
CompactRISC

CR16A
Programmer’s Reference Manual

Part Number: 424521426-006

February 1997

REVISION RECORD

VERSION RELEASE DATE SUMMARY OF CHANGES

1.0 August 1996 First release.

1.1 February 1997 Minor modifications and corrections.

iii

PREFACE

This Programmer’s Reference Manual presents the programming model for the CR16A
microprocessor core. The key to system programming, and a full understanding of the
characteristics and limitations of the CompactRISC Toolset, is understanding the pro-
gramming model.

The information contained in this manual is for reference only and is subject to change
without notice.

No part of this document may be reproduced in any form or by any means without the
prior written consent of National Semiconductor Corporation.

CompactRISC CR16A Programmer’s Reference Manual CONTENTS -v

CONTENTS

Chapter 1 INTRODUCTION

1.1 MANUAL ORGANIZATION ... 1-5

1.2 REFERENCES.. 1-6

1.3 THE CORE.. 1-6

Chapter 2 PROGRAMMING MODEL

2.1 DATA TYPES .. 2-1

2.2 INSTRUCTION SET .. 2-1

2.3 REGISTER SET .. 2-3
2.3.1 General Purpose Registers ... 2-4
2.3.2 Dedicated Address Registers ... 2-4
2.3.3 The Processor Status Register .. 2-4
2.3.4 The Configuration Register .. 2-6

2.4 MEMORY ORGANIZATION .. 2-7
2.4.1 Data References .. 2-8
2.4.2 Stacks ... 2-8

2.5 ADDRESSING MODES... 2-9

Chapter 3 EXCEPTIONS

3.1 INTRODUCTION... 3-1
3.1.1 Interrupt Handling ... 3-3
3.1.2 Traps .. 3-4

3.2 EXCEPTION PROCESSING... 3-4
3.2.1 Instruction Endings ... 3-4
3.2.2 Acknowledging an Exception ... 3-5
3.2.3 Exception Service Procedures ... 3-6
3.2.4 Returning From Exception Service Procedures 3-7
3.2.5 Priority Among Exceptions ... 3-7
3.2.6 Nested Interrupts .. 3-9

3.3 RESET... 3-10

Chapter 4 ADDITIONAL TOPICS

4.1 DEBUGGING SUPPORT .. 4-1

CompactRISC CR16A Programmer’s Reference Manual CONTENTS -vi

4.1.1 Instruction Tracing .. 4-1
4.1.2 In-System Emulator (ISE) Support ... 4-2

4.2 INSTRUCTION EXECUTION ORDER .. 4-3
4.2.1 The Instruction Pipeline .. 4-4
4.2.2 Serializing Operations .. 4-5

Chapter 5 INSTRUCTION SET

5.1 INSTRUCTION DEFINITIONS .. 5-1

5.2 DETAILED INSTRUCTION LIST... 5-2

Appendix A INSTRUCTION SET ENCODING

Appendix B CR16 INSTRUCTION SET

INDEX

CompactRISC CR16A Programmer’s Reference Manual FIGURES -vii

FIGURES

Figure 2-1. CR16A Registers . 2-3
Figure 2-2. Processor Status Register . 2-5
Figure 2-3. Configuration Register . 2-6
Figure 2-4. Memory Organization . 2-7
Figure 2-5. Data Representation . 2-8
Figure 3-1. Dispatch Table . 3-2
Figure 3-2. Saving the PC and PSR Contents During an Exception Acknowledge Sequence

3-5
Figure 3-3. Transfer of Control During an Exception Acknowledge Sequence 3-6
Figure 3-4. Exception Processing Flowchart . 3-8
Figure 4-1. CR16A Operating States . 4-3
Figure 4-2. Memory References for Consecutive Instructions . 4-5
Figure 5-1. Instruction Header Format . 5-1
Figure 5-2. Instruction Example Format . 5-2
Figure A-1. Basic Instruction Structure .A-1
Figure A-2. Register to Register Format .A-2
Figure A-3. Short Immediate Value to Register Format .A-3
Figure A-4. Medium Immediate Value to Register Format .A-3
Figure A-5. Format for Instructions with Special or No OperandsA-3
Figure A-6. Load/Store Format, Relative with Short Displacement Value A-4
Figure A-7. Load/Store Format, Relative with Medium Displacement ValueA-4
Figure A-8. Load/Store Format, Far-Relative .A-5
Figure A-9. Load/Store Format, Absolute .A-5
Figure A-10. BR or Bcond Format, Short Displacement Value .A-6
Figure A-11. BR or Bcond Format, Medium Displacement Value .A-6
Figure A-12. BAL Format .A-7
Figure A-13. JUMP and Jcond Instruction Format .A-7
Figure A-14. JAL Instruction Format .A-7

CompactRISC CR16A Programmer’s Reference Manual TABLES -viii

TABLES

Table 3-1. Summary of Exception Processing . 3-6
Table A-1. Coding for Load and Store Op code and Register TypeA-4
Table A-2. Undefined Op Codes .A-7
Table A-3. Notation Conventions for Instruction Set Summary .A-8
Table A-4. Instruction Encoding .A-10

CompactRISC CR16A Programmer’s Reference Manual INTRODUCTION 1-1

Chapter 1
INTRODUCTION

National Semiconductor’s CompactRISC architecture is a RISC
architecture specifically designed for embedded systems. CompactRISC
technology features compact code generation, low power consumption,
silicon-efficient implementations, the ability to tightly integrate on-chip
acceleration, I/O and memory functions, and scalability from 8- to 64-
bits.

CISC to RISC
migration

The past decade has seen a gradual migration from CISC to RISC archi-
tectures. The silicon required to support CISC CPUs is too large, con-
sumes too much power and is too expensive.

