
1
ECE 667 - Synthesis & Verification - Lecture 9

ECE 697B (667)
Spring 2003

Synthesis and Verification
of Digital Systems

Multi-level Minimization
- Algebraic division

Slides adopted (with permission) from A. Kuehlmann, UC Berkeley, 2003

ECE 667 - Synthesis & Verification - Lecture 9 2

Outline

• Division and factorization
– Definitions
– Algebraic vs Boolean

• Algebraic division
– Algorithm
– Applications

• Finding good divisors
– Kernels and co-kernels

• Generation of all Kernels – algorithm
• Extraction: rectangle covering method

ECE 667 - Synthesis & Verification - Lecture 9 3

Factorization

• Given an F in SOP form, how do we generate a “good”
factored form

• Division operation:
– central in many operations
– need to find a good divisor D
– apply the actual division

• results in quotient Q and remainder R

• Applications:
– factoring
– substitution
– extraction

ECE 667 - Synthesis & Verification - Lecture 9 4

Division

Definition:
An operation OP is called division if, given two SOP expressions F
and G, it generates expressions H and R, such that:

F = GH + R
– G is called the divisor
– H is called the quotient
– R is called the remainder

Definition:
If GH is an algebraic product, then OP is called an algebraic division

(denoted F // G)
otherwise GH is a Boolean product and OP is a Boolean division

(denoted F ÷÷ G).

ECE 667 - Synthesis & Verification - Lecture 9 5

Division (f = gh+r)

Example:
f = ad + ae + bcd + j
g1 = a + bc
g2 = a + b

• Algebraic division:

– f // a = d + e, r = bcd + j
– f // (bc) = d, r = ad + ae + j
– (Also, f // a = d or f // a = e, i.e. algebraic division is not unique)
– h1 = f // g1 = d, r1 = ae + j

• Boolean division:

– h2 = f ÷ g2 = (a + c)d, r2 = ae + j.
i.e. f = (a+b)(a+c)d + ae + j

ECE 667 - Synthesis & Verification - Lecture 9 6

Division

Definition:
G is an algebraic factor of F if there exists an algebraic
expression H such that

F = GH using algebraic multiplication.

Definition:
G is an Boolean factor of F if there exists an expression H such
that

F = GH using Boolean multiplication.

Example:
f = ac + ad + bc + bd

(a+b) is an algebraic factor of f since f = (a+b)(c+d)
f = a’b + ac + bc

(a+b) is a Boolean factor of f since f = (a+b)(a’+c)

ECE 667 - Synthesis & Verification - Lecture 9 7

Why Use Algebraic Methods?

• Need spectrum of operations
– algebraic methods provide fast algorithms

• Treat logic function like a polynomial
– efficient data structures
– fast methods for manipulation of polynomials available

• Loss of optimality, but results are quite good
• Can iterate and interleave with Boolean operations
• In specific instances slight extensions available to include

Boolean methods

ECE 667 - Synthesis & Verification - Lecture 9 8

Weak Division

Weak division is a specific case of algebraic division.

Definition:
Given two algebraic expressions F and G, a division is called
weak division if

• it is algebraic and
• R has as few cubes as possible.

The quotient H resulting from weak division is denoted by F/G.

THEOREM:
Given expressions F and G, expressions H and R generated
by weak division are unique.

ECE 667 - Synthesis & Verification - Lecture 9 9

Algorithm
ALGORITHM WEAK_DIV(F,G) { // G={g1,g2,...},

f=(f1,f2,...}
foreach gi {
Vgi=∅
foreach fj {

if(fj contains all literals of gi) {
vij=fj - literals of gi
Vgi=Vgi ∪ vij

}
}

}

H = ∩iV
gi

R = F - GH
return (H,R);

}

ECE 667 - Synthesis & Verification - Lecture 9 10

Example of WEAK_DIV

Example: divide F by G

F = ace + ade + bc + bd + be +a’b + ab

G = ae + b

Vae= c + d

Vb = c + d + e + a’ + a

H = c + d = F/G H = ∩ V gi

R = be + a’b + ab R = F \ GH

F = (ae + b)(c + d) + be + a’b + ab

ECE 667 - Synthesis & Verification - Lecture 9 11

Efficiency Issues

We use filters to prevent trying a division.

