>y)V(x <y)M2xx<z)Vo((x =y =2z)A(z<y)))
Y v 4 e
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Word-Level Verification

@ Imagine a Bit-Vector RTL description

o (x#y)N((2xx<z2)Vallx—y =2 2)A(z<y)))

@ How will you solve SAT on this formula?

@ Also, x,y, z are bit-vectors: [31 : (]

° (x>y)V(x <y)M2xx<z)Vo((x =y =2z)A(z<y)))
—— = ~ 7 N

a b c d e
@ Solve SAT: (aV b) A (cV —(dAe))
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Word-Level Verification

@ Imagine a Bit-Vector RTL description

o (x#y)N((2xx<z2)Vallx—y =2 2)A(z<y)))

@ How will you solve SAT on this formula?

@ Also, x,y, z are bit-vectors: [31 : (]

° (x>y)V(x <y)M2xx<z)Vo((x =y =2z)A(z<y)))
Y v 4 e

@ Solve SAT: (aV b) A (cV —(dAe))

® Solution: a=b=c=d=e=1
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Word-Level Verification

@ Imagine a Bit-Vector RTL description

o (x#y)N((2xx<z2)Vallx—y =2 2)A(z<y)))

@ How will you solve SAT on this formula?

@ Also, x,y, z are bit-vectors: [31 : (]

° (x>y)V(x <y)M2xx<z)Vo((x =y =2z)A(z<y)))
—— = ~ 7 N

a b c d e
@ Solve SAT: (aV b) A (cV —(dAe))

@ Solution: a=b=c=d=e=1

@ Combine “solvers” for different theories!
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SAT Modulo Theories (SMT)

@ A mechanism to combine many “theories” and solvers together

[

Theory of difference constraints and logic
Equality and uninterpreted functions
Quantifier-free bit-vector formulas

All combined with First order logic

¢ ¢ ¢

@ Approach: Use SAT as a base-solver, and propagate solutions to
theory solvers

@ Spurious solutions (ones disproved with theory solvers) are added as
“lemma”, and SAT is re-solved

@ See example on next slide
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SMT Solving Strategies

o (x#Y)N((2xx<2)Vallx—y=2)A(z<y)))

° (x>y)V(x <y)M2xx<z)Vo((x—y =2z)A(z<y)))
R;—/ T - v 7; T

@ Solve SAT (aV b) A (cV —(d Ae))

@ Solution: a= b= c=d = e =1 creates a linear program

@ If linear program infeasible, add =(a A b A c A d A e) to the CNF,
resolve SAT
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Word-Level RTL CEC is still Challenging

@ Multiplication is hard to solve (no one knows how to solve it!)

@ SMT relies on “bit-blasting”, and gives a huge problem to SAT
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Figure: x2 +x = x(x + 1)
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Motivation for Algebraic Computation

@ Modeling for bit-precise algebraic computation

@ Arithmetic RTLs: functions over k-bit-vectors
o k-bit-vector — integers (mod 2K) = Z
o k-bit-vector — Galois (Finite) field Fopx

@ For many of these applications SAT/SMT fail miserably!
@ Computer Algebra and Algebraic Geometry + SAT/SMT

@ Model: Circuits as polynomial functions f : Zox — Ziok, f : Fox — Fok
@ Apply symbolic and algebraic computing concepts for verification
@ And this topic is the core focus of this course
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