RISC architectures execute a small set of basic instructions to achieve
higher performance with less silicon. This yields smaller, more econom-
ical silicon solutions that use less power, and provide higher perfor-
mance. Higher frequency clock speeds further improve performance.
Higher clock speeds require advanced concurrent processing techniques
that allow simultaneous and overlapping execution of instructions. The
most obvious of these is a multistage pipeline structure.

Modern RISC architectures are optimized for High Level Language (HLL)
programs, usually written in C, and powerful, multiuser, multitasking
operating systems such as UNIX and Windows. In these applications,
processing speed is the most important consideration. As a result, mod-
ern RISC architectures are designed for “hyper” clock speeds with ex-
tensive, overlapping execution logic which yield highly optimized
processors for workstation and fileserver applications.

However, existing RISC architectures are not well suited for embedded
systems applications.

Embedded
systems
requirements

Embedded systems, being application specific, require a low system
cost, while delivering sufficient performance for the application. They
usually integrate on-chip memory and I/O with the processor. Clock fre-
quency is limited by EMI and noise.

These system constraints dictate the requirements for embedded pro-
cessors. In the past, general-purpose CISC processors were modified to
serve this market. The resulting microcontroller architectures provided
low-cost, highly-integrated systems, but at a cost. The architectures
were convoluted, difficult to program using high-level languages, and
not scalable from one data-path width to the next.

CompactRISC CR16A Programmer’s Reference Manual INTRODUCTION 1-2

Embedded CISC microcontrollers were, however, successful because
they met other important criteria of embedded systems:

• Low total system cost
• On-chip memory and I/O functions
• Small code size

Present RISC processors are optimized for use as computer CPUs, and
are thus not a perfect fit for embedded systems. An emphasis on speed,
and high-speed concurrent operation logic, yields large silicon imple-
mentations. Large off-chip memories and I/O require large on-chip bus
interface units that further increase silicon size. Finally, the use of con-
sistent fixed-width instructions simplifies the processor design, but in-
creases code size, and the size of ROM, as compared with CISC
architectures.

National’s
CompactRISC
technology
approach

Based on its experience with many high-volume designs using its previ-
ous 8-bit and 16-bit microcontroller and 32-bit CISC embedded proces-
sor families, National concluded that there was a need for a new class
of high-performance embedded control systems. Such processors are
suited for moving and shaping information applications such as wire-
less communication systems, multifunction peripherals, automotive
subsystems, printers and fax machines, games, mass storage sub-
systems, communication switches and encryption devices. These appli-
cations require significant processing power and powerful development
tools (for faster time to market), but must meet stringent cost and pow-
er consumption constraints.

To meet this need, National developed a new RISC processor technology
that combines the advantages of RISC with the compact code generation
of CISC, and is scalable from 8 bits to 64 bits.

In developing the CompactRISC technology, National had to rethink the
process of traditional RISC architecture design. In analyzing RISC de-
sign against the goals of embedded systems design, CompactRISC ar-
chitects found several ways to greatly reduce the amount of silicon
required without significantly reducing the performance advantages of
RISC.

CompactRISC Architecture Characteristics:

• Reduced concurrency logic
• Smaller bus interface units
• Smaller transistor count

We made a number of observations which affected the basic architectur-
al decisions:

• Workstation-oriented RISC architectures trade silicon efficiency for
instruction execution efficiency.
Traditional RISC architectures squeeze every bit of execution time

CompactRISC CR16A Programmer’s Reference Manual INTRODUCTION 1-3

from a fast system clock by using overlapping pipelines and highly
parallel concurrent logic. However, this greatly increases both the
number of on-chip transistors required, and the die size.
The performance needs of embedded controllers are quite different.
There is less pressure to squeeze clock performance through every
available design trick. CompactRISC eliminates a large amount of
costly pipeline control logic just by reducing the number of pipeline
stages from five, or more, to three. Shorter pipeline organization al-
lows eliminating branch prediction mechanisms and bypass regis-
ters, while maintaining an acceptable overall performance level for
embedded systems.

• Traditional RISC systems used large off-chip memory and I/O, re-
quiring large and complex on-chip bus interface units. Embedded
systems use on-chip memory wherever possible. Thus, the
CompactRISC is designed with a minimum bus interface unit to on-
chip memories. A controller for external memory accesses is added
only when off-chip memory is needed. A separate peripheral bus
controller is optimized for on-chip I/O. This approach yields maxi-
mum resource flexibility with minimum silicon overhead.

• Designs optimized for clock speeds of 100 MHz, or higher, required
much greater margins in the basic transistor design. National real-
ized that the overwhelming majority of embedded systems face EMI
and noise problems that prohibit clock speeds in excess of 25 MHz,
and designed the CompactRISC with transistors and signal paths
optimized for clock speeds of 30 MHz, and lower.

These observations led to a less complex, and much tighter, silicon im-
plementation. Because the CompactRISC core has fewer transistors
than other RISC processors, there are fewer transistors to drive, reduc-
ing the size of internal bus drivers. The cumulative effect of fewer and
smaller transistors, with a slower clock, yields dramatically smaller sili-
con, with lower system costs, and significantly lower power consump-
tion.

