
Partial Logic Synthesis
Synthesis of ECO & Rectification Functions

Priyank Kalla

Professor
Electrical and Computer Engineering, University of Utah

kalla@ece.utah.edu
http://www.ece.utah.edu/~kalla

http://www.ece.utah.edu/~kalla


Problem Description

Given: Spec function f or a gate-level circuit C1

Given: Implementation Impl function g or a gate-level circuit C2

Suppose Spec 6= Impl , i.e. Equivalence checking between C1,C2

generates a counter-example

We have to rectify C2 to match the Spec, but do not resynthesize the
whole circuit C2

Perform single-fix or multi-fix rectification
Identify a set of nets {xi} in C2 where rectification can be applied
Compute a rectification function U , replace xi = U , such that C1 ≡ C2

P. Kalla (Univ. of Utah) Partial Logic Synthesis 2 / 25



The Scenario

Compute rectification patches for buggy implementations C2

Compute rectification patches for Engineering Change Orders (ECO)

Suppose, given C1 Spec and correct Impl C2

Make slight modifications on C1: small change in functionality
New C1 6= C2 (bug!)
Minimally modify C2 to match the Spec

Topologically constrained logic synthesis, synthesize subcircuits
partially

P. Kalla (Univ. of Utah) Partial Logic Synthesis 3 / 25



The Scenario: Miter Model

Impl C2

implies C1 = C2
Z = 1 UNSAT

Z

x_i = U(PI) x_i

g

f

Spec C1

P. Kalla (Univ. of Utah) Partial Logic Synthesis 4 / 25



Single-Fix Rectification

Irrespective of the type of bugs, or the number of error inputs
(counter-examples) ...

Does there exist a net xi and a Boolean function U(XPI ), s.t.
xi = U(XPI ) makes C1 ≡ C2?

Mathematically, a Quantified Boolean Formula:

∃U , ∀XPI C1 ≡ C2 is SAT

Single-fix rectification may or may not exist

Multi-fix: Find x1 = U1, x2 = U2, . . . , xt = Ut , s.t. C1 ≡ C2

P. Kalla (Univ. of Utah) Partial Logic Synthesis 5 / 25



Single-Fix Rectification

The Problem is three-fold:

Once C1 does not match C2

Identify a net xi where single-fix rectification is admissible. So how to
pick the net xi? (Discuss later...)

How to ascertain that there exists a single-fix rectification function
xi = U(XPI )? (Decision procedure)

If single-fix exists at xi , find the Boolean function U. (Quantification
procedure).

P. Kalla (Univ. of Utah) Partial Logic Synthesis 6 / 25



Existence of Single-fix at net xi

Theorem (Existence of Single-fix rectification at net xi (Thm. 1))

Given the Spec circuit C1 with function f and Impl circuit C2 with
function g, where X is the set of primary inputs, f 6= g, and a net xi ∈ C2,
the circuit C2 can be single-fix rectified at xi with function xi = U(XPI ), if
and only if

[f (X )⊕ g(X , xi = 0)] ∧ [f (X )⊕ g(X , xi = 1)] = ⊥ (UNSAT)

M(X , xi = 0) ∧ M(X , xi = 1) = ⊥

P. Kalla (Univ. of Utah) Partial Logic Synthesis 7 / 25



Existence of Single-fix at net xi

Theorem (Existence of Single-fix rectification at net xi (Thm. 1))

Given the Spec circuit C1 with function f and Impl circuit C2 with
function g, where X is the set of primary inputs, f 6= g, and a net xi ∈ C2,
the circuit C2 can be single-fix rectified at xi with function xi = U(XPI ), if
and only if

[f (X )⊕ g(X , xi = 0)] ∧ [f (X )⊕ g(X , xi = 1)] = ⊥ (UNSAT)

M(X , xi = 0) ∧ M(X , xi = 1) = ⊥

What are [f (X )⊕ g(X , xi = 0)] and [f (X )⊕ g(X , xi = 1)]?

P. Kalla (Univ. of Utah) Partial Logic Synthesis 7 / 25



Existence of Single-fix at net xi

Theorem (Existence of Single-fix rectification at net xi (Thm. 1))

Given the Spec circuit C1 with function f and Impl circuit C2 with
function g, where X is the set of primary inputs, f 6= g, and a net xi ∈ C2,
the circuit C2 can be single-fix rectified at xi with function xi = U(XPI ), if
and only if

[f (X )⊕ g(X , xi = 0)] ∧ [f (X )⊕ g(X , xi = 1)] = ⊥ (UNSAT)

M(X , xi = 0) ∧ M(X , xi = 1) = ⊥

What are [f (X )⊕ g(X , xi = 0)] and [f (X )⊕ g(X , xi = 1)]?

