
1

Boolean Algebra - Basics
Instructor: Priyank Kalla

Department of Electrical and Computer Engineering

University of Utah, Salt Lake City, UT 84112

Email: kalla@ece.utah.edu

In this lecture, basic terms and definitions corresponding to Boolean algebra are defined. Various characteristics

of Boolean functions are analyzed and operations upon them are discussed. Boolean algebra concepts are explained

both from a mathematical (functional) as well as from a set theory perspective.

I. BOOLEAN ALGEBRA AND APPLICATIONS

An algebraic system is the combination of a set and one or more operations. A Boolean algebra is defined by the

set B ⊇ B≡ {0, 1} and by two operations, denoted by + and · which satisfy the commutative and distributive laws

and whose identity elements are 0 and 1, respectively. Any element a ⊆ B has a complement, denoted by a′, such

that a+ a′ = 1 and a · a′ = 0. These axioms, which define a Boolean algebra, are often referred to as Huntington’s

postulates [1].

We often use formulae to describe functions, but we have to keep in mind that the two are distinct. Many Boolean

formulae can describe a Boolean function. The formula f = a + b is equivalent to f = a + a′b, which can have

many equivalent formulae. These are formulae defining a function; then what is the function? From the last lecture, a

function is a particular mapping between domain and co-domain points. The formula represents the mapping of the

function.

Definition I.1: Given a Boolean algebra B, Boolean formula on n variables x1 . . . xn is defined recursively as:

• Elements of B are Boolean formulae.

• x1 . . . xn are Boolean formulae.

• If g and h are Boolean formulae then g · h, g + h, g or g′ are also Boolean formulae, and

• Any string that can be derived by applying the above rules is also a Boolean formula.

There are many examples of Boolean algebraic systems, for example set theory, propositional calculus, arithmetic

Boolean algebra [2], etc. In this chapter we consider only binary Boolean algebra, where B =B = {0, 1} and the

operations + and · are disjunction and conjunction, respectively. The multi-dimensional space spanned by n binary-

valued Boolean variables is often referred to as n-dimensional cube. Shown below is an example of a 3-dimensional

Boolean function modeled on the 3-D cube, along with its 3-var K-map. Take a look at this carefully (see slides).



2

Definition I.2: A completely specified Boolean function, F , of n variables is a mapping f : Bn → B, where

B = {0, 1}. We model Bn as a binary n-cube. Vertex v in the binary n-cube for which F (v) = 1, is a member of the

set called the ON-set of F . If F (v) = 0 then v is a member of the set called the OFF-set of F .

An n-input, m-output Boolean function is a mapping f : Bn → Bm. It can be considered as an array of m scalar

functions over the same domain.

An incompletely specified Boolean function is defined over a subset of Bn. The points where the function is not

defined are called don’t care conditions. They are related to input patterns that can never occur and to those for which

the output is not observed. Incompletely specified functions are represented as f : Bn → {0, 1, ∗}m , where the

symbol ∗ denotes the don’t care condition.

Definition I.3: A binary variable is a symbol representing a single coordinate of the Boolean space Bn.

Definition I.4: A literal is a Boolean variable or its complement.

Definition I.5: A cube is defined as a product of literals. It denotes a point, or a set of points, in the Boolean space.

Let f(x1, . . . , xn) be a Boolean function of n variables. The set {x1, x2, . . . , xn} is called the support of the

function f .

A function can be represented as a sum of products of n literals, called the minterms of the function; alternatively

product of sums and maxterms of the function. Operations on Boolean functions over the same domain can be

viewed as operations on the set of their minterms. In particular, sum and product of two functions are the union

(∪) and intersection (∩) of their minterm sets, respectively. Implication between two functions corresponds to the

containment (⊆) of their minterm sets. The cardinality of a set is the number of elements it contains. In switching

theory terminology, the cardinality of a Boolean function corresponds to the number of minterms contained in the

function.

II. OPERATIONS ON BOOLEAN FUNCTIONS

Definition II.1: The cofactor of f(x1, . . . , xi, . . . , xn) with respect to variable xi (the positive cofactor) is fxi
=

f(x1, . . . , 1, . . . , xn). The cofactor of f(x1, . . . , xi, . . . , xn) with respect to variable xi (the negative cofactor) is

fxi = f(x1, . . . , 0, . . . , xn).

