4 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 10. NO. 1. JANUARY 1991

Optimum and Suboptimum Algorithms for Input
Encoding and Its Relationship
to Logic Minimization

Saeyang Yang and Maciej J. Ciesielski, Member, IEEE

Abstract—A new theoretical formulation of the input encoding prob-
lem is presented, based on the concept of compatibility of dichotomies.
The input encoding problem is shown to be equivalent to a two-level
logic minimization. Three possible techniques to solve the encoding
problem are discussed, based on: 1) techniques borrowed from classi-
cal logic minimization (generation of prime dichotomies and solving
the covering problem), 2) graph coloring applied to the graph of in-
compatibility of dichotomies, and 3) extraction of essential prime di-
chotomies followed by graph coloring. The extraction of essential prime
dichotomies serves the same purpose as the extraction of essential prime
implicants in logic minimization, in the sense that it reduces the size of
the covering/graph coloring problem. The conditions of optimality of
the solutions to the input encoding problem are discussed. For near-
optimum results a powerful heuristic, based on an iterative improve-
ment technique, has been developed and impl ted as a comp
program Dichtomy-based symbolic Input Encoding Technique (DIET).
The test results indicate that DIET compares favorably with KISS and
NOVA in terms of the CPU time, is superior to both programs in terms
of the encoding length, and requires considerably less memory. The
new method can be applied to the input encoding of combinational logic
and the state assignment of finite state machine’s (FSM’s) in both two-
level and multilevel implementations.

I. INTRODUCTION

NPUT encoding arises in a number of important logic syn-

thesis problems. A typical example of input encoding in VLSI
is the binary encoding of symbolic inputs that appear in high-
level description of digital logic, or the encoding of mnemonic
input fields of the microcode. The input encoding also appears
in the state assignment of finite state machines (FSM’s), i.e.,
sequential machines implemented as combinational logic with
feedback. In this case, however, the input encoding is only a
part of the encoding problem, because the states to be encoded
are both inputs as well as outputs of the combinational logic.
The input encoding problem consists of choosing a binary rep-
resentation of the symbolic input of the digital logic. Since, in
general, the encoding affects the area needed to implement the
digital logic, a good input encoding is very important.

A traditional approach to the encoding problem typically in-
volves the encoding followed by logic minimization of two-level
or multilevel implementation. The encoding techniques based
on this approach attempt to find an encoding that will simplify
the logic minimization. Classical state assignment techniques

Manuscript received January 1, 1990. This work was supported by the
University of Massachusetts at Amherst under Faculty Research Grant
1-03286. This paper was recommended by Guest Editor A. Sangiovanni-
Vincentelli.

M. J. Ciesielski is with the Department of Electrical and Computer En-
gineering. University of Massachusetts, Amherst, MA 01003.

S. Yang is with the Microelectronics Center of North Carolina, Research
Triangle Park, NC 27709.

IEEE Log Number 9039376.

are good examples of this approach, as they are generally di-
rected towards the simplification of the prospective combina-
tional component of the FSM [1], [7], [9], [11], [19].
Specifically, these techniques attempt to find the assignment that
minimizes the number of product terms (rows of the PLA)
among the assignments of a given (typically minimum) code
length.

Recently, a new encoding technique has been proposed by
De Micheli [4], [5], based on an innovative strategy: instead of
trying to estimate the effect of encoding on the possible simpli-
fication of combinational logic, logic minimization is applied
before the code assignment. That is, this technique attempts to
find the assignment of minimum code length among the assign-
ments that minimize the cover of a Boolean function. In this
new approach a set of mnemonic inputs is represented by one
multiple-valued variable, and the resulting multiple-valued in-
put Boolean function is minimized using a multiple-valued min-

‘imizer. With this representation, the logic is represented in a

symbolic, i.e., code independent form. This design methodol-
ogy avoids the dependence on variable representation and at-
tempts to find a mimimum representation of logic function
independently of the encoding of its inputs. The optimal input
encoding is then obtained by constrained input encoding, i.e.,
the encoding of the inputs of the digital logic so that they are
compatible with the symbolic cover.

The constrained input encoding has applications in decom-
position of Boolean functions. Efficient PLA decomposition
techniques, proposed in [6], [22], use the constrained input en-
coding to re-encode the primary inputs (to define the outputs of
the input decoders) in order to achieve overall PLA area reduc-
tion. It has been demonstrated that the constrained input encod-
ing problem can be also applied to input encoding of multilevel
logic [13]. Therefore, an efficient method for solving the con-
strained input encoding problem is highly desirable.

In this paper we present a new theoretical formulation of the
constrained input encoding problem based on compatibility of
seed dichotomies, and investigate the relationship between the
input encoding and logic minimization. The organization of the
paper is as follows. Section II reviews the basic concept of the
constrained input encoding. A new approach to the encoding
problem is presented in Section IlI, and the algorithm based on
this approach is described in Section IV. The application of the
encoding technique to state assignment of FSM, and some ex-
perimental results are shown in Section V.

II. CONSTRAINED INPUT ENCODING: AN OVERVIEW

In this section we review the basic concept of constrained
input encoding based on symbolic minimization [4], [5]. This

0278-0070/91/0100-0004%01.00 © 1991 IEEE

CIESIELSKI AND YANG: ALGORITHMS FOR INPUT ENCODING AND ITS RELATIONSHIP TO LOGIC MINIMIZATION 5

concept is illustrated by elaborating on a specific example taken
from [5].

Consider a combinational circuit that implements an instruc-
tion decoder, Fig. 1. The circuit has two sets of input signals,
denoted ADDR and OPC. and one set of outputs, denoted CNTR.
These input/output signals are referred to as symbolic input/
output variables.

