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Problem Description

Given: Spec function f or a gate-level circuit C1

Given: Implementation Impl function g or a gate-level circuit C2

Suppose Spec 6= Impl , i.e. Equivalence checking between C1,C2

generates a counter-example

We have to rectify C2 to match the Spec, but do not resynthesize the
whole circuit C2

Perform single-fix or multi-fix rectification
Identify a set of nets {xi} in C2 where rectification can be applied
Compute a rectification function U , replace xi = U , such that C1 ≡ C2
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The Scenario

Compute rectification patches for buggy implementations C2

Compute rectification patches for Engineering Change Orders (ECO)

Suppose, given C1 Spec and correct Impl C2

Make slight modifications on C1: small change in functionality
New C1 6= C2 (bug!)
Minimally modify C2 to match the Spec

Topologically constrained logic synthesis, synthesize subcircuits
partially
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The Scenario: Miter Model

Impl C2

implies C1 = C2
Z = 1 UNSAT

Z

x_i = U(PI) x_i

g

f

Spec C1
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Single-Fix Rectification

Irrespective of the type of bugs, or the number of error inputs
(counter-examples) ...

Does there exist a net xi and a Boolean function U(XPI ), s.t.
xi = U(XPI ) makes C1 ≡ C2?

Mathematically, a Quantified Boolean Formula:

∃U , ∀XPI C1 ≡ C2 is SAT

Single-fix rectification may or may not exist

Multi-fix: Find x1 = U1, x2 = U2, . . . , xt = Ut , s.t. C1 ≡ C2
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Single-Fix Rectification

The Problem is three-fold:

Once C1 does not match C2

Identify a net xi where single-fix rectification is admissible. So how to
pick the net xi? (Discuss later...)

How to ascertain that there exists a single-fix rectification function
xi = U(XPI )? (Decision procedure)

If single-fix exists at xi , find the Boolean function U. (Quantification
procedure).
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Existence of Single-fix at net xi

Theorem (Existence of Single-fix rectification at net xi (Thm. 1))

Given the Spec circuit C1 with function f and Impl circuit C2 with
function g, where X is the set of primary inputs, f 6= g, and a net xi ∈ C2,
the circuit C2 can be single-fix rectified at xi with function xi = U(XPI ), if
and only if

[f (X )⊕ g(X , xi = 0)] ∧ [f (X )⊕ g(X , xi = 1)] = ⊥ (UNSAT)

M(X , xi = 0) ∧ M(X , xi = 1) = ⊥
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What are [f (X )⊕ g(X , xi = 0)] and [f (X )⊕ g(X , xi = 1)]?
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Existence of Single-fix at net xi

Theorem (Existence of Single-fix rectification at net xi (Thm. 1))

Given the Spec circuit C1 with function f and Impl circuit C2 with
function g, where X is the set of primary inputs, f 6= g, and a net xi ∈ C2,
the circuit C2 can be single-fix rectified at xi with function xi = U(XPI ), if
and only if

[f (X )⊕ g(X , xi = 0)] ∧ [f (X )⊕ g(X , xi = 1)] = ⊥ (UNSAT)

M(X , xi = 0) ∧ M(X , xi = 1) = ⊥

What are [f (X )⊕ g(X , xi = 0)] and [f (X )⊕ g(X , xi = 1)]?

The set of all test vectors for xi stuck-at-0, and xi stuck-at-1, resp.
In other words, [f (X )⊕ g(X , xi = 0)] = primary input assignments to X
(minterms) that differentiate f (X ) from g(X , xi = 0).
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Single-Fix Rectification Test

M(X , xi = 0) ∧ M(X , xi = 1) = ⊥ means that product of positive

and negative co-factors of the miter w.r.t. xi is empty.

If M(X , xi = 0) ∧ M(X , xi = 1) 6= 0, then: there exists a minterm X
s.t. the difference between Spec and Impl is observed for both values
of target net xi

Equivalently, if M(X , xi = 0) ∧ M(X , xi = 1) 6= 0, no matter what
value xi takes for this minterm X , functional difference between Spec
and Impl remains.

In other words, rectification is only feasible when
M(X , xi = 0) ∧ M(X , xi = 1) = 0.
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Example

Let f = ab + ac + bc and g = ab + ac + b

Clearly, f 6= g , can g be rectified at net xi shown below?