Reduced
memory
requirements

RISC architectures have traditionally used fixed-width instructions to
simplify instruction decoder design. In 32-bit RISC systems, instruc-
tions are either four or eight bytes. CISC systems use a variable in-
struction length, resulting in smaller code size for a given application.
The CompactRISC uses variable instruction widths, with fixed coding
fields within the instruction itself. For example, the opcode field is al-
ways in the first 16 bits, with additional bytes as required for immediate
values. Instructions for the 32-bit CompactRISC core may be 2-bytes, 4-
bytes or 6-bytes long, but basic instructions are only two bytes long.
This permits optimized instruction processing by the instruction decod-
er, and results in a smaller code size. The size of code generated for the
CompactRISC core is comparable to CISC code size, or typically 25 per-
cent smaller than code generated for a typical RISC CPU.

CompactRISC CR16A Programmer’s Reference Manual INTRODUCTION 1-4

Standard 32-bit RISC processors deliver high performance only when
aligned 32-bit data is used. Intermediate results are stored in memory
as 32-bit values and registers are saved as 32-bit operands on the
stack. CompactRISC CR32 instructions operate on 8-, 16- and 32-bit
data. Nonaligned accesses are allowed. Dedicated data type conversion
instructions speed data access to mixed size data. With smaller code
size, and variable length instructions and data, the CompactRISC family
makes more efficient use of smaller, lower cost, lower bandwidth mem-
ories. Smaller memories allow many more system elements to be inte-
grated with on-chip memory.

Scalable cores
from 8 to 64 bits

These architectural features make the CompactRISC technology ideal
for the next generation of embedded systems. In addition, National de-
cided to implement the CompactRISC technology in a set of core proces-
sors, in the range 8- to 64-bits. This provides a new, more attractive
solution for designers of low-end embedded systems.

Low-cost, single-chip systems, with on-board memory and I/O, could be
implemented with low-cost 8-bit microcontrollers, or later 16-bit ver-
sions. However, the accumulator-based architectures of such microcon-
trollers made programming in high-level languages impractical. Code
generated by a compiler for such machines is typically larger, and slow-
er than code written in assembly language.

The CompactRISC’s architecture, however, produces highly efficient
compiler generated code. CompactRISC is the first architecture designed
to produce highly efficient HLL-generated code in both the 8- and 16-bit
worlds.

With National’s compatible family of processor cores, the designer of
embedded controller-based systems can now choose the optimum pro-
cessor size for a given target application. This is particularly useful in
leveraging the development investment across several classes of related
end-products. With a single processor family, a number of different
products can be developed with a single development platform and us-
ing the same HLL-based development and debug tools.

Fast HLL
development
and debug

With the CompactRISC technology, unlike previous microcontroller fam-
ilies, you can develop code, and debug, in C, greatly speeding up the de-
velopment process. In today’s marketplace, with some product life
cycles lasting 9 to 18 months or less, working with HLL “power tools” is
a significant advantage. A single development platform, for a wide range
of systems from low-end to high-end, is also an important advantage.
The designer of CompactRISC-based systems can maintain a single set
of software development tools covering all CompactRISC implementa-
tions.

CompactRISC CR16A Programmer’s Reference Manual INTRODUCTION 1-5

CompactRISC
architecture

In many ways, CompactRISC technology is a traditional RISC load/store
processor architecture. For example, the CR16 executes an optimized
instruction set with 21 internal registers grouped in 16 general purpose
registers, three dedicated address registers, a processor status register
and a configuration register. A three-stage pipeline is used to obtain a
peak performance of 30 Million Instruction Per Second (MIPS) at a clock
frequency of 30 MHz.

The CompactRISC core includes a pipelined integer unit that supports a
peak execution speed of one instruction per each internal cycle, with a
60 Mbyte/sec. (CR16) or 120 Mbyte/sec. (CR32) pipelined bus. The
CompactRISC technology supports little-endian memory addressing.
This means that the byte order in a CompactRISC processor is from
least significant byte to the most significant byte.

Debug support The CompactRISC provides instruction tracing, soft breakpoints via
breakpoint instructions and external ISE support.

You use instruction tracing, during debugging, to single-step through a
program. Two bits in the PSR or Program Status Register enable and
generate trace traps. In addition, you can use a breakpoint instruction
(EXCP BPT) to stop execution of a program at specified instructions, al-
lowing the debugger to examine the status of the program and internal
registers. The CompactRISC also supports an input pin that causes an
ISE interrupt. The core processor then provides status signals that are
activated upon completing an instruction. Finally, the CR32 also has
on-chip hardware breakpoint support for data and address values.

1.1 MANUAL ORGANIZATION

This reference manual describes the CR16A core, as follows:

Chapter 1 “INTRODUCTION” introduces the CompactRISC architecture.

Chapter 2 “PROGRAMMING MODEL”presents the instruction set, the register set,
operands and addressing modes of the core.

Chapter 3 “EXCEPTIONS” introduces traps and interrupts in the core, and de-
scribes the way these exceptions are treated.

Chapter 4 “ADDITIONAL TOPICS” covers more advanced concepts related to the
CR16A programming model: the CR16A debugging features and the use
of the CR16A pipeline.

Chapter 5 “INSTRUCTION SET” describes all the instructions provided by the
CR16A core.

Appendix A “INSTRUCTION SET ENCODING”

CompactRISC CR16A Programmer’s Reference Manual INTRODUCTION 1-6

1.2 REFERENCES

Core Bus Specification., National Semiconductor, December 1994.

1.3 THE CORE

The CR16A core is designed to operate with other Very Large Scale In-
tegrated (VLSI) modules such as a bus interface unit, ROM, RAM, and
peripherals. Together with such modules, a CR16A based integrated cir-
cuit, implements a full microcontroller or microprocessor.

The CR16A is designed to obtain the maximum performance from Very
Large Scale Integration (VLSI), pipelining, and optimizing compilers. The
high performance of the CR16A microprocessor results from the imple-
mentation of a pipelined architecture with state-of-the-art VLSI CMOS
technology.