The input variable ADDR can take one of the three possible
input “‘values,”” INDEX, DIR, and IND, corresponding to the
three types of addressing modes. Similarly, the input variable
OPC represents four possible operation codes, AND, OR, ADD,
and JMP, and the output variable CNTR represents four values
of control signals, CNTA, CNTB, CNTC, and CNTD. The cir-
cuit can be represented by the following symbolic truth table,
with inputs and outputs represented by mnemonic strings (sym-
bols). Each row of the table specifies a symbolic output for a
given combination of symbolic inputs, and is called a symbolic
implicant:

ADDR OPC CNTR
INDEX AND CNTA
INDEX OR CNTA
INDEX JMP CNTA
INDEX ADD CNTA
DIR AND CNTB
DIR OR CNTB
DIR JMP CNTC
DIR ADD CNTC
IND AND CNTB
IND OR CNTD
IND JMP CNTD
IND ADD CNTC

Our goal is first to minimize this table in its symbolic form,
and then find the binary encoding of the input symbols of min-
imum possible length. The minimization of the truth table in a
symbolic form can be achieved by using techniques of multiple-
valued minimization [17], [3]. The symbolic cover is translated
into 2 multiple valued cover by representing each symbolic value
using positional cube notation:

ADDR OPC CNTR
100 1000 1000
100 0100 1000
100 0001 1000
100 0010 1000
010 1000 0100
010 0100 0100
010 0001 0010
010 0010 0010
001 1000 0100
001 0100 0001
001 0001 0001
001 0010 0010

This cover is then reduced, using multiple valued Boolean min-
imizer:

ADDR OPC CNTR
100 1111 1000
010 1100 0100
001 1000 0100
001 0101 0001
010 0011 0010
001 0010 0010

orc —)
Decoder |—» CNTR
ADDR—H
Fig. 1. Combinational circuit with symbolic inputs.

00 01

JMP OR

10 1

ADD AND

Fig. 2. Geometric representation of input encoding.

This type of minimization is referred to as a disjoint minimi-
zation, because the input symbols are grouped for each output
symbol independently (each symbolic implicant of the cover is
output-disjoint). It should be pointed out that this table could
be minimized even further, if encoding of the input and output
symbols were considered simultaneously. This, however, re-
quires introducing covering relations among the binary encod-
ings of the output symbols [5], and is not considered in this
paper.

The minimized symbolic (multiple valued) cover imposes
certain constraints on the binary encoding of inputs. Specifi-
cally, encoding of the inputs is needed such that the Boolean
cover obtained with this encoding is compatible with the mini-
mized symbolic cover, i.e., their cardinalities are equal.

The constraints imposed by the minimized cover specify the
relationships among the binary codes chosen for the inputs.
Specifically, the binary codes of the inputs should be grouped
together in the same way the inputs are grouped in the mini-
mized symbolic cover. These constraints can be conveniently
expressed for each symbolic input by a constraint matrix de-
rived from the minimized cover. In our example, two constraint
matrices can be derived from the cover, one for ADDR and one
for OPC inputs. Consider, for example, the matrix associated
with the OPC variable:

Il
1100
1000
0101
0011
0010.

Each column of this matrix corresponds to one input value of
the input variable OPC, and each row represents a group of
inputs that are mapped into the same output. The constraints
imposed by this matrix can be expressed as follows [4]: the
minimum dimension Boolean subspace containing the encod-
ings of inputs assigned to the same group must not intersect the
code assigned to any input not contained in the corresponding
group.

The constraint matrix for the OPC variable is satisfied, for
example, by the following encoding: AND = 11, OR = 01,
ADD = 10, and JMP = 00, as shown in Fig. 2. In the next
section we show how to obtain the minimum length input
encoding using a new and efficient procedure based on graph
theory.

6 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 10. NO. I. JANUARY 1991

III. FORMULATION OF THE INPUT ENCODING PROBLEM
3.1. Constraint Matrix

Let M be a matrix composed of those columns of the input
part of the minimized symbolic cover that are associated with
the input variable to be encoded. Each row of M represents a
symbolic literal associated with a given input variable, i.e., a
literal of the corresponding multiple valued variable, X. Each
column of M represents one value of X:

1
M(i,j)={0

Using notation similar to that of De Micheli [4], define an input
group to be a subset of columns of M (values of X) in row i,
for which M (i, j) = 1. Also define a group face to be a mini-
mum dimension Boolean subspace containing the binary encod-
ing of the values of X assigned to that group. The constrained
encoding problem is to assign the distinct binary codes of min-
imum length to each column of M, such that each group face
does not intersect the code assigned to any column not in the
group.

Before solving the set of constraints, the constraint matrix M
can be reduced. It has been shown that all duplicate rows, as
well as the rows with all 1’s, can be deleted from M without
affecting the encoding [4]. The resulting matrix is called a re-
duced constraint matrix, and denoted M®. The rows with single
1’s, and the meer rows, i.e., the rows that are conjunctions of
two or more rows, need not be deleted, however, as it was done
in [4]. It will be apparent from the description of our encoding
procedure in the next section, that this may result in an encod-
ing with fewer bits.

In general, the columns of the reduced constraint matrix M*
may not be distinct. Deleting duplicate columns results in fur-
ther simplification of M®. This can be done in both the input
encoding of decoded PLA’s, and in the encoding of FSM’s,
without affecting the quality of the encoding. Recall that in the
decoded PLA a row of the constraint matrix represents an out-
put of the decoder, and a column of the constraint matrix rep-
resents a product term of the decoding logic [22]. Identical
columns, representing different product terms, may have the
same encoding. On the other hand, in the encoding of FSM
deleting the duplicate columns means assigning identical binary
codes to different states of the machine. It can be shown that,
if the rows with single 1’s are not deleted from the encoding
constraint matrix of the FSM, the reduced constraint matrix will
contain identical columns if and only if the corresponding states
are strongly equivalent, i.e., for each input they have the same
next state and produce the same output.

if jth value of X is present in ith literal,

otherwise.

Example 1: Consider the FSM described by the following
state table:

1, I A
s, Su 1 5.0 5.0
s, Sa ..l 5.0
S, 5.0 5.0 Sy 1
S, 5.0 il a1

The FSM has a set of symbolic primary inputs / = {/,, I, I},
and a set of symbolic state variables § = {§,, S,, S;, S, }, that
are to be encoded as binary vectors. Each symbolic input and
symbolic state can be represented by a multiple valued variable

and represented in a positional cube notation, resulting in the
following symbolic cover;

100 1000
100 0100
100 0010
100 0001
010 1000
010 0100
010 0010
010 0001
001 1000
001 0100
001 0010
001 0001

00101
00101
10000
10000
00010
01001
00100
01001
00100
10000
01001
01001.