Miter M

f = ab + ac + bc

a
b

a

c

b

x_i

f

g
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Rectification Check Passes: Example

In the example on the previous slide:

Let f = ab + ac + bc and g = ab + ac + b

M(X , xi = 0) = (ab + ac + bc)⊕ (ab + ac + 0) = a′bc

M(X , xi = 1) = (ab + ac + bc)⊕ (ab + ac + 1) = a′b′ + a′c ′ + b′c ′

M(X , xi = 0) ∧M(X , xi = 1) = 0, so rectification is feasible
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Rectification Check Fails: Example

Let f = ab + ac + bc (spec) and g = a + b (buggy implementation)

Check for single-fix rectifiability at xi = b (input of OR gate) in g

M(X , xi = 0) = (ab + ac + bc)⊕ (a + 0) = a′bc + ab′c ′

M(X , xi = 1) = (ab + ac + bc)⊕ (a + 1) = a′b′ + a′c ′ + b′c ′

M(X , xi = 0) ∧M(X , xi = 1) = ab′c ′ 6= 0, so rectification at the b
input of the OR gate in g is not possible.
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Compute Single-Fix Rectification Function U(XPI )

Theorem (Compute Rectification function xi = U(XPI ))

When the above condition (Theorem 1) is satisfied, then the single-fix
rectification function can be computed as:

[f (X )⊕ g(X , xi = 0)] ⊆ U(X ) ⊆ [f (X )⊕ g(X , xi = 1)]

M(X , xi = 0) ⊆ U(X ) ⊆ M(X , xi = 1)
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Compute Single-Fix Rectification Function U(XPI )

Theorem (Compute Rectification function xi = U(XPI ))

When the above condition (Theorem 1) is satisfied, then the single-fix
rectification function can be computed as:

[f (X )⊕ g(X , xi = 0)] ⊆ U(X ) ⊆ [f (X )⊕ g(X , xi = 1)]

M(X , xi = 0) ⊆ U(X ) ⊆ M(X , xi = 1)

[f (X )⊕ g(X , xi = 0)] = M(X , xi = 0) = ON-set of the rectification
function. Call this M0.

[f (X )⊕ g(X , xi = 1)] = M(X , xi = 1) = OFF-set of the rectification
function. Call this M1.

[f (X )⊕ g(X , xi = 1)] = ON-set ∪ DC-set.

DC-set = M0 +M1.
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Characterizing the Rectification Function U(XPI )

M(X, x =0)

M0 =

 
i

On−set of
rectification
function

Off−set of
rectification

function

M(X, x =1)

M1

i

Universe

don’t−care points of the
rectification function

[f (X )⊕ g(X , xi = 0)] = M(X , xi = 0) = ON-set of the rectification
function. Call this M0.

[f (X )⊕ g(X , xi = 1)] = M(X , xi = 1) = OFF-set of the rectification
function. Call this M1.

DC-set = M0 +M1.
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Theorem (Compute Rectification function xi = U(XPI ))

When the above condition (Theorem 1) is satisfied, then the single-fix
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Does this remind you of Craig Interpolants?
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Compute Single-Fix Rectification Function U(XPI )

Theorem (Compute Rectification function xi = U(XPI ))

When the above condition (Theorem 1) is satisfied, then the single-fix
rectification function can be computed as:

[f (X )⊕ g(X , xi = 0)] ⊆ U(X ) ⊆ [f (X )⊕ g(X , xi = 1)]

Does this remind you of Craig Interpolants?

M(X , xi = 0) ∧ M(X , xi = 1) = ⊥

There exists C.I. I (X ) s.t.:

M(X , xi = 0) =⇒ I (X );

I (X ) ∧M(X , xi = 1) = ⊥;

I (X ), where X = common variables of M(X , xi = 0) and
M(X , xi = 1).

Rectification function U(X ) = I (X )!!
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The Concept of Craig Interpolants

Craig Interlants: A concept of “abstraction”, for UNSAT problems

Definition

Let f (XA,XB ,XC ) be a Boolean function in variables X = {x1, . . . , xn}
such that X is partitioned into disjoint subsets XA,XB ,XC . Let
f = fA(XA,XC ) ∧ fB(XB ,XC ) = ∅. Then there exists another Boolean
function fI such that:

fA =⇒ fI ; or fA ⊆ fI

fI ∧ fB = ∅

fI (XC ) only contains XC variables, i.e. the common variables of
fA, fB : Vars(fI ) ⊆ Vars(fA) ∩ Vars(fB)
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Craig Interpolants

Another f_I

f_Bf_I
f_A

Bn

The ABC tool with MiniSAT solver can return an fI , provided
fA, fB ,XA,XB ,XC is given.