The CR16A supports a peak execution speed of one instruction each
clock cycle and a two byte/cycle pipelined system bus.

CompactRISC CR16A Programmer’s Reference Manual PROGRAMMING MODEL 2-1

Chapter 2
PROGRAMMING MODEL

2.1 DATA TYPES

Integer Data
Type

The integer data type is used to represent integers. Integers may be
signed or unsigned. Two integer sizes are supported: 8-bit (1 byte), and
16-bit (1 word). Signed integers are represented as binary two’s comple-
ment numbers and have values in the range !27 to 27!1 and !215 to
215!1, respectively. Unsigned numbers have values in the range 0 to
28!1 and 0 to 216!1, respectively.

Boolean Data
Type

The boolean data type is represented as an integer (byte or word). The
value of its least significant bit represents one of two logical values, true
or false. Integer 1 indicates true; integer 0 indicates false.

2.2 INSTRUCTION SET

This section includes a summary list of all the instructions in the
CR16A instruction set. Chapter 5, “INSTRUCTION SET” describes each
instruction in detail.

The following instructions are included in the CR16A:

Mnemonic Operands Description
MOVES

MOVi Rsrc/imm, Rdest Move
MOVXB Rsrc, Rdest Move with sign extension
MOVZB Rsrc, Rdest Move with zero extension

INTEGER ARITHMETIC
ADD[U]i Rsrc/imm, Rdest Add
ADDCi Rsrc/imm, Rdest Add with carry
MULi Rsrc/imm, Rdest Multiply
SUBi Rsrc/imm, Rdest Subtract (Rdest := Rdest ! Rsrc)

SUBCi Rsrc/imm, Rdest Subtract with carry
(Rdest := Rdest ! Rsrc ! PSR.C)

INTEGER COMPARISON
CMPi Rsrc/imm, Rdest Compare (Rdest ! Rsrc)

CompactRISC CR16A Programmer’s Reference Manual PROGRAMMING MODEL 2-2

LOGICAL AND BOOLEAN
ANDi Rsrc/imm, Rdest Logical AND
ORi Rsrc/imm, Rdest Logical OR
Scond Rdest Save condition code as boolean
XORi Rsrc/imm, Rdest Logical exclusive OR

SHIFTS
ASHUi Rsrc/imm, Rdest Arithmetic left/right shift
LSHi Rsrc/imm, Rdest Logical left/right shift

BITS
TBIT Roffset/imm, Rsrc Test bit

PROCESSOR REGISTER MANIPULATION
LPR Rsrc, Rproc Load processor register
SPR Rproc, Rdest Store processor register

JUMPS AND LINKAGE
Bcond disp Conditional branch
BAL Rlink, disp Branch and link
BR disp Branch
EXCP vector Trap (vector)
Jcond Rtarget Conditional Jump
JAL Rlink, Rtarget Jump and link
JUMP Rtarget Jump
RETX Return from exception

LOAD AND STORE
LOADi disp(Rbase), Rdest Load (register relative)

disp(Rpair+1, Rpair), Rdest Load (far-relative)
abs, Rdest Load (absolute)

STORi Rsrc, disp(Rbase) Store (register relative)
Rsrc, disp(Rpair +1, Rpair) Store (far-relative)
Rsrc, abs Store (absolute)

MISCELLANEOUS

DI Disable maskable interrupts
EI Enable maskable interrupts
NOP No operation
WAIT Wait for interrupt

Mnemonic Operands Description

CompactRISC CR16A Programmer’s Reference Manual PROGRAMMING MODEL 2-3

2.3 REGISTER SET

This section describes each register, its bits and its fields in detail. In
addition, the format of each register is illustrated.

All registers are 16 bits wide, except for the three address registers,
which are 18 bits wide. Bits specified as “reserved” must be written as
0. Read operations return a value of “undefined” from reserved bits.

The CR16A has 21 internal registers grouped by function as follows:

• 16 general purpose registers
• the following processor registers,

– 3 dedicated address registers

– 1 processor status register

– 1 configuration register

Figure 2-1 shows the internal registers of the CR16A.

Figure 2-1. CR16A Registers

PC
ISP

INTBASE

PSR

Dedicated Address Registers

Processor Status Register

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13

RA
SP

General Purpose Registers
17 0

CFG

Configuration Register

15 0

15 0

15 0

CompactRISC CR16A Programmer’s Reference Manual PROGRAMMING MODEL 2-4

2.3.1 General Purpose Registers

Registers R0-R13 are used for general purposes, such as holding vari-
ables, addresses or index values. The SP general purpose register is
usually used as a pointer to the program run-time stack. The RA gener-
al purpose register is usually used as a return address from sub-rou-
tines. If a general purpose register is specified by an operation that is 8
bits long, then only the low part of the register is used; the high part is
not referenced or modified.

2.3.2 Dedicated Address Registers

This section describes the three 18-bit wide dedicated address registers
that the CR16A uses to implement specific address functions.

PC Program Counter ! The value in the PC register, points to the first byte
of the instruction currently being executed. The most significant and
the least significant bits of the PC are always 0. Thus CR16A instruc-
tions reside in even addresses in the address range 0 to 1FFFE16. At re-
set, the PC is initialized to 0 and the value of bits 1 through 16 of the
PC prior to reset is saved in the R0 general purpose register.

ISP Interrupt Stack Pointer ! The ISP register points to the lowest address
of the last item stored on the interrupt stack. This stack is used when
interrupt and trap service procedures are invoked. The two most signif-
icant, and the least significant bits of this register are always 0. Thus
the interrupt stack always starts at an even address, and resides in the
address range 0 to FFFE16.

