
Two-Level Logic Optimization

Heuristic Minimization using the Unate Recursive Paradigm

Priyank Kalla

Associate Professor
Electrical and Computer Engineering, University of Utah

kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

http://www.ece.utah.edu/~kalla

Two-Level Heuristic Minimization: Basic Ideas

Generation of all primes can be infeasible

Exact minimization might require a lot of work, large table covering
problems, particularly for multi-output functions

Heuristic minimization: Solve large problems quickly, maybe
sub-optimally, but the solutions are quite close to optimal

Espresso: a two-level logic minimizer

Espresso: The quintessential case-study of CAD heuristics

Think Primality & Irredundancy

Not every prime and irredundant cover is minimum, but the converse is
true.
Search for prime and irredundant covers, with lower cost
Search should be fast, should hill climb, and be intelligent

P. Kalla (Univ. of Utah) Two-Level Logic Optimization 2 / 10

The Basic Espresso Loop

Input: F = ON-SET cover, D = DC-SET cover
F = Expand(F ,D);
F = Irredundant(F ,D);
repeat

cost = |F |;
F = Reduce(F ,D);
F = Expand(F ,D);
F = Irredundant(F ,D);

until |F | < cost;
F = Make Sparse(F);

P. Kalla (Univ. of Utah) Two-Level Logic Optimization 3 / 10

The Actual Espresso Algorithm

Input: F = ON-SET cover, D = DC-SET cover
F = Expand(F ,D);
F = Irredundant(F ,D);
E = Essentials(F ,D);
F = F − E ;
repeat

cost1 = |F |;
repeat

cost2 = |F |;
F = Reduce(F ,D);
F = Expand(F ,D);
F = Irredundant(F ,D);

until |F | < cost2;
F = last gasp(F ,D);

until |F | < cost1;
F = Make Sparse(F);

P. Kalla (Univ. of Utah) Two-Level Logic Optimization 4 / 10

Implementation Issues

The Expand operator

Increase the size of each implicant, such that the smaller ones can be
covered and droppped

Maximally expanded implicants = primes

IOW, Expand makes a cover prime and minimal w.r.t. SCC

Approach:

Take a cube (e.g. abc), drop a literal (e.g. ab)

Check if the expansion is valid. If valid, continue expansion.

If invalid, Expand in another direction (e.g. abc → ac)

P. Kalla (Univ. of Utah) Two-Level Logic Optimization 5 / 10

How to Check if Expanded Cube is Valid?

Two ways:

Is the Expanded cube α ⊆ (F ∪ D)? This is “containment check”!

Containment: α ∈ f ⇐⇒ fα is Tautology
Another approach: containment: α ∈ f ⇐⇒ (α + f) is Tautology

Does the Expanded cube intersect with the OFF-set?

Requires OFF-set computation: f ′ = x · (fx)′ + x ′ · (fx′)′

Once again: use recursive paradigm for complement computation

P. Kalla (Univ. of Utah) Two-Level Logic Optimization 6 / 10

Containment as Tautology Check: Implementation

Tautology Check using Shannon’s Expansion: f = xfx + x ′f
x
′

A cover f is tautology iff both cofactors are tautology

Use the Unate Recursive Paradigm

Choice of splitting variable: pick the highest binate variable for
expansion
Terminal cases of recursion?

When the cover of f is a single cube, f 6= 1
When the cover of f is unate in (at least) one variable
Exploit unateness: A +ve unate f is Tautology iff f

x
′ = 1

Exploit unateness: A -ve unate f is Tautology iff fx = 1
Exploit unateness: A unate f is Tautology iff the contained cofactor
is Tautology

Example: f = ab + ac + ab′c ′ + a′, is f == 1?
Example: f = ab + ac + a′, apply Expand(f) operator.

P. Kalla (Univ. of Utah) Two-Level Logic Optimization 7 / 10

Detect Essential Primes

Theorem

Let F = G ∪ α, where α is a prime disjoint from G. Then α is an essential

prime iff CONSENSUS(G , α) does not cover α.

G = Remove from F the minterms covered by α

α is NOT essential if it can be covered by other primes

Some cubes in G should be expandable to cover α

Analyze those cubes in G that are distance 1 from α

Example: f = a′b′ + b′c + ac + ab, is α = a′b′ essential?

P. Kalla (Univ. of Utah) Two-Level Logic Optimization 8 / 10

What is the Reduce Operator?

Decrease the size of each implicant, so that successive expansion may
lead to another cover of smaller cardinality

Reduced implicant’s validity — function should still be covered

Cardinality of F should not increase

A redundant implicant be reduced to void!

To reduce α, remove from F those minterms that are covered by
F − {α}

Can be done by α ∩ (F − {α})?

However, ensure that the result yields a single implicant, otherwise
the cardinality of F may increase!

Need to analyze the “supercube” of (F − {α})
Supercube of (α, β) = smallest single cube containing both.

P. Kalla (Univ. of Utah) Two-Level Logic Optimization 9 / 10

More on the Reduce Operation....

Example: f = c ′ + a′b′. Draw the cover on a 3-D cube.

Reduce α = c ′, so F − α = β = a′b′

F − α = a + b

Intersect: α ∩ (a + b) = ac ′ + bc ′. Supercube of ac ′, bc ′ = 1. So
c ′ ∩ 1 = c ′ implies no valid reduction!

Now reduce α = a′b′. So, F − α = β = c ′

Compute F − α = c , and supercube of c = c itself!

α ∩ c = a′b′c , so the cube a′b′ reduces to a′b′c without reducing the
cardinality of F . Reduced F = {c ′, a′b′c}

Now this cover can be expanded in other directions for hill-climbing

P. Kalla (Univ. of Utah) Two-Level Logic Optimization 10 / 10

