Logic Synthesis & Optimization

Spring 2019, Homework # 5
Due Date: Wednesday, April 24, midnight. Upload on Canvas. This is a strict deadline. I
will upload solutions the solutions by then, so you have them when you prepare for your
exams.

1) (5 points) — Logic Synthesis using ABC, compared with script.rugged of SIS: ABC is a AIG-
based synthesis and verification tool from Alan Mishchenko, Univ. California Berkeley. Downloading
and compiling ABC is rather painless. Go to Alan’s ABC website, download the ABC source and
compile. I’ve also uploaded and older version of my personal compiled copy for you (in case you
are having problems). Please also go through the ABC manual and tutorials available on Alan’s
website. ABC is integrated with BDDs and SAT. It is possible to read BLIF (read_blif) and EQN
files in ABC and also write out CNF files (write_cnf) through ABC, so a SAT solver can be invoked
on those CNF files, outside of ABC. In this experiment, you will compare the relative powers of
optimization of SIS and ABC (including how much faster ABC runs than SIS).

a) Take the circuit C7552.blif (uploaded on the class website), read it into SIS, optimize with
script.rugged (’source script.rugged’), and print the number of literals (print_stats).

b) Now we will perform a script.rugged type minimization using ABC. For this purpose, please
ensure that you also download the resource file “abc.rc” and keep it in your “current directory”
in which you are operating. When ABC runs, it reads this resource file by default, and loads
a whole bunch of command aliases.

c) To keep things simple, let us focus on the commands in the resyn and resyn2 scripts; these
are given in the abc.rc file.

d) In these scripts, the main commands are balance, drw, refactor etc., that basically perform
AIG rewriting to synthesize the circuit. Type ’drw -h’, ’refactor -h’, etc. to see what these
commands do.

e) Bi-decomposition can be performed using the command bidec.

f) Just by repeating the scripts resyn and resyn2, we can achieve better quality results than SIS,
and that too in much less execution time.

g) Invoke ABC, read C7552.blif, and perform the following commands: aig, bidec; st; resyn;
resyn2; write_blif C7552_ABC_opt.blif.

h) Now you can read C7552_ABC_opt.blif into SIS and print stats to compare the literal cost.

Compare the area-delay characteristics of the versions of the circuits synthesized by ABC and

2)

3)

Fig. 1.

4)

SIS. Which tool seems to be more powerful?

Don’t care Computation (15 points): Solve Problem 7 from Chapter 11 in the textbook, pp 474.

(10 points): Consider the multi-output circuit shown in Fig. 1.
C h
Z1
a

: ®)9

Simplification of a multi-level, multi-output Boolean network using ODCs

Identify/Compute the observability don’t care conditions for each of the internal nodes (f, g, h)
corresponding to the circuit outputs 2, Z5. Using these don’t cares, simplify the network. (Note:

No points for collapsing and simplification).

FSM Minimization (30 points): Minimize the FSM and show the minimized state table for the
two machines M1, M2 shown below. Build the merger table, get the compatibles, get the set of
maximal compatibles, stop-think-and-proceed to draw the compatibility graphs to identify the
minimal machine. You can solve these using paper-and-pencil methods (such as the ones given in
Kohavi’s book, the scanned notes that I emailed to you), you don’t need to formulate and solve

BCP.

The above machines M1, M2 can be minimized by a program called STAMINA. Enter the above
machines in KISS format (an example is given in the textbook, page 361, Pb. 7) and invoke stamina.
Compare the result with your answers in the above Question. Use a high verbosity-level to observe

what the program is trying to do: stamina —-s 1 —v 10’. Stamina is uploaded on the class

TABLE 1
STATE TRANSITION TABLE OF MACHINE M1

Present State || Next State, Output
z=0 r=1

SO»0Om
oo —~=OC

TmoQwW»

>mwmw
o= O oo

TABLE II
STATE TRANSITION TABLE OF MACHINE M2

Present State || Next State, Output
z=0 r=1
A C,1 E, -
B C, - E, 1
C B,0 Al
D D, 0 E, 1
E D, 1 A, 0

website.

5) FSM minimization using BCP (25 points) For the Machine M2, you will now solve the problem
using the Binate covering problem formulation as given in out textbook. Since you already have all
the maximal compatibles from the previous question, derive all the prime compatibles, then set-up
the covering and closure constraints, and derive the constraint matrix for BCP. Finally, solve the

BCP — show your steps.

6) Rectification using Partial Synthesis (15 points)

a) Consider the circuit of Fig. 2. Assume that this is a “specification” model. Write the corre-

sponding BLIF file for this circuit: spec.blif.

a—) f u

L
y v
e
w

L—

Fig. 2. The specification circuit for the rectification problem

b)

Consider the net e = a - b in the circuit. Introduce a bug by changing this gate in the circuit
to an XOR gate, i.e. introduce the buggy gate: e = a & b. Write the corresponding buggy
implementation blif file: impl.blif.

Perform equivalence checking using ABC: cec spec.blif impl.blif.Confirm that the
gate change is indeed a bug, i.e. CEC generates a counter-example.

This bug should be rectifiable at the same net e, of course. Using the single-fix rectification
theorem (Thm 1 in our slides), confirm if the circuit can be rectified at net e.

Subsequently, compute the rectification function using both the smallest and the largest inter-
polants, and validate your result by re-running CEC with the rectified functions.

For the bug e = a & b, can the circuit be rectified at net g? If so, compute the corresponding

rectification function at ¢ for the bug at e. Keep in mind the fanout at net f.