INTBASE Interrupt Base Register ! The INTBASE register holds the address of
the dispatch table for interrupts and traps. Refer to Chapter 3, “EX-
CEPTIONS” for more information. The least significant bit and the two
most significant bits of this register are always 0. Thus the dispatch ta-
ble always starts at an even address, and resides in the address range
0 to FFFE16.

2.3.3 The Processor Status Register

The Processor Status Register (PSR) holds status information and se-
lects operating modes for the CR16A. It is 16 bits wide. Figure 2-2
shows the format of the PSR.

CompactRISC CR16A Programmer’s Reference Manual PROGRAMMING MODEL 2-5

Figure 2-2. Processor Status Register

At reset, bits 0 through 11 of the PSR are cleared to 0, except for the
PSR.E bit, which is set to 1. In addition, the value of each bit prior to
reset is saved in the R1 general purpose register.

Several bits in the PSR have a dedicated condition code in the Condi-
tional Branch (Bcond) instruction. These bits are Z, C, L, N, and F. Any
Bcond instruction can cause a branch in the program execution, basd
on the value of one of these PSR bits, or a combination of them. For ex-
ample, one of the Bcond instructions, BEQ (Branch EQual), causes a
branch if the PSR.Z flag is set. Refer to the Bcond instruction in “In-
struction Definitions” on page 5-1 for details.

Bits 3, 4 and 8 have a constant value of 0. Bits 12 through 15 of the
PSR register are reserved. The other bits are described below:

The C Bit The Carry bit indicates whether a carry or borrow occurred after addi-
tion or subtraction. It can be used with the ADDC and SUBC instructions
to perform multiple-precision integer arithmetic calculations. It is
cleared to 0 if no carry or borrow occurred, and set to 1 if a carry or
borrow occurred.

The T Bit The Trace bit causes program tracing. While the T bit is set to 1, a
Trace (TRC) trap is executed after every instruction. Refer to “Instruc-
tion Tracing” on page 4-1 for more information on program tracing. The
T bit is automatically cleared to 0, when a trap or an interrupt occurs.
The T bit is used in conjunction with the P bit, see below.

The L Bit The Low flag is set by comparison operations. In integer comparison,
the L flag is set to 1, if the second operand (Rdest) is less than the first
operand (Rsrc) when both operands are interpreted as unsigned inte-
gers. Otherwise, it is cleared to 0. Refer to the specific compare instruc-
tion in “Instruction Definitions” on page 5-1 for details.

The F Bit The Flag bit is a general condition flag which is set by various instruc-
tions. It may be used to signal exceptional conditions or to distinguish
the results of an instruction (e.g., integer arithmetic instructions use it
to indicate overflow from addition or subtraction). In addition it is set,
or cleared, as a result of a Test-Bit instruction.

The Z Bit The Zero bit is set by comparison operations. In integer comparisons it
is set to 1 if the two operands are equal. Otherwise, it is cleared to 0.
Refer to the specific compare instruction in “Instruction Definitions” on
page 5-1 for details.

12 11 8 7 0
reserved CTL00FZ0P EI N

15

CompactRISC CR16A Programmer’s Reference Manual PROGRAMMING MODEL 2-6

The N Bit The Negative bit is set by comparison operations. In integer comparison
it is set to 1 if the second operand (Rdest) is less than the first operand
(Rsrc) when both operands are interpreted as signed integers. Otherwise
it is cleared to 0. Refer to the specific compare instruction in “Instruc-
tion Definitions” on page 5-1 for details.

The E Bit The local maskable interrupt Enable bit affects the state of maskable in-
terrupts. While this bit and the PSR.I bit are 1, all maskable interrupts
are accepted. While this bit is 0, only the non-maskable interrupt is ac-
cepted. On reset the E bit is set to 1. See “Interrupt Handling” on page
3-3.

There are two dedicated instructions that set and clear the E bit. It is
set to 1 by the Enable Interrupts instruction (EI). It is cleared to 0 by
the Disable Interrupts instruction (DI). This pair can be used to locally
disable maskable interrupts, regardless of the global state of maskable
interrupts, which is determined by the value of the PSR.I bit.

See also “Interrupt Handling” on page 3-3.

The P Bit The Trace (TRC) trap Pending bit is used together with the T bit to pre-
vent a TRC trap from occurring more than once for any instruction. It
may be cleared to 0 (no TRC trap pending) or 1 (TRC trap pending). See
“Exception Service Procedures” on page 3-6 and “Instruction Tracing”
on page 4-1 for more information.

The I Bit The global maskable Interrupt enable bit affects the state of maskable
interrupts. While this bit and the PSR.E bits are 1, all maskable inter-
rupts are accepted. While this bit is 0, only the non-maskable interrupt
is accepted. The I bit is cleared to 0 on reset. In addition, it is automat-
ically cleared when an interrupt occurs.

2.3.4 The Configuration Register

The Configuration Register (CFG) is used to enable or disable various
operating modes and to control optional on-chip caches in some cores
that are based on the CompactRISC technology. The CR16A does not
support any optional modules, and all the bits of the CFG register are
reserved.

Figure 2-3 shows the format of the CFG register.

Figure 2-3. Configuration Register

015
reserved

CompactRISC CR16A Programmer’s Reference Manual PROGRAMMING MODEL 2-7

2.4 MEMORY ORGANIZATION

The CR16A implements 18-bit addresses. This allows the CPU to access
up to 256 Kbytes of data, and 128 Kbytes of program memory. The
memory is a uniform linear address space. Memory locations are num-
bered sequentially starting at 0 and ending at 218!1. The number spec-
ifying a memory location is called an address.

