Two-Level Logic Optimization

Heuristic Minimization using the Unate Recursive Paradigm

Priyank Kalla

s W)

UNIVERSITY
OF[JTAH

Associate Professor
Electrical and Computer Engineering, University of Utah
kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

http://www.ece.utah.edu/~kalla

Two-Level Heuristic Minimization: Basic ldeas

@ Generation of all primes can be infeasible

@ Exact minimization might require a lot of work, large table covering
problems, particularly for multi-output functions

@ Heuristic minimization: Solve large problems quickly, maybe
sub-optimally, but the solutions are quite close to optimal

@ Espresso: a two-level logic minimizer

@ Espresso: The quintessential case-study of CAD heuristics
@ Think Primality & Irredundancy
@ Not every prime and irredundant cover is minimum, but the converse is
true.
@ Search for prime and irredundant covers, with lower cost
@ Search should be fast, should hill climb, and be intelligent

P. Kalla (Univ. of Utah) Two-Level Logic Optimization

The Basic Espresso Loop

Input: F = ON-SET cover, D = DC-SET cover
F = Expand(F, D);
F = Irredundant(F, D);
repeat
cost = |F];
F = Reduce(F, D);
F = Expand(F, D);
F = Irredundant(F, D);
until |F| < cost;
F = Make_Sparse(F);

P. Kalla (Univ. of Utah) Two-Level Logic Optimization

The Actual Espresso Algorithm

Input: F = ON-SET cover, D = DC-SET cover
F = Expand(F, D);
F = Irredundant(F, D);
E = Essentials(F, D);
F=F—-E;
repeat
cost; = |F|;
repeat
costy = |F|;
F = Reduce(F, D);
F = Expand(F, D);
F = lrredundant(F, D);
until |F| < costy;
F = last_gasp(F, D);
until |F| < costy;
F = Make_Sparse(F);

P. Kalla (Univ. of Utah) Two-Level Logic Optimization

Implementation Issues

The EXPAND operator
@ Increase the size of each implicant, such that the smaller ones can be
covered and droppped

@ Maximally expanded implicants = primes

o |OW, EXPAND makes a cover prime and minimal w.r.t. SCC
Approach:

@ Take a cube (e.g. abc), drop a literal (e.g. ab)

@ Check if the expansion is valid. If valid, continue expansion.

@ If invalid, EXPAND in another direction (e.g. abc — ac)

P. Kalla (Univ. of Utah) Two-Level Logic Optimization

How to Check if Expanded Cube is Valid?

Two ways:
@ |s the Expanded cube o« C (F U D)? This is “containment check”!
o Containment: o € f <= f, is TAUTOLOGY
@ Another approach: containment: o € f <= (@ + f) is TAUTOLOGY
@ Does the Expanded cube intersect with the OFF-set?
o Requires OFF-set computation: ' = x - (f) + x" - (f)’
@ Once again: use recursive paradigm for complement computation

P. Kalla (Univ. of Utah) Two-Level Logic Optimization

Containment as Tautology Check: Implementation

Tautology Check using Shannon’s Expansion: f = xf, + x'fs
@ A cover f is TAUTOLOGY iff both cofactors are TAUTOLOGY
@ Use the Unate Recursive Paradigm

@ Choice of splitting variable: pick the highest binate variable for
expansion
o Terminal cases of recursion?

®

When the cover of f is a single cube, f # 1

When the cover of f is unate in (at least) one variable

Exploit unateness: A +ve unate f is TAUTOLOGY ifffy =1

Exploit unateness: A -ve unate f is TAUTOLOGY iff f, =1

Exploit unateness: A unate f is TAUTOLOGY iff the contained cofactor
is TAUTOLOGY

Example: f =ab+ac+ab'c’ + 4, is f == 17
Example: f = ab+ ac + &, apply Expand(f) operator.

¢ ¢ ¢ ¢

P. Kalla (Univ. of Utah) Two-Level Logic Optimization

Detect Essential Primes

Let F = G U, where a is a prime disjoint from G. Then « is an essential
prime iff CONSENSUS(G, «) does not cover c.

G = Remove from F the minterms covered by «

o is NOT essential if it can be covered by other primes
Some cubes in G should be expandable to cover «
Analyze those cubes in G that are distance 1 from «

Example: f = a'b’ + b'c + ac + ab, is a = a'b’ essential?

P. Kalla (Univ. of Utah) Two-Level Logic Optimization

What is the Reduce Operator?

@ Decrease the size of each implicant, so that successive expansion may
lead to another cover of smaller cardinality

Reduced implicant’s validity — function should still be covered
Cardinality of F should not increase

A redundant implicant be reduced to void!

To reduce «, remove from F those minterms that are covered by
F—{a}

@ Can be done by a N (F — {a})?

@ However, ensure that the result yields a single implicant, otherwise
the cardinality of F may increase!

o Need to analyze the “supercube” of (F — {a})
@ Supercube of (a,) = smallest single cube containing both.

P. Kalla (Univ. of Utah) Two-Level Logic Optimization

Mo

Exa
°
°
°

re on the Reduce Operation....

mple: f = ¢’ + a'b’. Draw the cover on a 3-D cube.

Reducea =c’,so F—a=p3=2ab

F—a=a+b

Intersect: aeN (a+ b) = ac’ + bc’. Supercube of ac’, b’ = 1. So
¢’ N1 = ¢ implies no valid reduction!

Now reduce o = a’'b’. So, F—a=8=¢

Compute F — o = ¢, and supercube of ¢ = ¢ itself!

anNc=abc, sothe cube a'b’ reduces to a’b’c without reducing the
cardinality of F. Reduced F = {c’,a'b'c}

Now this cover can be expanded in other directions for hill-climbing

P. Kalla (Univ. of Utah) Two-Level Logic Optimization