G is not an algebraic divisor of F if:
• G contains a literal not in F.
• G has more terms than F.
• For any literal, its count in G exceeds that in F.
• F is in the transitive fanin of G.

ECE 667 - Synthesis & Verification - Lecture 9 12

Division - What do we divide with?

• Weak_Div provides a methods to divide an expression for a given
divisor

• How do we find a “good” divisor?
– Restrict to algebraic divisors
– Generalize to Boolean divisors

• Problem:
– Given a set of functions { Fi }, find common weak divisors

(algebraic divisors).

ECE 667 - Synthesis & Verification - Lecture 9 13

Kernels and Kernel Intersections

Definition:
An expression is cube-free if no cube divides the expression evenly
(i.e. there is no literal that is common to all the cubes).

(ab + c) is cube-free
(ab + ac) and abc are not cube-free

Note: a cube-free expression must have more than one cube.

Definition:

The primary divisors of an expression F are the set of expressions
D(F) = { F/c | c is a cube }.

ECE 667 - Synthesis & Verification - Lecture 9 14

Kernels and Kernel Intersections

Definition:
The kernels of an expression F are the set of expressions

K(F) = {G | G ∈ D(F) and G is cube-free}.

In other words, the kernels of an expression F are the cube-free
primary divisors of F.

Definition:
A cube c used to obtain the kernel K = F/c is called a co-kernel
of K.

C(F) is used to denote the set of co-kernels of F.

ECE 667 - Synthesis & Verification - Lecture 9 15

Example

Example:

x = adf + aef + bdf + bef + cdf + cef + g
= (a + b + c)(d + e)f + g

kernels co-kernels

a+b+c df, ef
d+e af, bf, cf
(a+b+c)(d+e)f+g 1

ECE 667 - Synthesis & Verification - Lecture 9 16

Fundamental Theorem

THEOREM:

If two expressions F and G have the property that

∀kF ∈ K(F), ∀kG ∈ K(G) → | kG ∩ kF | ≤ 1

(i.e., kG and kF have at most one term in common),

then F and G have no common algebraic multiple divisors
(i.e. with more than one cube).

Important:
If we “kernel” all functions and there are no nontrivial
intersections, then the only common algebraic divisors left
are single cube divisors.

ECE 667 - Synthesis & Verification - Lecture 9 17

The Level of a Kernel

Definition:
A kernel is of level 0 (K0) if it contains no kernels except itself.
A kernel is of level n (Kn) if it contains at least one kernel of level
(n-1), but no kernels (except itself) of level n or greater

• K0(F) ⊂ K1(F) ⊂ K2(F) ⊂ ... ⊂ Kn(F) ⊂ K(F).
• level-n kernels = Kn(F) \ Kn-1(F)
• Kn(F) is the set of kernels of level k or less.

Example:
F = (a + b(c + d))(e + g)
k1 = a + b(c + d) ∈ K1, ∉ K0 (level 1)

k2 = c + d ∈ K0

k3 = e + g ∈ K0

ECE 667 - Synthesis & Verification - Lecture 9 18

Kerneling Algorithm

Algorithm KERNEL(j, G) {

R = ∅
if(CUBE_FREE(G)) R = {G}

for(i=j+1,...,n) {

if(li appears only in one term) continue

if(∃k ≤ i, lk ∈ all cubes of G/li) continue

R = R ∪ KERNEL(i,MAKE_CUBE_FREE(G/li)
}

return R

}

MAKE_CUBE_FREE(F) removes algebraic cube factor from F

ECE 667 - Synthesis & Verification - Lecture 9 19

Kerneling Algorithm

KERNEL(0, F) returns all the kernels of F.

Notes:

• The test (∃k ≤ i, lk ∈ all cubes of G/li) is a major efficiency
factor. It also guarantees that no co-kernel is tried more
than once.

• Can be used to generate all co-kernels.