The contents of each memory location is a byte consisting of eight bits.
Instructions and data can occupy any byte address in the range of 0
through 128 Kbyte and 256 Kbyte respectively, except for addresses
0FC0016 through 0FFFF16 which are reserved, (see Figure 2-4).

Figure 2-4. Memory Organization

1024 bytes

~~

Address
0000016

0FC0016

1000016

Data, Code and I/O
~~

256 Kbytes
~~

Interrupt Control

Data, Code and I/O

Data and I/O

~~

~~ ~~

~~

2000016

3FFFF16

64 Kbytes

128 Kbytes

Interrupt Stack
Dispatch Table

CompactRISC CR16A Programmer’s Reference Manual PROGRAMMING MODEL 2-8

2.4.1 Data References

Bit and byte
order for data
references

The CR16A refers to bytes, and words, of data in memory. When it re-
fers to a byte of data in memory, the data is actually located at the
specified address. When it refers to a word of data in memory, the data
is located at consecutive bytes beginning with the byte at the specified
address.

The byte order in the CR16A is from least significant to most significant
byte (little-endian). The address of a word of data refers to the least sig-
nificant byte of the data value; the remaining byte is located at a higher
address.

Bits are ordered from least significant to most significant. The least sig-
nificant bit is in position zero. The TBIT instruction refers to bits by
their ordinal position numbers. Figure 2-5 shows the memory represen-
tation for data values.

Figure 2-5. Data Representation

Data references The CR16A supports references to memory by the load and store in-
structions. Bytes, and words can be referenced on any boundary.

2.4.2 Stacks

A stack is a one-dimensional data structure in which values are entered
and removed, one item at a time, at one end called the top-of-stack. It
consists of a block of memory and a variable called the stack pointer.
Stacks are important data structures in both systems and applications
programming. They are used to store status information during sub-
routine calls and interrupt servicing. Also, algorithms for expression
evaluation in compilers and interpreters depend on stacks to store in-
termediate results. High level languages, such as C, keep local data and
other information on a stack.

A+1 A

15 0Bit Number

Byte Address

(b) Word at Address A

A

7 0Bit Number

Byte Address

(a) Byte at Address A

CompactRISC CR16A Programmer’s Reference Manual PROGRAMMING MODEL 2-9

The CR16A provides support for two kinds of stacks: the interrupt stack
and the program stack.

The interrupt
stack

The processor uses the interrupt stack to save and restore the program
state during the handling of an exception condition. This information is
automatically pushed, by the hardware, on to the interrupt stack before
entering an exception service procedure. On exit from the exception ser-
vice procedure, the hardware pops this information from the interrupt
stack. See Chapter 3, “EXCEPTIONS” for more information on this sub-
ject. The interrupt stack can reside in the first 64 Kbyte of the address
range, and is accessed via the ISP processor register.

The program
stack

The program stack is normally used by programs at run time, to save
and restore register values upon procedure entry and exit. It is also
used to store local and temporary variables. The program stack is ac-
cessed via the SP general-purpose register, and therefore must reside in
the first 64 Kbyte of the address range. Note that this stack is handled
by software only, e.g., the CompactRISC C Compiler generates code that
pushes data on to, and pops data from, the program stack.

Both stacks expand downward in memory, toward address zero.

2.5 ADDRESSING MODES

Most instructions use one, two or three of the CR16A’s registers as op-
erands. Some instructions may also use an immediate value instead of
the first register operand. Memory is accessed only by the load and
store instructions, which use absolute, relative or far-relative address-
ing mode.

The following addressing modes are available:

Register mode In register mode, the operand is located in a general purpose register,
i.e., R0 through R13, RA or SP. The following instruction illustrates reg-
ister addressing mode.

ADDB R1, R2

Immediate
mode

In immediate mode, the operand is a constant value which is specified
within the instruction. For example:

MULW $4, R4

PC-Relative
mode

In PC-Relative mode, the operand is a displacement from the current
value of the PC register. For example:

BR *+10

CompactRISC CR16A Programmer’s Reference Manual PROGRAMMING MODEL 2-10

Relative mode In relative mode, the operand is located in memory. Its address is ob-
tained by adding the contents of a general purpose register to the con-
stant value in the displacement field encoded in the instruction. The
following instruction illustrates relative addressing mode.

LOADW 12(R5), R6

Far-relative
mode

In far-relative mode, the operand is located in memory. Its address is
obtained by concatenating a pair of adjacent general purpose registers
to form an 18-bit value, and adding this value to the constant value in
the displacement field encoded in the instruction.

The 16 least significant bits of the 18-bit value are taken from the base
register, and the two most significant bits of the value are taken from
the two least significant bits in the next consecutive register. The follow-
ing instruction illustrates far-relative addressing mode.

STORW R7, 4(R3, R2)

Absolute mode In absolute mode, the operand is located in memory and its address is
specified within the instruction. The following example illustrates abso-
lute addressing mode.

LOADB 4000, R6

CompactRISC CR16A Programmer’s Reference Manual EXCEPTIONS 3-1

Chapter 3
EXCEPTIONS

3.1 INTRODUCTION

Program exceptions are conditions which alter the normal sequence of
instruction execution, causing the processor to suspend the current
process, and execute a special service procedure, often called a handler.

Interrupts An exception resulting from the activity of a source external to the pro-
cessor is known as an interrupt; an exception which is initiated by some
action or condition in the program itself is called a trap. Thus, an inter-
rupt need have no relationship to the executing program, while a trap is
caused by the executing program and will recur each time the program
is executed. The CR16A recognizes nine exceptions: six traps and three
types of interrupts.