This symbolic cover is minimized using multiple valued Bool-
ean minimizer to obtain

100 0011
010 0101
001 0011
100 1100
010 1000
001 0100
001 1000 00100

010 0010 00100.

The constraint matrix My, associated with the state vector S, is
obtained from this cover:

10000
01001
01001
00101
00010
10000

— -

o o0 1 i
0o 1 0 1

o 0 1 1

1 1 0 0

= 6 0 o
0o 1 0 0

1 0 0 0

Lo 0o 1 0,

The corresponding reduced constraint matrix, M¥%, is derived
by removing duplicate rows, 0011 and 1000:

[0 0 1 q

0 1 0 1
. |t 1 o o
ME =

1 0 0 0

0 1 0 0

0 0 1 0

CIESIELSKI AND YANG: ALGORITHMS FOR INPUT ENCODING AND ITS RELATIONSHIP TO LOGIC MINIMIZATION 7

A number of heuristic algorithms to obtain minimum length
encodings which satisfy the constraints matrix, were proposed
[4]-[6]. [21]. In [4], a row-based encoding scheme has been
presented. In this scheme the encoding of all input symbols is
represented by a code matrix S, whose rows represent individ-
ual encodings. Matrix § is constructed row by row, such that
the constraint relation is satisfied between matrices M and S.
The objective is to find a matrix S with a minimum number of
columns. Another approach, using the column-based encoding
scheme has been also investigated [5]. In this case the codes
are constructed column by column, introducing at each step a
single bit encoding of all the symbols. This encoding must sat-
isfy both the input and the output encoding relation. A some-
what similar approach was proposed by Devadas {6] for re-en-
coding of outputs of the input decoder to a PLA. Recognizing
that the transpose of a constraint matrix, M7, trivially satisfies
the encoding constraint, Devadas formulated the constrained
encoding problem as a constrained ordering problem. In his ap-
proach, an ordering of row of M7 is sought such that the en-
coding constraint is satisfied by a subset of M7 with a minimum
number of columns. In some cases, however, an encoding of
shorter length can be obtained that is not derivable from M by
simple reordering. This point will be illustrated in the next sec-
tion.

In the remainder of this paper, we propose a more efficient
method for the constrained encoding, based on the concept of
compatibility of dichotomies.

3.2. Dichotomies

Our approach to the constrained encoding problem is based
on the concept of compatibility of dichotomies. The notion of
dichotomy was introduced for the first time by Tracey {20] in
hazard-free state assignment for asynchronous FSM’s.

Definition 1: The dichotomy is a disjoint 2-block partition of
a subset of column indexes of the reduced constraint matrix M*.
The seed dichotomy associated with row i of matrix M® is a
disjoint 2-block partition (/:r) of a subset of column indexes
of M®, such that block ! contains all column indexes j, for which
M®(i,j) = 1, and block r contains exactly one column index,
k, such the M® (i, k) = 0.

Example 2: From the first row of the constraint matrix MR
in Example 1, the following seed dichotomies are generated:

0011 =(34:1),(34:2).

The indexes 1, 2, 3, 4 refer to the columns S|, S,, S3, S, of the
constraint matrix. A

Definition 2: Dichotomy D, = (l;:r;) is said to cover
dichotomy D; = (l;:r;) if [; 2 l;and r; 2 r;, or l; 2 r; and
r; 2 ;. D; is then said to be covered by D,.

Definition 3: An irredundant set of dichotomies is a set of
dichotomies such that no dichotomy is covered by other di-
chotomies.

Example 3: Given the constraint matrix M% in Example [,
the following set of irredundant seed dichotomies is generated:

0011=1(34:1),(34:2)
0101 = (24:1),(24:3)
1100 = (12:3),(12:4).

Notice that the seed dichotomies generated from the last three
rows of the constraint matrix M ¥ are not included in this set as
they are covered by other seed dichotomies. For example, the
seed dichotomies (1:2), (1:3), (1:4), derived from row 1000,
are covered by (24:1), (1 2:3), and (12:4), respectively.

O

Definition 4: Two dichotomies, D,, = (/,:r,) and D, =
(1,:1,), are said to be incompatible if there exists an unordered
pair of indexes (j, k), j, k € I, or j, k € r|, such thatj € /; and
k € ry, or if the same is true with the role of D, and D, reversed.
Otherwise the two dichotomies are called compatible.

Example 4: In Example 3, the seed dichotomies (1 2:3)
and (1 2:4) are compatible. Similarly, (1 2:3) and (3 4:2)
are compatible, but (1 2:3) and (2 4:1) are incompatible. A

Definition 5: A union of two compatible dichotomies, D, =
(I,:r;yand D, = (l,:r;), denoted D, U D,, is a dichotomy,
D= (l:r),suchthat! =1, U lbandr =r Ur,orl=1U
rpand r = r U L.

Dichotomies can be efficiently represented in the computer as
binary vectors as follows. An element to be encoded (column
of M) is represented by a 2-b string 10 if it appears in /; of D,,
by Ol if it appears in r; of D;, and by 00 (don’t care) if it does
not appear in D;. Each dichotomy is, therefore, described as a
vector of 2-b strings, one for each column of M. Bitwise OR of
such defined vectors provides a simple compatibility test for the
corresponding dichotomies. If the result of such or-ing contains
a 2-b string 11, the corresponding dichotomies are incompati-
ble. Actually this test has to be performed twice, with the role
of the left and right blocks, /;, r;, reversed. The dichotomy is
incompatible if both results contain a string 11. Otherwise, they
are compatible and the result is the union of the corresponding
dichotomies.