The Boole’s expansion (also called the Shannon’s expansion) of a function over a variable is given as follows [2]

[3]: Let f : Bn → B. Then,

f(x1, x2, . . . , xi, . . . , xn) = xi · fxi
+ xi · fxi (1)

Significance of Boole’s expansion : This is the most fundamental operation on Boolean functions - and its signifi-

cance comes from the fact that any Boolean function can be decomposed into its co-factors, and re-composed to form

the original function. Why would anyone want to do this decomposition? When a Boolean function becomes too

large to manipulate, you can decompose it using the above expansion, perform the manipulations on the co-factors,

and then recompose the original function. The co-factors of a function are smaller in cardinality than the function

itself and that is how we can break a big function down into smaller pieces and operate on those smaller pieces easily.

Another point: The expansion can be performed recursively over the variables – so if you are writing a computer

program and using Shannon’s decomposition, a recursive subroutine is the best option. On top of that, by decom-

posing w.r.t. a variable, the complexity of the problems reduces exponentially! (Remember exponential behaviour of

Boolean functions?) See the example below:



3

Definition II.2: A function f(x1, . . . , xi, . . . , xn) is positive (negative) unate in variable xi if fxi
⊇ fxi (fxi

⊇
fxi

). Otherwise it is binate in that variable.

For a function f positive unate in xi, the set of minterms of fxi
includes the set of minterms of fxi ; the opposite

follows for negative unate functions. A function is unate if it is (positive/negative) unate in all variables in its support.

Otherwise it is binate. Unateness is similar to monotony, and unate functions are also called monotonic functions. An

example of monotonic function f = a+ b+ c′ shown below:

Characteristics of unate functions:

• If f is +ve unate in x then the Boole/Shannon expansion leads to f = x · fx + fx′ .

• Note that fx (also fx′) has one less variable - it does not contain x in its support.

• If f is -ve unate in x, then f = fx + x′ · fx′ . Can you prove the above?

• Note fx = fx. Can you prove this too?

• We will use the above properties when we will discuss the satisfiability problem. Remind me about it if I forget...

Unate functions have some very interesting properties which can be exploited to solve many complicated problems

easily. For example, suppose you are searching for an assignment to the input variables of f that would excite f to 1.

In other words, we are searching for ANY ON-SET minterm of f . Suppose, further, that f is +ve unate in x. If f is

too large to handle, you can use the Shannon’s expansion, and search for the cubes in the cofactors fx and f ′

x. But is

it necessary to search in fx′? Remember that because of unateness of f w.r.t. x, fx ⊃ fx′; thus all the cubes in fx′ are

already in fx. Furthermore, because f is +ve unate in x, we can ALWAYS find an ON-SET minterm that contains x
in TRUE form. This means we can ALWAYS find an ON-SET minterm of f in x · fx. Thus, a search for any ON-SET

minterm of f can just ignore the contained co-factor! Mutatis mutandis for f -ve unate in x. This is a very important

property that can simplify testing/satisfiability. See the example below:



4

Unfortunately, most Boolean functions that we encounter in life: full adders, multipliers, etc. are not unate. They

are highly binate, which means that these properties cannot be exploited to efficiently solve most of these problems.

Bad news? Not really! While most functions are binate, the recursive Shannon’s expansion on binate functions

quickly leads us to unate cofactors. So if we cannot exploit unate characteristics directly on a binate function, we can

always expand it using Shannon’s decomposition untill we find unate cofactors and then solve the problem efficiently.

See the example below:

Let f and g be two functions with support variables {xi, i = 1, 2, . . . , n}. Let ⊙ be an arbitrary binary operator,

representing a Boolean function of two arguments. The orthonormal expansion of f ⊙ g with respect to xi is given as

[4] [3]:

f ⊙ g = xi(fxi
⊙ gxi

) + xi(fxi
⊙ gxi

),∀i = 1, 2, . . . , n (2)

Definition II.3: The Boolean difference or Boolean derivative of f with respect to x is δf/δx or fx ⊕ f ′

x.

Boolean difference of f w.r.t. x means whether or not f is sensitive to changes in x. When the Boolean difference

is zero, it means f does not depend on x. In other words, any change in x does not change f . This is yet another

important property that we will utilize time and again when studying Testing.

Definition II.4: The consensus or universal abstraction of f with respect to x is fx · f ′

x
. This represents the

component of the function independent of x.

Definition II.5: The smoothing or existential abstraction of f with respect to x is fx + f ′

x
. This drops the depen-

dency of the function f on the variable x.

In order to understand what the above two really mean, follow the example below:



5

REFERENCES

[1] F. Hill and G. Peterson, Introduction to Switching Theory and Digital Design, John Wiley and Sons, 1981, 1981.

[2] F. Brown, Boolean Reasoning, Kluwer Academic Publishers, 1990.

[3] G.D. Hachtel and F. Somenzi, Logic Synthesis and Verification Algorithms, Kluwer Academic Publishers, 1996.

[4] G. DeMicheli, Synthesis and Optimization of Digital Circuits, McGraw-Hill, 94.