The exception handling technique employed by an interrupt-driven pro-
cessor determines how fast the processor can perform input/output
transfers, the speed with which transfers between tasks and processes
can be achieved, and the software overhead required for both. There-
fore, it determines to a large extent the efficiency of a processor’s mul-
tiprogramming and multitasking (including real-time) capabilities.

Addressing
interrupts

Exception handling in the CR16A uses a Dispatch Table in the first 64-
Kbyte of the memory whose base address is contained in the Interrupt
Base register (INTBASE). See Figure 3-1.

CompactRISC CR16A Programmer’s Reference Manual EXCEPTIONS 3-2

Figure 3-1. Dispatch Table

For purposes of addressing the Dispatch Table, each of the exceptions
has been assigned a number. This exception number (or interrupt vec-
tor) is used to compute the starting address of the service procedure for
the particular exception required, i.e., the exception number is multi-
plied by two, and added to the contents of the Interrupt Base register
(INTBASE). The resulting value matches the entry in the Dispatch Table
that provides bits 1 through 16 of the address of the exception service
procedure. The processor reconstructs the full address of the exception
service procedure using the fact that its LSB (as is the LSB of any
CR16A instruction address) is always 0.

The interrupt
process

When an exception occurs, the CPU automatically preserves the com-
plete machine state of the program immediately prior to the occurrence
of the exception. A copy of the PC and the PSR is made and pushed
onto the Interrupt Stack. Depending on the kind of exception, it re-
stores and/or adjust the contents of the Program Counter (PC) and the
Processor Status Register (PSR). The interrupt exception number is then
used to obtain the address of the exception service procedure from the
dispatch table, which is then called.

The RETX instruction returns control to the interrupted program, and
restores the contents of the PSR and the PC registers to their previous
status. See the RETX instruction on page 5-28.

INTBASE

~

~

~

~

Non-Maskable Interrupt
reserved

Supervisor Call Trap
Divide by Zero Trap
Flag Trap
Breakpoint Trap
Trace Trap
Undefined Instruction Trap

Maskable Interrupts

NMI
reserved

reserved
SVC
DVZ
FLG
BPT
TRC
UND

reserved
reserved

ISE
INTn

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

16 to 127
In-System Emulator Interrupt

15 0

reserved

reserved

reserved

CompactRISC CR16A Programmer’s Reference Manual EXCEPTIONS 3-3

The following two subsections describe interrupts and traps in detail.

3.1.1 Interrupt Handling

Interrupt handling in the CR16A provides a number of features which
contribute to efficiency and programming flexibility. For example, rather
than saving all registers when an interrupt occurs, the CR16A automat-
ically saves only the Program Counter (PC) and the Program Status Reg-
ister (PSR); the other registers are under program control. They may be
saved and restored by the interrupt handlers. This provides a high de-
gree of flexibility in adjusting interrupt response speed, and facilitates
context switching for interrupts.

An Interrupt Stack allows context switching in a multiprogramming or
multitasking environment without disabling interrupts.

The CR16A provides three types of interrupts: maskable interrupts,
non-maskable interrupt (NMI) and In-System Emulator (ISE).

Maskable
interrupts

Maskable interrupts are disabled whenever PSR.E or PSR.I are cleared
to 0. PSR.I serves as the global interrupt mask, while PSR.E serves as a
local interrupt mask. PSR.E can be easily changed by using the EI and
DI instructions (see the EI instruction on page 5-13 and the DI in-
struction on page 5-12). PSR.E should be used when read-modify-write
must be an atomic operations (i.e. no interrupt should occur between
the read and the write).

Upon receipt of a maskable interrupt, the processor determines the
vector number by performing an interrupt acknowledge bus cycle in
which a byte is read from address 0FE0016. This byte contains a num-
ber in the range 16-127, which is used as an index into the Dispatch
Table to find the address of the appropriate interrupt handler. Then,
control is transferred to that interrupt handler.

Non-maskable
interrupt

Non-maskable interrupts cannot be disabled; they occur when cata-
strophic events (such as an imminent power failure) require immediate
handling to preserve system integrity. Non-maskable interrupts use vec-
tor number 1 in the Dispatch Table. When a non-maskable interrupt is
detected, the CR16A performs an interrupt-acknowledge bus cycle to
address 0FF0016, and discards the byte that is read during the bus cy-
cle.

ISE interrupt In-System Emulator (ISE) interrupts cannot be disabled; they tempo-
rarily suspend execution when an appropriate signal is activated. ISE
interrupts use vector number 15 in the Dispatch Table. When an ISE
interrupt is detected, the CR16A performs an interrupt-acknowledge
bus cycle to address 0FC0016, and discards the byte that is read during
the bus cycle.

CompactRISC CR16A Programmer’s Reference Manual EXCEPTIONS 3-4

3.1.2 Traps

The CR16A recognizes the following traps:

BPT Trap Breakpoint Trap - Used for program debugging. Caused by the EXCP
BPT instruction.

SVC Trap Supervisor Call Trap - Temporarily, transfers control to supervisor
software, typically to access facilities provided by the operating system.
Caused by the EXCP SVC instruction.

FLG Trap Flag Trap - Indicates various computational exceptional conditions.
Caused by the EXCP FLG instruction.

DVZ Trap Division by Zero Trap - Indicates an integer division by zero. Caused
by the EXCP DVZ instruction, which can be used by integer division em-
ulation code to indicate this exception.

UND Trap Undefined Instruction Trap - Indicates undefined op codes. Caused by
an EXCP UND instruction or an attempt to execute any of the following:

• any undefined instruction;
• the EXCP instruction when a reserved field in the dispatch table is

specified.