ECE 667 - Synthesis & Verification - Lecture 9 20

Kernel Generation - example
F = ace + bce + de + g n = 6 variables
• Call KERNEL(0,F)

– i=1, l1=a, literal appears only once; continue
– i=2, l2=b, ….…. ; continue
– i=3, l3=c,

• make_cube_free(F/c) = (a+b)
• recursive call to KERNEL(3,(a+b))

– the call considers variables 4,5,6 = {d,e,g} – No Kernels
• Return R = {(a+b)}

– i=4, l4=d, literal appears only once; continue
– i=5, l5=e,

• make_cube_free(F/e) = (ac+bc+d)
• recursive call to KERNEL(5,(ac+bc+d))

– the call considers variable 6 = {g} – No Kernels
• Return R = R ∪ {(a+b), (ac+bc+d)}

– i=6, l6=g, appears only once; continue; stop.
• Return R = R ∪ {(a+b), (ac+bc+d),(ace + bce + de + g) }

ECE 667 - Synthesis & Verification - Lecture 9 21

Kerneling Illustrated

abcd + abce + adfg + aefg + adbe + acdef + beg

a b

c
(a)

c
d e

(a)

(a)
ac+d+g

g

d+ecd+g

f

ce+g

f

b+cf

e

d

b+df

e

b+ef

d

c

d+e

c+e

c+d

b

c d e

(bc + fg)(d + e) + de(b + cf)

c(d+e) + de=
d(c+e) + ce =
...

a(d+e)

ECE 667 - Synthesis & Verification - Lecture 9 22

co-kernels kernels

1 a((bc + fg)(d + e) + de(b + cf))) + beg
a (bc + fg)(d + e) + de(b + cf)
ab c(d+e) + de
abc d + e
abd c + e
abe c + d
ac b(d + e) + def
acd b + ef
….. …..

Note:
f/bc = ad + ae = a(d + e), so that f/bca = (d+e),
but f/bca = (d+e) has been already found (no repetition).

Kerneling Illustrated

ECE 667 - Synthesis & Verification - Lecture 9 23

Applications - Factoring

Algorithm FACTOR(F) {

if(F has no factor) return F

// e.g. if |F|=1, or F is an OR of single literals

// or if no literal appears more than once

D = CHOOSE_DIVISOR(F)

(Q,R) = DIVIDE(F,D)

return FACTOR(Q)⋅FACTOR(D) + FACTOR(R) // recur
}

– Different heuristics can be applied for CHOOSE_DIVISOR
– Different DIVIDE routines may be applied (e.g. also Boolean

divide)

ECE 667 - Synthesis & Verification - Lecture 9 24

Example and Problems of Factor

Example:

F = abc + abd + ae + af + g
D = c + d
Q = ab
P = ab(c + d) + ae + af + g
O = ab(c + d) + a(e + f) + g

O is not optimal since not maximally factored.
Can be further factored to

a(b(c + d) + e + f) + g

The problem occurs when
• quotient Q is a single cube, and
• some of the literals of Q also appear in the remainder R.

Notation:
F = the original function,
D = the divisor,
Q = the quotient,
P = the partial factored form,
O = the final factored form by
FACTOR.
Restrict to algebraic operations only.

ECE 667 - Synthesis & Verification - Lecture 9 25

Solving the Problem

Solving this problem:
• Check if the quotient Q is not a single cube, then done, else,
• Pick a literal l1 in Q which occurs most frequently in cubes of F.
• Divide F by l1 to obtain a new divisor D1.

Now, F has a new partial factored form
(l1)(D1) + (R1)

and literal l1 does not appear in R1.

Note:
The new divisor D1 contains the original D as a divisor because l1
is a literal of Q. When recursively factoring D1, D can be
discovered again.

ECE 667 - Synthesis & Verification - Lecture 9 26

Second Problem with FACTOR

Example:

F = ace + ade + bce + bde + cf + df
D = a + b
Q = ce + de
P = (ce + de)(a + b) + (c + d) f
O = e(c + d)(a + b) + (c + d)f

O is not maximally factored because (c + d) is common to both
products e(c + d)(a + b) and remainder (c + d)f.
The final factored form should have been:

(c+d)(e(a + b) + f)

Notation:
F = the original function,
D = the divisor,
Q = the quotient,
P = the partial factored form,
O = the final factored form by
FACTOR.

ECE 667 - Synthesis & Verification - Lecture 9 27

Second Problem with FACTOR

Solving the problem:
• Essentially, we reverse D and Q !
• Make Q cube-free to get Q1

• Obtain a new divisor D1 by dividing F by Q1

• If D1 is cube-free, the partial factored form is
F = (Q1)(D1) + R1, and can recursively factor Q1, D1, and R1

• If D1 is not cube-free, let D1 = cD2 and D3 = Q1D2. We have
the partial factoring F = cD3 + R1. Now recursively factor D3

and R1.