Example 5:
1 2 3 4
(12:3) = (10 10 01 00)
(12:4) = (10 10 00 O1)
(12:34) = (10 10 01 O1) compatible, union
1 2 3 4
(12:3) =(10 10 01 00)
(24:1) = (01 10 00 10)
(11 10 01 10) incompatible.

A

Let D, = (l;:r) be an arbitrary dichotomy derived from the
constraint matrix M. This dichotomy implies a 1-b encoding of
the subset of column indexes, [, U r,, of matrix M. The cor-
responding encoding is obtained by assigning a single bit O (or
1) to all indexes inciuded in block /,, and assigning an opposite
bit, 1 (or 0), to all indexes in block r,. This encoding partially
satisfies the constraint matrix in the sense that it satisfies the
constraints imposed by the seed dichotomies covered by D,.

Example 6: Dichotomy D; = (12:34) implies a 1-b en-
coding of columns (1, 2, 3. 4). This encoding satisfies the con-
straints imposed by the seed dichotomies (1 2:3), (1 2:4),

8 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. 10. NO. 1. JANUARY 1991

(34:1), and (3 4:2), covered by D,:

B W N -

3.3. Classical Logic Minimization Approach to Encoding

Remarkably, the input encoding problem can be solved using
techniques of Boolean minimization. In this section we estab-
lish the relationship between the encoding and logic minimi-
zation and use this as a basis for our formulation of the input
encoding problem. First we introduce the definitions of prime,
distinct, and essential dichotomies to help establish these rela-
tionships. In the following, the constrained matrix M is consid-
ered to be reduced.

Definition 6: A prime dichotomy is a dichotomy that is not
included in any other dichotomy.

Prime dichotomies can be obtained from a set of seed di-
chotomies by the following procedure. A seed dichotomy is se-
lected and combined, using a union operation, with a compat-
ible dichotomy (seed dichotomy) from the set. The resulting
new dichotomy is then added to the set and all dichotomies (seed
dichotomies) covered by the new dichotomy are labeled. The
new dichotomy is then used as a ‘‘seed’’ and combined with
the next compatible dichotomy. The process is repeated until
there are no more compatible dichotomies that can be added to
the seed. In particular, one prime dichotomy can be obtained
for each row of the constraint matrix as a union of all seed di-
chotomies derived from this row. A prime dichotomy D; =
(I;:r;) derived from the constraint matrix M has the property
that /; U r; includes all indexes of matrix M. Furthermore, prime
dichotomies are incompatible with each other.

To obtain a set of all prime dichotomies from the set of seed
dichotomies, a procedure similar to that for obtaining all prime
implicants from the minterms can be used [14]. First, a union
of all pairs of compatible seed dichotomies is calculated, and
the seed dichotomies covered by the resulting dichotomies are
labeled. The process is repeated by pairing the compatible di-
chotomies in the new set until no more compatible pairs can be
found. A set of unlabeled dichotomies constitute a complete set
of prime dichotomies.

Definition 7: A distinct seed dichotomy is a seed dichotomy
which is covered by one and only one prime dichotomy.

Definition 8: An essential prime dichotomy is a dichotomy
which contains at least one distinct seed dichotomy.

It is interesting to notice that such defined dichotomies are
equivalent to implicants of Boolean functions; a prime dichot-
omy is equivalent to a prime implicant, and a seed dichotomy
is equivalent to a minterm (it represents the smallest entity from
which the dichotomies can be constructed). In fact, the input
encoding problem can now be shown to be equivalent to logic
minimization.

The goal of logic minimization is to obtain the minimum
cover of a Boolean function. Classical logic minimization tech-
niques achieve this by first generating all prime implicants and
then solving the covering problem, i.e., grouping the impli-
cants into a minimum set of prime implicants that covers the

function [14]. In principle, the input encoding problem can be
solved using a similar approach, i.e., by creating all prime di-
chotomies and grouping them into a minimum set, so that each
seed dichotomy is covered by some prime dichotomy in the
‘‘cover.’’

Theorem 1: The length of the encoding satisfying the con-
straint matrix M is equal to the number of prime dichotomies
needed to cover all seed dichotomies of M.

Proof: By construction, each prime dichotomy is obtained
as a union of some seed dichotomies. The 1-b encoding that
this prime dichotomy represents satisfies the constraints im-
posed by the respective seed dichotomies. The encoding im-
posed by the set of prime dichotomies needed to cover all seed
dichotomies satisfies the entire constraint matrix M. Since each
prime dichotomy implies a 1-b encoding, the length of the en-
coding is equal to the number of prime dichotomies in the
cover. O

The conclusion from this theorem is that the minimum length
encoding can be obtained by finding a minimum cover of prime
dichotomies.

Example 7: Consider the constraint matrix M§ and the irre-
dundant set of seed dichotomies derived in Example 3: (1 2:3),
(12:4),(34:1),(34:2),(24:1), and (2 4:3). From this
set the following prime dichotomies are generated: (1 2:3 4),
(24:13, (124:3), (1:234). The covering table is now
constructed, with rows representing prime dichotomies and col-
umns representing seed dichotomies. The covering problem is
then solved by finding a minimum set of prime dichotomies
which cover all seed dichotomies:

(12:3) (12:4) (34:1) (34:2) (24:1) (24:3)

vV (12:34) X X X X

V(24:13) X X
(124:3) X X
(1:23 4) X X

In this case only two prime dichotomies, (12:34) and
(2 4:1 3), are needed to cover all seed dichotomies. This means
that only 2 b are needed for the encoding. The first bit encodes
columns 1, 2 with bit 0, and columns 3, 4 with bit 1. The sec-
ond bit encodes columns 2, 4 with bit 0, and columns 1, 3 with
bit 1:

D D,
10 1
20 0
301 1
4 1 0

A

The reason for not deleting the meet rows and the rows with
single 1’s from the constraint matrix prior to the encoding should
now be apparent. If the reduced matrix has the rows with single
1's deleted, some additional bits have to be added to the encod-
ing that satisfies this constraint matrix, so that each column of
the original constraint matrix is coded by a distinct binary pat-
tern. Thus the problem is effectively partitioned into two sepa-
rate problems: 1) the encoding of rows with two or more 1’s,
and 2) the encoding of rows with single 1's. Clearly, even if
the encoding of each problem separately is solved optimally,
the optimality of the entire set cannot be guaranteed. In con-

CIESIELSKI AND YANG: ALGORITHMS FOR INPUT ENCODING AND ITS RELATIONSHIP TO LOGIC MINIMIZATION

trast, in the approach taken in this work all the constraints are
considered at once, and thus it is possible to achieve better re-
sults in terms of the encoding length. Notice that in doing so
the complexity of the problem does not increase significantly;
the number of seed dichotomies that are generated from those
rows, and which are not covered by seed dichotomies generated
from other rows, is small compared to the total number of di-
chotomies. Including these seed dichotomies increases the de-
gree of flexibility in choosing the best cover, and thus may result
in better solutions.