The set of all test vectors for xi stuck-at-0, and xi stuck-at-1, resp.
In other words, [f (X )⊕ g(X , xi = 0)] = primary input assignments to X
(minterms) that differentiate f (X ) from g(X , xi = 0).

P. Kalla (Univ. of Utah) Partial Logic Synthesis 7 / 25



Single-Fix Rectification Test

M(X , xi = 0) ∧ M(X , xi = 1) = ⊥ means that product of positive

and negative co-factors of the miter w.r.t. xi is empty.

If M(X , xi = 0) ∧ M(X , xi = 1) 6= 0, then: there exists a minterm X
s.t. the difference between Spec and Impl is observed for both values
of target net xi

Equivalently, if M(X , xi = 0) ∧ M(X , xi = 1) 6= 0, no matter what
value xi takes for this minterm X , functional difference between Spec
and Impl remains.

In other words, rectification is only feasible when
M(X , xi = 0) ∧ M(X , xi = 1) = 0.

P. Kalla (Univ. of Utah) Partial Logic Synthesis 8 / 25



Example

Let f = ab + ac + bc and g = ab + ac + b

Clearly, f 6= g , can g be rectified at net xi shown below?

Miter M

f = ab + ac + bc

a
b

a

c

b

x_i

f

g

P. Kalla (Univ. of Utah) Partial Logic Synthesis 9 / 25



Rectification Check Passes: Example

In the example on the previous slide:

Let f = ab + ac + bc and g = ab + ac + b

M(X , xi = 0) = (ab + ac + bc)⊕ (ab + ac + 0) = a′bc

M(X , xi = 1) = (ab + ac + bc)⊕ (ab + ac + 1) = a′b′ + a′c ′ + b′c ′

M(X , xi = 0) ∧M(X , xi = 1) = 0, so rectification is feasible

P. Kalla (Univ. of Utah) Partial Logic Synthesis 10 / 25



Rectification Check Fails: Example

Let f = ab + ac + bc (spec) and g = a + b (buggy implementation)

Check for single-fix rectifiability at xi = b (input of OR gate) in g

M(X , xi = 0) = (ab + ac + bc)⊕ (a + 0) = a′bc + ab′c ′

M(X , xi = 1) = (ab + ac + bc)⊕ (a + 1) = a′b′ + a′c ′ + b′c ′

M(X , xi = 0) ∧M(X , xi = 1) = ab′c ′ 6= 0, so rectification at the b
input of the OR gate in g is not possible.

P. Kalla (Univ. of Utah) Partial Logic Synthesis 11 / 25



Compute Single-Fix Rectification Function U(XPI )

Theorem (Compute Rectification function xi = U(XPI ))

When the above condition (Theorem 1) is satisfied, then the single-fix
rectification function can be computed as:

[f (X )⊕ g(X , xi = 0)] ⊆ U(X ) ⊆ [f (X )⊕ g(X , xi = 1)]

M(X , xi = 0) ⊆ U(X ) ⊆ M(X , xi = 1)

P. Kalla (Univ. of Utah) Partial Logic Synthesis 12 / 25



Compute Single-Fix Rectification Function U(XPI )

Theorem (Compute Rectification function xi = U(XPI ))

When the above condition (Theorem 1) is satisfied, then the single-fix
rectification function can be computed as:

[f (X )⊕ g(X , xi = 0)] ⊆ U(X ) ⊆ [f (X )⊕ g(X , xi = 1)]

M(X , xi = 0) ⊆ U(X ) ⊆ M(X , xi = 1)

[f (X )⊕ g(X , xi = 0)] = M(X , xi = 0) = ON-set of the rectification
function. Call this M0.

[f (X )⊕ g(X , xi = 1)] = M(X , xi = 1) = OFF-set of the rectification
function. Call this M1.

[f (X )⊕ g(X , xi = 1)] = ON-set ∪ DC-set.

DC-set = M0 +M1.

P. Kalla (Univ. of Utah) Partial Logic Synthesis 12 / 25



Characterizing the Rectification Function U(XPI )

M(X, x =0)

M0 =

 
i

On−set of
rectification
function

Off−set of
rectification

function

M(X, x =1)

M1

i

Universe

don’t−care points of the
rectification function

[f (X )⊕ g(X , xi = 0)] = M(X , xi = 0) = ON-set of the rectification
function. Call this M0.

[f (X )⊕ g(X , xi = 1)] = M(X , xi = 1) = OFF-set of the rectification
function. Call this M1.

DC-set = M0 +M1.