ECE 667 - Synthesis & Verification - Lecture 9 28

Improved Factoring

Algorithm GFACTOR(F, DIVISOR, DIVIDE) {

D = DIVISOR(F)

if(D = 0) return F

Q = DIVIDE(F,D)

if (|Q| = 1) return LF(F, Q, DIVISOR, DIVIDE)

Q = MAKE_CUBE_FREE(Q)

(D, R) = DIVIDE(F,Q)

if (CUBE_FREE(D)) {

Q = GFACTOR(Q, DIVISOR, DIVIDE)

D = GFACTOR(D, DIVISOR, DIVIDE)

R = GFACTOR(R, DIVISOR, DIVIDE)

return Q ⋅ D + R
}

else {
C = COMMON_CUBE(D)
return LF(F, C, DIVISOR, DIVIDE)

}}

ECE 667 - Synthesis & Verification - Lecture 9 29

Improved Factoring

Algorithm LF(F, C, DIVISOR, DIVIDE) {

L = BEST_LITERAL(F, C) // most frequent

(Q, R) = DIVIDE(F, L)

C = COMMON_CUBE(Q) // largest one

Q = CUBE_FREE(Q)

Q = GFACTOR(Q, DIVISOR, DIVIDE)

R = GFACTOR(R, DIVISOR, DIVIDE)

return L ⋅ C ⋅ Q + R

}

ECE 667 - Synthesis & Verification - Lecture 9 30

Improving the Divisor

Various kinds of factoring can be obtained by choosing different
forms of DIVISOR and DIVIDE.

• CHOOSE_DIVISOR:
– LITERAL - chooses most frequent literal
– QUICK_DIVISOR - chooses the first level-0 kernel
– BEST_DIVISOR - chooses the best kernel

• DIVIDE:
– Algebraic division
– Boolean division

ECE 667 - Synthesis & Verification - Lecture 9 31

Factoring Algorithms

x = ac + ad + ae + ag + bc + bd +be + bf + ce + cf + df + dg

LITERAL_FACTOR:
x = a(c + d + e + g) + b(c + d + e + f) + c(e + f) + d(f + g)

QUICK_FACTOR:
x = g(a + d) + (a + b)(c + d + e) + c(e + f) + f(b + d)

GOOD_FACTOR:
(c + d + e)(a + b) + f(b + c + d) + g(a + d) + ce

ECE 667 - Synthesis & Verification - Lecture 9 32

Example: QUICK_FACTOR

QUICK_FACTOR uses
• GFACTOR,
• First level-0 kernel DIVISOR, and
• WEAK_DIV.

x = ae + afg + afh + bce + bcfg + bcfh + bde + bdfg + bcfh
D = c + d ---- level-0 kernel (first found)
Q = x/D = b(e + f(g + h)) ---- weak division
Q = e + f(g + h) ---- make cube-free
(D, R) = WEAK_DIV(x, Q) ---- second division
D = a + b(c + d)
x = QD + R R = 0

x = (e + f(g + h)) (a + b(c + d))

ECE 667 - Synthesis & Verification - Lecture 9 33

Application - Decomposition
Decomposition is the same as factoring except:

– divisors are added as new nodes in the network.
– the new nodes may fan out elsewhere in the network in both

positive and negative phases
Al gor it hm DECOMP(f i) {

k = CHOOSE_KERNEL(f i)

if (k = = 0) return

f m+j = k // cr eate n ew node m + j

f i = (f i /k) ym+j +(f i / k’) y’ m+j +r / / change no de i us i ng new
/ / node f or ke r nel

DECOMP(f i)

DECOMP(f m+j)

}

Similar to factoring, we can define
– QUICK_DECOMP: pick a level 0 kernel and improve it.
– GOOD_DECOMP: pick the best kernel.

ECE 667 - Synthesis & Verification - Lecture 9 34

Re-substitution

Idea: An existing node in a network may be a useful divisor in another
node. If so, no loss in using it (unless delay is a factor).

• Algebraic substitution consists of the process of algebraically dividing the
function fi at node i in the network by the function fj (or by f’j) at node j.
During substitution, if fj is an algebraic divisor of fi, then fi is transformed into

fi = qyj + r (or fi = q1yj + q0y’j + r)

• In practice, this is tried for each node pair of the network.
For n nodes in the network ⇒ O(n2) divisions.