A similar argument holds for the meet rows. The meet rows
(which first would have to be detected as a conjunction of some
other rows) do not have to be explicitly deleted from the orig-
inal constraint matrix; all seed dichotomies generated from these
rows will be automatically deleted as they are all covered by
other seed dichotomies. Notice that our procedure may also de-
lete partial constraints imposed by other (nonmeet) rows, if
some of seed dichotomies generated from these rows are cov-
ered by other seed dichotomies. Classical input encoding tech-
niques are unable to detect such partial constraints, as they can
only delete the entire row. For these reasons our approach can
give, in general, better results than those presented in [4]-[6].

3.4. A Compatible Graph Coloring Approach

In this section an alternative, graph theoretical approach to
the constrained input encoding problem is presented.

Given a constraint matrix M, a graph of incompatibility of
seed dichotomies, G, (V, E) is constructed. G, (V, E) is a
simple, nondirected graph, whose nodes V are in one-to-one
correspondence with the irredundant set of seed dichotomies de-
rived from M, and whose edges E represent the incompatible
relations among the seed dichotomies. There is an edge between
each pair of nodes if and only if the corresponding seed di-
chotomies are incompatible. The encoding satisfying the con-
straints imposed by the seed dichotomies can be obtained by
compatible coloring of the graph G, (V, E).

Definition 9: A compatible coloring of graph G,, is a color-
ing of its nodes such that no two adjacent nodes in the graph
are assigned the same color, and all the nodes with the same
color are compatible.

Notice that this definition allows a node to be assigned mul-
tiple colors, as long as all nodes with the same color are com-
patible. Our compatible graph coloring algorithm, therefore,
attempts to find sets of maximally compatible seed dichot-
omies. The following theorem allows us to obtain a miminum
length encoding by performing compatible graph coloring of
Gy(V, E).

Theorem 2: The minimum encoding length satisfying the
constraint matrix M is equal to the minimum number of colors
in compatible coloring of G, (V, E).

Proof: By definition, compatible graph coloring finds the
sets of compatible seed dichotomies and merges them into sin-
gle dichotomies. Each dichotomy, associated with one color,
represents a 1-b encoding that satisfies the constraints imposed
by the respective seed dichotomies. Since the resulting set of
dichotomies covers all seed dichotomies, this set satisfies all the
constraints imposed by the constraint matrix M, and the encod-
ing length is equal to the cardinality of this set. Therefore, the
minimum encoding length is equal to the minimum number of
colors. O

Gz 3
G240

G4 D

<D

Fig. 3. Compatible graph coloring.

Example 8: Consider again the constraint matrix M and the
irredundant set of seed dichotomies as in Example 3. The graph
Gy (V, E) for this example and its compatible coloring is shown
in Fig. 3. The two colors, corresponding to the dichotomies
(12:34)and (1 3:24), give the final 2-b encoding. JAN

In general, the assignment of a single bit code (0, 1) to the
blocks /, and r; of dichotomy D, during the final encoding is
not arbitrary. If the encoding input symbols (columns of the
constraint matrix) are outputs of the precious stage logic, e.g.,
input decoders to the PLA, this assignment may affect the size
of the input logic (decoders) [22]. This problem, referred to as
an output phase assignment, can be solved using techniques re-
ported in [18].

3.5. Extracting Essential Prime Dichotomies

When minimizing a Boolean function using classical meth-
ods, the size of the covering problem can be reduced by extract-
ing essential prime implicants from the cover. This approach
has been taken in the advanced logic minimizers, such as Es-
presso [2], [17], UMini [3], and Kuai-Exact [16]. It has been
demonstrated that essential implicants can be extracted without
actually generating all prime implicants [18], [12], [17]. [15].
A similar concept can be used in our encoding problem: essen-
tial prime dichotomies can be extracted from the set of seed
dichotomies to reduce the number of nodes in the graph. The
extraction of essential dichotomies, however, can be performed
in a much simpler way than the extraction of essential prime
implicants. This is indicated by the following theorem.

Theorem 3: The row r; of the constraint matrix represents an
essential prime dichotomy if and only if there exists a seed di-
chotomy generated from this row which is incompatible with all
seed dichotomies not covered by row r;.

Proof: Assume there exists a seed dichotomy D, gener-
ated from row r;, that is not compatible with any other dichot-
omy, except for those covered by r,. Therefore, by definition,
D is a distinct seed dichotomy, and is covered only by the prime
dichotomy generated by row r;. Thus the corresponding row
must represent an essential prime dichotomy. On the other hand,
if row r; represents an essential prime dichotomy, it must con-
tain at least one distinct seed dichotomy that satisfies the above
condition. O

By construction, each dichotomy, or seed dichotomy, repre-
sents a 1-b encoding of the subset of columns of the constraint
matrix. Since essential prime dichotomies are obtained by
grouping compatible seed dichotomies such that at least one of
them is covered only by this prime dichotomy, the encoding
represented by essential prime dichotomies must be included in

10 {EEE TRANSACTIONS ON COMPUTER-AIDED DESIGN. VOL. i0. NO. I. JANUARY 1991

the final encoding vector. By extracting essential prime di-
chotomies, the corresponding seed dichotomies are removed
from the graph G, (V, E).