P. Kalla (Univ. of Utah) Partial Logic Synthesis 13 / 25



Compute Single-Fix Rectification Function U(XPI )

Theorem (Compute Rectification function xi = U(XPI ))

When the above condition (Theorem 1) is satisfied, then the single-fix
rectification function can be computed as:

[f (X )⊕ g(X , xi = 0)] ⊆ U(X ) ⊆ [f (X )⊕ g(X , xi = 1)]

P. Kalla (Univ. of Utah) Partial Logic Synthesis 14 / 25



Compute Single-Fix Rectification Function U(XPI )

Theorem (Compute Rectification function xi = U(XPI ))

When the above condition (Theorem 1) is satisfied, then the single-fix
rectification function can be computed as:

[f (X )⊕ g(X , xi = 0)] ⊆ U(X ) ⊆ [f (X )⊕ g(X , xi = 1)]

Does this remind you of Craig Interpolants?

P. Kalla (Univ. of Utah) Partial Logic Synthesis 14 / 25



Compute Single-Fix Rectification Function U(XPI )

Theorem (Compute Rectification function xi = U(XPI ))

When the above condition (Theorem 1) is satisfied, then the single-fix
rectification function can be computed as:

[f (X )⊕ g(X , xi = 0)] ⊆ U(X ) ⊆ [f (X )⊕ g(X , xi = 1)]

Does this remind you of Craig Interpolants?

M(X , xi = 0) ∧ M(X , xi = 1) = ⊥

There exists C.I. I (X ) s.t.:

M(X , xi = 0) =⇒ I (X );

I (X ) ∧M(X , xi = 1) = ⊥;

I (X ), where X = common variables of M(X , xi = 0) and
M(X , xi = 1).

Rectification function U(X ) = I (X )!!

P. Kalla (Univ. of Utah) Partial Logic Synthesis 14 / 25



The Concept of Craig Interpolants

Craig Interlants: A concept of “abstraction”, for UNSAT problems

Definition

Let f (XA,XB ,XC ) be a Boolean function in variables X = {x1, . . . , xn}
such that X is partitioned into disjoint subsets XA,XB ,XC . Let
f = fA(XA,XC ) ∧ fB(XB ,XC ) = ∅. Then there exists another Boolean
function fI such that:

fA =⇒ fI ; or fA ⊆ fI

fI ∧ fB = ∅

fI (XC ) only contains XC variables, i.e. the common variables of
fA, fB : Vars(fI ) ⊆ Vars(fA) ∩ Vars(fB)

P. Kalla (Univ. of Utah) Partial Logic Synthesis 15 / 25



Craig Interpolants

Another f_I

f_Bf_I
f_A

Bn

The ABC tool with MiniSAT solver can return an fI , provided
fA, fB ,XA,XB ,XC is given.

Interpolant computed through a resolution proof

P. Kalla (Univ. of Utah) Partial Logic Synthesis 16 / 25



Craig Interpolants: Examples

There may be more than one interpolants:

f = fA · fB

fA = (a1 + a′2)(a
′

1 + a′3)(a2) = a1a2a
′

3

fB = (a′2 + a3)(a2 + a4)(a′4) = a2a3a
′

4

XA = {a1},XB = {a4},XC = {a2, a3}

One interpolant fI1 = a′3a2

Another interpolant fI2 = a′3
The set of all interpolants forms a lattice, the smallest interpolant at
the bottom, and the largest at the top

Smallest interpolant: f smallest
I = ∃XA

fA(XA,XC )

Largest interpolant: f largestI = ∃XB
fB(XB ,XC )

P. Kalla (Univ. of Utah) Partial Logic Synthesis 17 / 25



To compute Interpolants

Use Boolean logic manipulation, or use a SAT solver

Using Boolean manipulation, we can compute two interpolants

Smallest interpolant: f smallest
I = ∃XA

fA(XA,XC ), where
∃x f (x , y , z , . . . ) is a Boolean function defined as

∃x f (x , y , z , . . . ) = fx + fx , fx = f (x = 1) and fx = f (x = 0).
fx = the positive cofactor of f w.r.t. x , fx is negative cofactor.
∃x f (x , y , z , . . . ) is called existential abstraction of f w.r.t. x , also
called smoothing.
∃x f (x , y , z , . . . ) is the smallest function larger than f , i.e. it contains f
and does not have x in its support.

Largest interpolant = ∃XB
fB(XB ,XC )

P. Kalla (Univ. of Utah) Partial Logic Synthesis 18 / 25



Craig Interpolant: Examples

From the previous slides:

fA = a1a2a
′

3 and fB = a2a3a
′

4

XA = {a1},XB = {a4},XC = {a2, a3}

Smallest interpolant: f smallest
I = ∃XA

fA(XA,XC ) = a2a
′

3

Largest interpolant: f largestI = ∃XB
fB(XB ,XC )

Largest interpolant = ∃XB
a2a3a′4 = a2a3 = a′2 + a′3

Let fI be any interpolant, then f smallest
I ⊆ fI ⊆ f largestI

P. Kalla (Univ. of Utah) Partial Logic Synthesis 19 / 25



To compute Rectification Function

M(X , xi = 0) ∧ M(X , xi = 1) = ⊥

There exists C.I. I (X ) s.t.:

M(X , xi = 0) =⇒ I (X );

I (X ) ∧M(X , xi = 1) = ⊥;

I (X ), where X = common variables of M(X , xi = 0) and
M(X , xi = 1).