IL

IM
\M

ECE 667 - Synthesis & Verification - Lecture 9 35

Extraction

• Recall: Extraction operation identifies common sub-expressions and
manipulates the Boolean network.

• Combine decomposition and substitution to provide an effective
extraction algorithm.

Algorithm EXTRACT

foreach node n {
DECOMP(n) // decompose all network nodes

}

foreach node n {

RESUB(n) // resubstitute using existing nodes

}

ELIMINATE_NODES_WITH_SMALL_VALUE

}

ECE 667 - Synthesis & Verification - Lecture 9 36

Extraction

Kernel Extraction:

1. Find all kernels of all functions
2. Choose kernel intersection with best “value”
3. Create new node with this as function
4. Algebraically substitute new node everywhere
5. Repeat 1,2,3,4 until best value ≤ threshold

New Node

ECE 667 - Synthesis & Verification - Lecture 9 37

Example-Extraction

f1 = ab(c(d + e) + f + g) + h, f2 = ai(c(d + e) + f + j) + k
(only level-0 kernels used in this example)

1. Extraction: K0(f1) = K0(f2) = {d + e}
K0(f1) ∩ K0(f2) = {d + e}

l = d + e f1 = ab(cl + f + g) + h
f2 = ai(cl + f + j) + k

2. Extraction: K0(f1) = {cl + f + g}; K0(f2) = {cl + f + j)
K0(f1) ∩ K0(f2) = cl + f

m = cl + f f1 = ab(m + g) + h
f2 = ai(m + j) + k

No kernel intersections anymore !
3. Cube extraction:
n = am f1 = b(n + ag) + h

f2 = i(n + aj) + k

ECE 667 - Synthesis & Verification - Lecture 9 38

Rectangle Covering

Alternative method for extraction

• Build co-kernel cube matrix M = R × C
– rows correspond to co-kernels of individual functions
– columns correspond to individual cubes of kernel

mij = 1 (cubes of functions)
0 if cube is not there

• Rectangle covering:
– identify sub-matrix M’ = R’ × C’, where R’ ⊆ R, C’ ⊆ C, and m’ij≠ 0
– construct divisor D corresponding to M’ as new node
– extract D from all functions

ECE 667 - Synthesis & Verification - Lecture 9 39

Example for Rectangle Covering

Kernels/Co-kernels:

F: (de+f+g)/a
(de + f)/b
(a+b+c/de
(a + b)/f
(de+g)/c
(a+c)/g

G: (ce+f)/{a,b}
(a+b)/{f,ce}

H: (a+c)/de

a b c ce de f g

F a ade af ag

F b bde bf

F de ade bde cde

F f af bf

M F c cde cg

F g ag cg

G a ace af

G b bce bf

G ce ace bce

G f af bf

H de ade cde

=

F = af + bf + ag + cg + ade + bde + cde
G = af + bf + ace + bce
H = ade + cde

ECE 667 - Synthesis & Verification - Lecture 9 40

Example for Rectangle Covering

F = af + bf + ag + cg + ade + bde + cde

G = af + bf + ace + bce

H = ade + cde
a b c ce de f g

F a ade af ag

F b bde bf

F de cde

F f

M F c cde cg

F g ag cg

G a ace af

G b b

ade bde

af bf

ac

ce bf

G ce

G f

H

e b

de

ce

a

a

f b

e

f

de cd

=
• Extract new expression X

X = a + b

F = fx + ag + cg + dex + cde

G = fx + cex

H =ade + cde

• Update M

• Pick sub-matrix (rectangle) M’

ECE 667 - Synthesis & Verification - Lecture 9 41

Value of a Sub-Matrix

• Number literals before - Number of literals after

• For the example

V = 20 - 10 - 2 = 8

, '

(', ')

: Number of literals of cube

: (Number of literals of the cube associated with row) 1

: Number of literals of the cube associated with column

r c
ij i j

i R j C i R j C

ij ij

r
i

c
j

V R C v w w

v m

w i

w j

∈ ∈ ∈ ∈

= − −

+

∑ ∑ ∑

a b c ce de f g

F a ade af ag

F b bde bf

F de cde

F f

M F c cde cg

F g ag cg

G a ace af

G b b

ade bde

af bf

ac

ce bf

G ce

G f

H

e b

de

ce

a

a

f b

e

f

de cd

=

ECE 667 - Synthesis & Verification - Lecture 9 42

Pseudo-Boolean Division

• Idea: consider entries in covering matrix that are don’t cares
– overlap of rectangles (a+a = a)
– product that cancel each other out (a+a’ = 0)

