
1
ECE 667 - Synthesis & Verification - Lecture 12

ECE 697B (667)
Spring 2003

Synthesis and Verification
of Digital Systems

Functional Decomposition

Slides adopted (with permission) from A. Mishchenko, 2003

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 2

Overview

• The concept of functional decomposition
• Two uses of BDDs for decomposition

– as a computation engine to implement algorithms
– as a representation that helps finding decompositions

• Two ways to direct decomposition using BDDs
– bound set on top (Lai/Pedram/Vardhula, DAC’93)
– free set on top (Stanion/Sechen, DAC’95)
– other approaches

• Disjoint and non-disjoint decomposition

• Applications of functional decomposition:
– Multi-level FPGA synthesis
– Finite state machine design
– Machine learning and data mining

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 3

Functional Decomposition – previous work

• Ashenhurst [1959], Curtis [1962]
– Tabular method based on cut: bound/free variables
– BDD implementation:

• Lai et al. [1993, 1996], Chang et al. [1996]
• Stanion et al. [1995]

• Roth, Karp [1962]
– Similar to Ashenhurst, but using cubes, covers
– Also used by SIS

• Factorization based
– SIS, algebraic factorization using cube notation
– Bertacco et al. [1997], BDD-based recursive bidecomp.

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 4

Two-Level Curtis Decomposition

if B ∩ A = ∅, this is disjoint decomposition
if B ∩ A ≠ ∅, this is non-disjoint decomposition

X

B = bound set A= free set

F(X) = H(G(B), A), X = B ∪ A

F

G

HA

B
F

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 5

Decomposition Types

Simple disjoint decomposition
(Asenhurst)

F
HA

GB

B

F

G

H
A

Disjoint decomposition
(Curtis)

Non-disjoint decomposition

F

G

H

A

B

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 6

Decomposition Chart

1 2 3 4

000010

101011

010101

111100

10110100

Bound Set = {a,b}

Free Set
= {c,d}

3

1

4
2

Incompatibility Graph

µ =2

G

G′

G′

G

Definition 1: Column Compatibility
Two columns i and j are compatible if each element in i is equal to the
corresponding element in j or the element in either i or j is not specified

Definition 2: Column Multiplicity µ = the number of compatible sets
(distinct column patterns)

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 7

Fundamental Decomposition Theorems

• Theorem (Asenhurst)
Let k be the minimum number of compatible sets in the decomposition
chart. Then function H must distinguish at least k values

• Theorem (Curtis)

Let µ (A | B) denote column multiplicity under decomposition into bound
set B and free set A. Then:

µ (A | B) ≤ 2k ⇔ F(B,A) = H(G1(B), G2(B), …, Gk(B), A)

FG

H

B

A

k

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 8

Asenhurst-Curtis Decomposition

F(a,b,c,d) = (a′b′+ ab)c'+ (a′b+ ab′)(cd+c′d′)

G(a,b)= a′b′+ab H(G,c,d) = Gc′+ G′(cd+c′d′)

1 2 3 4

000010

101011

010101

111100

10110100

Bound Set = {a,b}

Free Set =
{c,d}

Here µ= 2, so function H
must distinguish two values
• need 2 bits to encode inputs from G

F
G

H

a
b

c
d

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 9

• Two-level decomposition is iteratively applied to new
functions Hi and Gi, until smaller functions Gt and Ht
are created, that are not further decomposable.

• One of the possible cost functions is Decomposed
Function Cardinality (DFC). It is the total cost of all
blocks, where the cost of a binary block with n inputs
and m outputs is m * 2n.

Multi-Level Curtis Decomposition

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 10

Typical Decomposition Algorithm

• Find a set of partitions (Bi, Ai) of input variables X into
bound set variables Bi and free set variables Ai

• For each partition, find decomposition
F(X) = Hi (Gi(Bi), Ai)

such that the column multiplicity is minimal, and
compute DFC

• Repeat the process for all partitions until the
decomposition with minimum DFC is found.

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 11

Uses of BDDs for Decomposition

• Whatever is the decomposition algorithm, BDDs can be
used to store data and perform computation (using
cubes, partitions, etc.)

• Alternatively, the algorithm may exploit the BDD
structure of the function F to direct the decomposition in
the bound set selection, column multiplicity computation,
and deriving the decomposed functions G and H

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 12

BDD-Based Decomposition

• Bound set on top (Lai/Pedram/Vardhula, DAC’93)
• Free set on top (Stanion/Sechen, DAC’95)

• Bi-decomposition using 1-, 0-, and EXOR-dominators
(Yang/Ciesielski, ICDD’99)

• Recursive decomposition (Bertacco/Damiani,ICCAD’97)

• Implicit decomposition (Wurth/Eckl/Legl,DAC’95)

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 13

Bound Set on Top (Function G)

G={g0,g1}, A=g0′g1′, B=g0g1′, C=g0′g1

g0=a′bc+ab′c+abc′, g1 = a′b′c+ abc

A=00 C=01

B=10

Bound
Set

Free
Set

A A AB BB CC

= 1

= 0

0 1

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 14

Bound Set on Top (Function H)

A A AB BB CC

F(a,b,c,d,e) = H(g1(a,b,c), g2(a,b,c), d, e)
H=g0′g1′e′ + g0g1′d′ + g0′g1e

F

A=00 C=01

B=10

Bound
Set

Free
Set

= 1

= 0

0 1

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 15

“Bound Set on Top” Algorithm

• Reorder variables in BDD for F and check column
multiplicity for each bound set

• For the bound set with the smallest column multiplicity,
perform decomposition :

– Encode the cut nodes with minimum number of bits (log µ)

– derive functions G and H (both depend on encoding)

• Iteratively repeat the process for functions G and H
(typically, only H)

• This algorithm can be modified to work for non-disjoint
decompositions but does not work with DCs

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 16

Free Set on Top (Function G)

Bound
Set

G={g1,g2}, g1=c′de+cd, g2=d+e

A=00 C=01

B=10

Free
Set

Bound
Set

g1 g2

F

10

= 1

= 0

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 17

Free Set on Top (Function H)

A=00 C=01

B=10

Bound
Set

F(a,b,c,d,e) = H(a, b, g1(c,d,e), g2(c,d,e))

H=(a′b′+ ab) g1 + (a′b+ ab′) g2

Free
Set

Bound
Set

g1 g2

F

10

= 1

= 0

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 18

“Free Set on Top” Algorithm

• Find good variable order
• Derive implicit representation of all feasible cuts on

the BDD representing F
• Use some cost function to find the best bound set

and perform decomposition
• Repeat the process for functions G and H
• This algorithms is faster than “bound set on top” but

it does not work for non-disjoint decompositions and
incompletely specified functins (with DCs).

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 19

Non-Disjoint Decomposition

• Non-disjoint decomposition can be reduced to disjoint
decomposition by adding variables

• Bound Set = {a,b,c}, Free Set = {c,d}
Disjoint decomposition can be generated by
introducing variables c1=c2=c instead of c

• In terms of the Karnaugh map, it is equivalent to
introducing two variables instead of one in such a
way that c1c2′ +c1′c2 is a don’t care set.

Why: c1 ≡ c2 ⇒ c1c2′ +c1′c2

(&(����� � 6\QWKHVLV�	�9HULILFDWLRQ� � /HFWXUH��� 20

Non-Disjoint Decomposition Example

There is no disjoint decomposition with any bound set;
there is non-disjoint decomposition with bound set {a,b,c}

A A A ABBBBA B C B