Interpolant computed through a resolution proof
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Craig Interpolants: Examples

There may be more than one interpolants:

f = fA · fB

fA = (a1 + a′2)(a
′

1 + a′3)(a2) = a1a2a
′

3

fB = (a′2 + a3)(a2 + a4)(a′4) = a2a3a
′

4

XA = {a1},XB = {a4},XC = {a2, a3}

One interpolant fI1 = a′3a2

Another interpolant fI2 = a′3
The set of all interpolants forms a lattice, the smallest interpolant at
the bottom, and the largest at the top

Smallest interpolant: f smallest
I = ∃XA

fA(XA,XC )

Largest interpolant: f largestI = ∃XB
fB(XB ,XC )
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To compute Interpolants

Use Boolean logic manipulation, or use a SAT solver

Using Boolean manipulation, we can compute two interpolants

Smallest interpolant: f smallest
I = ∃XA

fA(XA,XC ), where
∃x f (x , y , z , . . . ) is a Boolean function defined as

∃x f (x , y , z , . . . ) = fx + fx , fx = f (x = 1) and fx = f (x = 0).
fx = the positive cofactor of f w.r.t. x , fx is negative cofactor.
∃x f (x , y , z , . . . ) is called existential abstraction of f w.r.t. x , also
called smoothing.
∃x f (x , y , z , . . . ) is the smallest function larger than f , i.e. it contains f
and does not have x in its support.

Largest interpolant = ∃XB
fB(XB ,XC )
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Craig Interpolant: Examples

From the previous slides:

fA = a1a2a
′

3 and fB = a2a3a
′

4

XA = {a1},XB = {a4},XC = {a2, a3}

Smallest interpolant: f smallest
I = ∃XA

fA(XA,XC ) = a2a
′

3

Largest interpolant: f largestI = ∃XB
fB(XB ,XC )

Largest interpolant = ∃XB
a2a3a′4 = a2a3 = a′2 + a′3

Let fI be any interpolant, then f smallest
I ⊆ fI ⊆ f largestI
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To compute Rectification Function

M(X , xi = 0) ∧ M(X , xi = 1) = ⊥

There exists C.I. I (X ) s.t.:

M(X , xi = 0) =⇒ I (X );

I (X ) ∧M(X , xi = 1) = ⊥;

I (X ), where X = common variables of M(X , xi = 0) and
M(X , xi = 1).

Rectification function xi = U(X ) = I (X )!

X = primary inputs of the circuit, as all PIs common variables of the
miter.

I (X ) = M(X , xi = 0) is the smallest interpolant, and serves as the
rectification function.

P. Kalla (Univ. of Utah) Partial Logic Synthesis 20 / 25



Example: Compute U(XPI )

Let f = ab + ac + bc and g = ab + ac + b

U(X ) = I (X ) = M(X , xi = 0) = a′bc , the smallest interpolant works
as a rectification function g = ab + ac + a′bc

Largest interpolant: M(X , xi = 1) = ab + ac + bc also works:
g = ab + ac + ab + ac + bc

Any interpolant works as a rectification function:
M(X , xi = 0) ⊆ I (X ) ⊆ M(X , xi = 1)

I (X ) = bc also rectifies g

For Logic Synthesis of U(XPI ), synthesize: M0 as the care-set of U, M1 as
the offset of U, and M1 −M0 as the don’t care set of U.
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Why U(XPI ) = I (X ) rectifies the circuit?

M0 = M(X , xi = 0) gives the error cubes for the implementation
when xi = 0

Since I (X ) ⊇ M0, and I (X ) evaluates to 1 for all minterms of M0, it
fixes all the mismatches that occured when xi = 0

M1 = M(X , xi = 1) gives the error cubes for the implementation
when xi = 1

I (X ) ∧M1 = 0, i.e. I (X ) evaluates to 0 for all minterms of M1, so it
fixes all the mismatches that occured when xi = 1

Thus I (X ) computes the rectification patch

Important References [1] [2] [3] [4]
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Identify Single-Fix Rectification Target Net xi

Perform Combinational Equivalence Checking (CEC) between C1,C2

Use the following command in ABC: ABC> cec C1.blif C2.blif

Since C1 6= C2, ABC identifies the outputs of the circuits which are
affected by the bug

Say, there exists an input (counter-example to CEC) X1 s.t.
fi(X1) 6= fj(X1)

Identify the transitive fanin-cones of fi , fj

Identify the set of nets N (gate-outputs) that lie in the intersection of
fanin-cones of fi , fj

Then the nets xi ∈ N are candidates for single-fix rectification
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Identify Single-Fix Target Net xi

Example Circuit:

The circuit is buggy, bug = gate change at net e3, which should have been
an AND gate. Both outputs z0, z1 affected by the bug.
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Identify Single-Fix Target Net xi

In the previous figure, e3 should have been an AND gate in the
correct circuit C1

Bug introduced, e3 = XOR gate

The bug affects both outputs z0, z1

Fanin cone z0 = {s0, e0, s1, e2, e3, s3, s4,XPI}

Fanin cone z1 = {r0, s5, e1, s2, e2, e3, s3, s4, e0, s1,XPI}

Intersection of fanin cones: N = {s3, e3, e2, s4, e0, s1, s2,XPI} are
targets for rectification xi

Select a net xi ∈ N to see if Theorem 1 ascertains rectifiability at xi
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