Example 9: In the example in Fig. 3 there is only one essen-
tial prime dichotomy, (1 2:3 4). The 1-b encoding implied by
this dichotomy must be included in the final encoding. After
removing the seed dichotomies, (12:3), (12:4), (34:1),
and (3 4:2), covered by this essential prime dichotomy, the
graph Gy (V, E) contains only two nodes, (24:1) and
(2 4:3). The seed dichotomies represented by these nodes are
compatible and, therefore, can be combined in one color, giv-
ing a rise to a single prime dichotomy, (2 4:1 3). A

3.6. Heuristic Approach to Input Encoding

In general, the optimality of the input encoding depends on
compatible graph coloring of the reduced graph of incompati-
bility of implicants. If this graph is empty, the encoding rep-
resented by the essential prime dichotomies is optimum. Since
the compatible graph coloring is a more restricted version of a
general graph coloring, the problem to be solved is NP-hard [8].
A fast heuristic technique has been developed for efficient com-
patible coloring of G,,.

Definition 10: A dichotomy D; = (l;:r;) is said to be bal-
anced, if | |I;| — |r;| | < 2. The coloring of the incompati-
bility graph Gy, is called balanced if adding a seed dichotomy
to a set of compatible dichotomies of the same color, such that
the resulting dichotomy D is not balanced, is allowed only if
there are no other compatible seed dichotomies that could main-
tain the balance.

The reason for maintaining the balance during the graph col-
oring can be explained as follows. A 1-b encoding implied by
dichotomy D; = (I;:r;) allows to distinguish indexes in /; from
those in r;. The number of additional bits that are needed to
distinguish the indexes within the blocks /; and r; are bounded
below by [log,|/;|] and [log,|r; |7, respectively. Those
additional bits must be provided by other dichotomies in the
cover. Therefore, the minimum number of additional bits
needed to distinguish all indexes in D, is equal to max
{ [log |4 17, [logy|ri |7 }. Inorder to minimize the number
of encoding length, the size of both blocks should be compa-
rable.

Our heuristic graph coloring algorithm assigns colors to
vertices of the graph of incompatibility of seed dichotomies
Gy (V, E) in certain order. A weight is assigned to each seed
dichotomy D; (node in the graph), that is equal to the number
of dichotomies compatible with D;. Initially all nodes are la-
beled ‘‘uncolored.’”’ Among all uncolored nodes, the one with
the lowest weight is chosen as a seed, and a color is assigned
to it. Next all the nodes that are compatible with the seed are
examined as candidates for merging with the seed dichotomy.
Two strategies are used for selecting the compatible node at this
point. Under one strategy, called balanced coloring, any node
that maintains balance is chosen and assigned the same color as
the seed. The weighted coloring strategy chooses a node having
the least weight. At this point the candidate set must be modi-
fied by deleting those nodes that are incompatible with the newly
created dichotomy. The compatibility check is very simple, and
requires bitwise OR-ing of two binary vectors representing the
two dichotomies.

This procedure continues until all candidate nodes are either
colored or deleted. Finally, the nodes that are already colored
(with a different color) are similarly considered for merging with
the current seed. The entire procedure is then repeated for the

remaining uncolored nodes, in the ascending order of their
weights, adding as many previously colored nodes as needed.

Notice that this coloring procedure allows a node in graph
G, to be assigned multiple colors. In this sense the compatible
graph coloring is equivalent to covering by cliques of the com-
plement of graph G, [8]. The described procedure is similar to
that applied in multiple valued logic minimization UMini [3].
The main difference is that here the nodes of the incompatiblil-
ity graph represent dichotomies rather than product implicants,
and that checking the compatibility of dichotomies is much sim-
pler than checking the compatibility of cubes (the latter one
being equivalent to tautology checking).

Theorem 4: If all columns of the reduced constraint matrix
M are distinct, then the binary encoding of each column ob-
tained using our encoding scheme is distinct.

Proof: Consider an arbitrary pair of columns, ¢; and ¢;, of
M. If ¢; and ¢; have distinct binary patterns, they must differ in
at least one row, say r,. From r, one can generate a seed di-
chotomy, D, = (l;:r,), such that ¢; € [, and ¢; € r,, or vice
versa. Therefore, the encoding assigned to those columns must
differ in at least one bit. g

IV. ENCODING ALGORITHM

Our compatible graph coloring procedure uses an iterative
improvement technique to find the best possible encoding. The
main idea of this iterative improvement technique is to split the
dichotomies into smaller parts, and then reconstruct the di-
chotomies by repeating graph coloring with this new set. The
idea of splitting the dichotomies is similar to splitting the cubes
in UMini logic minimizer; the cubes in the initial cover are split
in some systematic way, and then recombined to obtain a min-
imum Boolean cover [3]. To perform the splitting of dichoto-
mies in a systematic way, a special type of dichotomies is
introduced.

Definition 11: A relatively essential seed dichotomy is a seed
dichotomy which is covered by only one prime dichotomy in
the cover. A relatively nonessential seed dichotomy is a seed
dichotomy which is covered by two or more prime dichotomies
in the cover. A minimal dichotomy of a prime dichotomy, D;,
in the cover is a dichotomy that is obtained as a union of all
relatively essential seed dichotomies of D;.

Recall that our compatible graph coloring allows a node in
the graph G, to be assigned multiple colors. As a result, some
prime dichotomies in the cover may overlap. The relatively
nonessential dichotomies are those seed dichotomies which be-
long to the overlap between two or more prime dichotomies.
The relatively essential dichotomies are those covered by only
one prime dichotomy, and therefore, can be merged to form
minimal dichotomies. The minimal dichotomies and the rela-
tively nonessential seed dichotomies are then used as the graph
nodes in the next iteration.

The following procedure describes the iterative encoding al-
gorithm based on heuristic compatible graph coloring.