Rectification function xi = U(X ) = I (X )!

X = primary inputs of the circuit, as all PIs common variables of the
miter.

I (X ) = M(X , xi = 0) is the smallest interpolant, and serves as the
rectification function.

P. Kalla (Univ. of Utah) Partial Logic Synthesis 20 / 25



Example: Compute U(XPI )

Let f = ab + ac + bc and g = ab + ac + b

U(X ) = I (X ) = M(X , xi = 0) = a′bc , the smallest interpolant works
as a rectification function g = ab + ac + a′bc

Largest interpolant: M(X , xi = 1) = ab + ac + bc also works:
g = ab + ac + ab + ac + bc

Any interpolant works as a rectification function:
M(X , xi = 0) ⊆ I (X ) ⊆ M(X , xi = 1)

I (X ) = bc also rectifies g

For Logic Synthesis of U(XPI ), synthesize: M0 as the care-set of U, M1 as
the offset of U, and M1 −M0 as the don’t care set of U.

P. Kalla (Univ. of Utah) Partial Logic Synthesis 21 / 25



Why U(XPI ) = I (X ) rectifies the circuit?

M0 = M(X , xi = 0) gives the error cubes for the implementation
when xi = 0

Since I (X ) ⊇ M0, and I (X ) evaluates to 1 for all minterms of M0, it
fixes all the mismatches that occured when xi = 0

M1 = M(X , xi = 1) gives the error cubes for the implementation
when xi = 1

I (X ) ∧M1 = 0, i.e. I (X ) evaluates to 0 for all minterms of M1, so it
fixes all the mismatches that occured when xi = 1

Thus I (X ) computes the rectification patch

Important References [1] [2] [3] [4]

P. Kalla (Univ. of Utah) Partial Logic Synthesis 22 / 25



Identify Single-Fix Rectification Target Net xi

Perform Combinational Equivalence Checking (CEC) between C1,C2

Use the following command in ABC: ABC> cec C1.blif C2.blif

Since C1 6= C2, ABC identifies the outputs of the circuits which are
affected by the bug

Say, there exists an input (counter-example to CEC) X1 s.t.
fi(X1) 6= fj(X1)

Identify the transitive fanin-cones of fi , fj

Identify the set of nets N (gate-outputs) that lie in the intersection of
fanin-cones of fi , fj

Then the nets xi ∈ N are candidates for single-fix rectification

P. Kalla (Univ. of Utah) Partial Logic Synthesis 23 / 25



Identify Single-Fix Target Net xi

Example Circuit:

The circuit is buggy, bug = gate change at net e3, which should have been
an AND gate. Both outputs z0, z1 affected by the bug.

P. Kalla (Univ. of Utah) Partial Logic Synthesis 24 / 25



Identify Single-Fix Target Net xi

In the previous figure, e3 should have been an AND gate in the
correct circuit C1

Bug introduced, e3 = XOR gate

The bug affects both outputs z0, z1

Fanin cone z0 = {s0, e0, s1, e2, e3, s3, s4,XPI}

Fanin cone z1 = {r0, s5, e1, s2, e2, e3, s3, s4, e0, s1,XPI}

Intersection of fanin cones: N = {s3, e3, e2, s4, e0, s1, s2,XPI} are
targets for rectification xi

Select a net xi ∈ N to see if Theorem 1 ascertains rectifiability at xi

P. Kalla (Univ. of Utah) Partial Logic Synthesis 25 / 25



C. C. Lin, K. C. Chen, S. C. Chang, and M. Marek-Sadowska, “Logic
Synthesis for Engineering Change,” in Proc. Design Automation Conf.
(DAC), 1995, pp. 647–652.

K.-F. Tang, C.-A. Wu, P.-K. Huang, and C.-Y. R. Huang,
“Interpolation based incremental ECO Synthesis for Multi-Error Logic
Rectification,” in Proc. Design Automation Conf., 2011, pp. 146–151.

A. Dao, N.-Z. Lee, L.-C. Chen, M. Lin, J.-H. Jiang, A. Mishchenko,
and R. Brayton, “Efficient Computations of ECO Patch Functions,” in
Proc. Design Auto. Conf., 2018.

M. Fujita, “Toward Unification of Synthesis and Verification in
Topologically Constrained Logic Design,” Proceedings of the IEEE,
2015.

P. Kalla (Univ. of Utah) Partial Logic Synthesis 25 / 25