• Example: F = ab’ + ac’ + a’b + a’c + bc’ + b’c

• Result:
X = a’ + b’ + c’
F = ax + bx + cx

' ' '

' '

' '

' '

' ' '

'

*

*

*

*

' '

*' ' '

*

a b c a b c

F a ab ac

F b a b bc

M F c a c b c

F a a b a c

F b ab b c

F c ac bc

=

ECE 667 - Synthesis & Verification - Lecture 9 43

Faster “Kernel” Extraction

• Non-robustness of kernel extraction
– Recomputation of kernels after every substitution: expensive
– Some functions may have many kernels (e.g. symmetric functions)

• Cannot measure if kernel can be used as complemented node

• Solution: compute only subset of kernels:
– Two-cube “kernel” extraction [Rajski et al ‘90]
– Objects:

• 2-cube divisors
• 2-literal cube divisors

– Example: f = abd + a’b’d + a’cd
• ab + a’b’, b’ + c and ab + a’c are 2-cube divisors.
• a’d is a 2-literal cube divisor.

ECE 667 - Synthesis & Verification - Lecture 9 44

Fast Divisor Extraction

Properties of fast divisor (kernel) extraction:
• O(n2) number of 2-cube divisors in an n-cube Boolean expression.
• Concurrent extraction of 2-cube divisors and 2-literal cube divisors.
• Handle divisor and complemented divisor simultaneously

• Example: f = abd + a’b’d + a’cd.
k = ab + a’b’, k’ = ab’ + a’b (both 2-cube divisors)
j = ab + a’c, j’ = a’b’ + ac’ (both 2-cube divisors)
c = ab (2-literal cube), c’ = a’ + b’ (2-cube divisor)

ECE 667 - Synthesis & Verification - Lecture 9 45

Generating All 2-cube Divisors
F = {ci}, D(F) = {d | d = make_cube_free(ci + cj)}

This takes all pairs of cubes in F and makes them cube-free.
ci, cj are any pair of cubes of cubes in F
Divisor generation is O(n2), where n = number of cubes in F

Example:
F = axe + ag + bcxe + bcg
make_cube_free(ci + cj) = {xe + g, a + bc, axe + bcg, ag + bcxe}

Note:
• the function F is made into an algebraic expression before

generating double-cube divisors
• not all 2-cube divisors are kernels (why ?)

ECE 667 - Synthesis & Verification - Lecture 9 46

Key Result For 2-cube Divisors

THEOREM:
Expressions F and G have a common multiple-cube divisors

if and only if D(F) ∩ D(G) ≠ 0.
Proof:
If:

If D(F) ∩ D(G) ≠ 0 then ∃d ∈ D(F) ∩ D(G) which is a double-cube
divisor of F and G. d is a multiple-cube divisor of F and of G.

Only if:
Suppose C = {c1, c2, ..., cm} is a multiple-cube divisor of F and of G.
Take any e = (ci + cj). If e is cube-free, then e ∈ D(F) ∩ D(G). If e is
not cube-free, then let d = make_cube_free(ci + cj). Then d has 2
cubes since F and G are algebraic expressions.

Hence d ∈ D(F) ∩ D(G).

ECE 667 - Synthesis & Verification - Lecture 9 47

Example:
Suppose that C = ab + ac + f is a multiple divisor of F and G.
If e = ac + f, e is cube-free and e ∈ D(F) ∩ D(G).
If e = ab + ac, d = {b + c} ∈ D(F) ∩ D(G)

As a result of the Theorem, all multiple-cube divisors can be
“discovered” by using just double-cube divisors.

Key Result For 2-cube Divisors

ECE 667 - Synthesis & Verification - Lecture 9 48

Fast Divisor Extraction

Algorithm:
• Generate and store all 2-cube kernels (2-literal cubes) and

recognize complement divisors.
• Find the best 2-cube kernel or 2-literal cube divisor at each stage

and extract it.
• Update 2-cube divisor (2-literal cubes) set after extraction
• Iteratate extraction of divisors until no more improvement

• Results:
– Much faster
– Quality as good as that of kernel extraction