Iterative_encode
generate an irredundant set of seed dichotomies of M;
extract essential prime dichotomies;
construct the incompatibility graph, Gy
solve the heuristic compatible graph coloring problem for Gy;
find the cover = {dichotomies }, each associated with one
color;

CIESIELSKI AND YANG: ALGORITHMS FOR INPUT ENCODING AND ITS RELATIONSHIP TO LOGIC MINIMIZATION 1

while no improvement in cover cardinality do
{
find minimal and relatively nonessential seed dichoto-
mies;
construct a new incompatibility graph;
solve the heuristic compatible graph coloring problem;
find the cover;

cover = cover U { essential prime dichotomies }
for each dichotomy Dy in the cover do

{

assign binary codes to D;;

return (encoding) .

In principle, this iterative improvement procedure is similar
to the reduction/expansion procedure of MINI [10] and Es-
presso [17]. However, the iteration strategy of our algorithm is
different. We actually use two types of heuristics in each pass
of the compatible graph coloring algorithm: balanced coloring
and weighted coloring. The two heuristics are executed alter-
nately in each iteration, complementing each other in selecting
the right nodes.

We also have a different stopping rule. The iterative proce-
dure will not stop even if there is no improvement in the solu-
tion, and the procedure will be allowed to run from that point
for a fixed number of iterations, inum, set up by the user. If
during these iterations there is no improvement, the procedure
stops. Otherwise, the iteration counter is reset. The justification
for this stopping rule comes from the observation that the so-
lution space of most of the encoding problems is very complex
and has a large number of local optima. Application of this
stopping rule allows us to ‘*hill climb’’ to other local minima.
As one pass of the heuristic graph coloring is very fast, this
stopping rule does not increase execution time drastically.

V. RESULTS

The heuristic encoding technique presented in this paper has
been implemented as a computer program Dichotomy based
symbolic Input Encoding Technique (DIET). The program is
written in C and runs under both VMS and UNIX operating
systems. DIET has been tested on more than 30 industrial FSM
examples, available from MCNC benchmark set. The most sig-
nificant results are reported in Table 1, and compared to KISS
[4] and NOVA [21]. For each tested example, the table shows
the total number of states, states, the minimum number of bits
in unconstrained encoding, bits, the minimum number of bits
satisfying all encoding constraints, cbits, and the encoding
length obtained with KISS, NOVA, and DIET, respectively.
The encoding constraints were obtained by performing disjoint
minimization using Espresso-MV.

The test results indicate that DIET compares favorably with
KISS and NOVA in terms of the CPU time, and is superior to
both programs in terms of the encoding length. DIET produced
optimum encoding length in most of the tested examples. The
optimum solutions were taken from [21]. The success rate (the
ratio of the total number of optimum solutions to the total num-
ber of tested cases) was 61.1% for KISS, 62.5% for NOVA,
and 88.9% for DIET. In one case (donfile) the encoding length
was drastically shorter than those obtained with the other two
programs. (The absolute minimum encoding length satisfying
all constraints for this design is not known exactly—the best
known solution, obtained with NOVA with iexact option was

TABLE I
ENCODING RESULTS
states bits chits KISS NOVA* DIET
bbsse 16 4 6 6 6 6
cse 16 4 5 6 5 5
dk14 7 3 4 4 5 4
dk15 4 2 4 4 4 4
dk16 27 5 7 10 10 8
dk17 8 3 4 4 4 4
dk512 15 4 S 6 6 5
donfile 24 5 *k 12 15 7
exl 20 5 7 7 7 7
ex2 19 5 6 6 6 6
ex3 10 4 5 6 5 5
ex5 9 4 5 5 6 5
ex6 8 3 4 5 5 4
keyb 19 5 7 8 7 8
lion9 9 4 4 4 N/A 4
traint 1 11 4 5 6 5 5
sand 32 5 ok 6 N/A 6
sl 20 5 5 5 5 5
sla 20 5 5 5 N/A)
styr 30 5 6 6 9 7

*used with ihybrid option to satisfy all constraints.
**optimum solution unknown.

11, but the search of the entire solution space could not be com-
pleted; this is to be compared to the encoding length, 7, ob-
tained with DIET). The memory requirement of our program is
significantly smaller than that of KISS. DIET is included as part
of the PLA decomposition tool, PLADE [22], recently devel-
oped at the University of Massachusetts at Amherst.

VI. CONCLUSIONS

It has been demonstrated in this paper that the constraint in-
put encoding problem is equivalent to a two-level logic min-
imization problem. We should point out, however, that we do
not attempt to transform the encoding problem into an equiva-
lent logic minimization problem, and then use a generic logic
minimizer to solve it. Rather, we show the similarity between
the two problems, so that the efficient algorithms in one prob-
lem can be used in the other problem with no, or little, modi-
fication. Each problem, however, has its own critical
subproblems, which may have no logical counterpart in the other
problem. For example, a typical logic minimization procedure
requires frequent checking if a cube intersects an offset, or is
included in the cover. These problems are computationally ex-
pensive, and are not required in the encoding problem as for-
mulated here.

Unlike other input encoding methods the method described
in this paper is well suited for iterative improvement technique.
This has been achieved by breaking dichotomies into funda-
mental parts, from which different prime dichotomies can be
reconstructed at subsequent iterations.

The relationship between the input encoding and logic min-
imization established in this paper should help in better under-
standing of a more general encoding problem, and the state
assignment problem in particular. In this work the state assign-
ment was approximated by the input encoding problem. To ac-
curately address the state assignment problem, however, the
encoding constraints imposed by the output part (next state)
should be also considered. Future work in this area should,
therefore, concentrate on symbolic minimization, whereby the

12 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN, VOL. 10, NO. 1. JANUARY 1991

input and output encoding are considered simultaneously. It
would be also desirable to investigate the tradeoff between the
encoding length and logic complexity.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for
their constructive suggestions and interesting comments. They
are also grateful to Bill Lin of UC Berkeley for providing them
with a copy of KISS, which made it possible to compare the
results of the two encoding programs.

REFERENCES

{1} D. B. Armstrong. A programmed algorithm for assigning inter-
nal codes to sequential machines.”” IRE Trans. Electron. Com-
put., vol. EC-11, pp. 466-472. Aug. 1962.

2] R. K. Brayton, G. D. Hatchel. C. T. McMullen, A. L. Sangio-
vanni-Vincentelli, Logic Minimization Algorithms for VLSI Syn-
thesis, Hingham, MA: Kluwer Academic, 1984,

3] M. J. Ciesielski, S. Yang, and M. A. Perkowski, ‘‘Multiple-val-
ued minimization based on graph coloring.” in Proc. 1989 IEEE
Int. Conf. on Computer Design, Oct. 1989; also, in Tech. Rep.,
TR-89-CSE-4. Dept. of Electrical and Computer Engineering,
Univ. of Massachusetts. Amherst. 1989.

[4] G. DeMicheli, R. K. Brayton, and A. Sangiovanni-Vincentelli,
“Optimal state assignment for finite state machines,”” [EEE
Trans. Computer-Aided Design. vol. CAD-4, pp. 269-284, July
1985.

5] G. DeMicheli, “*Symbolic design of combinational and sequen-
tial logic circuits implemented by two-level logic macros,"" IEEE
Trans. Computer-Aided Design. vol. CAD-5, pp. 597-616, Oct.
1986.

[6] S. Devadas, A. R. Wang, A. R. Newton, and A. Sangiovanni-
Vincentelli, “*Boolean decomposition in multi-level logic opti-
mization.”” in IEEE Int. Conf. on Computer-Aided Design, Dig.
Tech. Papers, 1988. pp. 290-293.

[71 T. A. Dolotta and E. J. McCluskey, "*The coding of internal
states of sequential circuits,”” IRE Trans. Electron. Comput., vol.
EC-13. pp. 549-562. Oct. 1964.

[8] M. R. Garey and D. S. Johnson. Computer and Intractability,

San Francisco, CA: Freeman. 1979.

F. J. Hill and G. R. Peterson, Iniroduction to Switching Theory

and Logical Design. New York: Wiley, 1974,

[10} S. J. Hong, R. G. Cain and D. L. Ostapko, **‘MINI: A heuristic
approach for logic minimization.”* IBM J. Res. Develop., pp.
443-458, Sept. 1974.

{11] Z. Kohavi. ‘‘Secondary state assignment for sequential ma-
chines,”" IEEE Trans. Electron. Comput., pp. 193-203, June
1964.

[12] Y. S. Kuo, ‘*Generating essential prime implicants for a Boolean

function with multiple-valued inputs.”’ IEEE Trans. Comput.,

vol. 36, pp. 356-359. Mar. 1987.

S. Malik, R. K. Brayton. and A. L. Sangiovanni-Vincentelli,

**Encoding symbolic inputs for multi-level logic implementa-

tions, in Proc. Int. Workshop on Logic Synthesis, MCNC, May

1989.

[14] E. J. McCluskey, ‘‘Minimization of Boolean functions,”" Bell
Svst. Tech. J.. vol. 35. pp. 1417-1445. Nov. 1956.

[9

[13

[15] M. A. Perkowski and P. Wu, **A new approach to exact min-
imization of Boolean functions with multiple-valued inputs,”’
Tech. Rep. 38/1988, DIADES Research Group, Dept. of Elec-
trical Engineering, Portland State Univ., 1988.

[16] M. A. Perkowski, P. Wu, and K. A. Pirkl, ‘*Kuai-Exact: A new
approach for multi-valued logic minimization in VLSI synthe-
sis,”” in Proc. IEEE Int. Symp. on Circuits and Systems, pp. 401-
404.

[17] R. L. Rudell and A. Sangiovanni-Vincentelli, *‘Multiple-valued
minimization for PLA optimization,”” IEEE Trans. Computer-
Aided Design, vol. CAD-6, pp. 727-750, Sept. 1987.

[18] T. Sasao, ‘‘Input variable assignment and output phase optimi-
zation of PLA’s,"”” IEEE Trans. Comput., vol. C-33, pp. 879-
894, Oct. 1984.

[19] G. Saucier, ‘‘State minimization of asynchronous sequential ma-
chines using graph techniques,”” IEEE Trans. Comput., vol.
C-21, pp. 282-288, Mar. 1972,

[20} 1. H. Tracey, ‘‘Internal state assignment for asynchronous se-
quential machines,”” IEEE Trans. Electron. Comput., pp. 551-
560, Aug. 1966.

[21] T. Villaand A. L. Sangiovanni-Vincentelli, ‘*Algorithms for state
assignments for finite state machines for optimal two-level logic
implementations,”’ in Proc. Int. Workshop on Logic Synthesis,
MCNC, May 1989.

[22] S. Yang and M. J. Ciesielski, ‘A generalized PLA decomposi-
tion with programmable encoder,”” in Proc. Int. Workshop on
Logic Synthesis, MCNC, May 1989.

*

Maciej Ciesielski (M’85) received the M.S.
degree in electronic engineering from Warsaw
Technical University, Warsaw, Poland, in
1974, and the Ph.D. degree in electrical engi-
neering from the University of Rochester in
1983.

From 1983 to 1986 he worked as a Senior
Member of Technical Staff at GTE Laborato-
ries, and in 1986 as an Assistant Professor at
the University of Lowell, Computer Science
Department. In 1987 he joined the University
of Massachusetts at Amherst, where he is now an Assistant Professor
in the Department of Electrical and Computer Engineering. His re-
search focuses on design automation and VLSI synthesis, and in par-
ticular on CAD algorithms and tools for logic and layout synthesis and
performance optimization of VLSI circuits.

®

Saeyang Yang received the B.S and M.S de-
grees in electronic and computer engineering
from Korea University, Seoul, Korea, in 1981
and 19835, respectively, and the Ph.D. degree
in electrical and computer engineering from the
University of Massachusetts at Amherst, in
1990.

Recently he joined the Microelectronic Cen-
ter of North Carolina (MCNC) as a CAD re-
searcher. At MCNC, he is responsible for the
research and development of logic synthesis
tools. His research interest includes logic synthesis, testing, high-level
synthesis, and neural networks.