TRC Trap Trace Trap - A TRC trap occurs before an instruction is executed when
the PSR.P bit is 1. Used for program debugging and tracing. See Chap-
ter 4, “ADDITIONAL TOPICS” for more information.

3.2 EXCEPTION PROCESSING

3.2.1 Instruction Endings

The CR16A checks for exceptions at various points during the execution
of instructions. Some exceptions, such as interrupts, are acknowledged
between instructions, i.e., before the next instruction is executed. Other
exceptions, such as a Division by Zero (DVZ) trap, are acknowledged
during execution of an instruction. In such a case, the instruction is
suspended. See Table 3-1.

When an instruction is suspended, it is not completed, but all other
previously issued instructions have been completed. Result operands
and flags (except for the PSR.P bit on some traps) are not affected. In
this case, the PC saved on the interrupt stack contains the address of
the suspended instruction.

CompactRISC CR16A Programmer’s Reference Manual EXCEPTIONS 3-5

When an interrupt is detected while a MULi instruction is being execut-
ed, the MULi instruction is suspended.

3.2.2 Acknowledging an Exception

The CR16A performs the following operations in response to interrupt
or trap exceptions:

1. Decrements the Interrupt Stack Pointer (ISP) by 4.

2. Saves the contents of the current PSR and of the current value of
bits 1 through 16 of the PC on the interrupt stack. See Figure 3-2.
The contents of the PSR are located at the higher address.

3. Alters the PSR by clearing certain control bits. See Table 3-1.

4. For interrupts, displays information during the interrupt acknowl-
edge bus cycle to indicate the type of interrupt encountered.
If the interrupt is a maskable interrupt, the CPU reads the vector
number during this cycle from address FE0016, that is mapped to
the Interrupt Control Unit (ICU).
If the interrupt is a Non Maskable Interrupt (NMI) the CPU performs
a read operation from address FF0016 for observability purposes. If
the interrupt is an ISE interrupt the CPU also performs a read oper-
ation from address FC0016 for observability purposes.

5. Reads the word entry from the dispatch table at address (INTBASE)
+ vector × 2. The dispatch table entry is used to call the exception
service procedure and is interpreted as a pointer that is loaded into
bits 1 through 16 of the PC. Bits 0 and 17 of the PC are cleared. See
Figure 3-3.

Figure 3-2. Saving the PC and PSR Contents During an Exception
Acknowledge Sequence

PSR

~

~

~

~

Lower Addresses

Higher Addresses

Interrupt Stack

(Push) Return
Address
Saved
Status

(Push)

PC(1-16)

16
ISP After Exception

ISP Before Exception

CompactRISC CR16A Programmer’s Reference Manual EXCEPTIONS 3-6

Figure 3-3. Transfer of Control During an Exception Acknowledge Sequence

Table 3-1 summarizes how each type of exception is acknowledged.

Table 3-1. Summary of Exception Processing

3.2.3 Exception Service Procedures

a. The PSR.P bit is cleared when an interrupt is acknowledged
before a MULi instruction is completed, to prevent a mid-instruc-
tion trace trap upon return from the exception service procedure.

After the CR16A acknowledges an exception, control is transferred to
the appropriate exception service procedure. The TRC trap is disabled
(the PSR.P and PSR.T bits are cleared). Maskable interrupts are also
disabled (the PSR.I bit is cleared) for a service procedure called in re-
sponse to an interrupt.

INTBASE

VECTOR Absolute
Address

Dispatch Table

+ Entry Point
Address× 2 PC(1-16)

16

Exception
Instruction
Completion

Status

PC
Saved

Cleared PSR Bits

Before
Saving PSR

After
Saving PSR

Interrupt Before start of
instruction Next None I P T

Interrupt during
execution of MULi Suspended Current Pa I P T

BPT, DVZ, FLG,
SVC Suspended Current None P T

UND Suspended Current None P T

TRC Before start of
instruction Next P P T

CompactRISC CR16A Programmer’s Reference Manual EXCEPTIONS 3-7

At the beginning of each instruction, the PSR.T bit is copied into the
PSR.P. If PSR.P is still set at the end of the instruction, a TRC trap is
executed before the next instruction.

To complete a suspended instruction, the exception service procedure
should be programmed to do one of the following:

Simulate a sus-
pended
instruction

The exception service procedure can use software to simulate execution
of the suspended instruction. After it calculates and writes the results
of the suspended instruction, it should modify the flags in the copy of
the PSR which were saved on the interrupt stack, and update the PC
saved on the interrupt stack to point to the next instruction to be executed.

The exception service procedure can then execute the RETX instruction,
and the CR16A will begin executing the instruction following the sus-
pended instruction. For example, when an Undefined Instruction Trap
(UND) occurs, software can be used to perform the appropriate correc-
tive actions.

Retry execution
of a suspended
instruction

The suspended instruction can be retried after the exception service
procedure has corrected the trap condition that caused the suspension.

In this case, the exception service procedure should execute the RETX
instruction at its conclusion; then the CR16A will retry the suspended
instruction. A debugger takes this action when it encounters an EXCP
BPT instruction that was temporarily placed in another instruction’s loca-
tion in order to set a breakpoint. In this case, exception service procedures
should clear the PSR.P bit to prevent a TRC trap from occurring again.

3.2.4 Returning From Exception Service Procedures

Service procedures perform actions appropriate for the type of exception
detected. At their conclusion, service procedures execute the RETX in-
struction to resume executing instructions at the point where the ex-
ception was detected.

3.2.5 Priority Among Exceptions

The CR16A checks for specific exceptions at various points while exe-
cuting an instruction (see Figure 3-4).

If several exceptions occur simultaneously, the CR16A responds to the
exception with the highest priority.

If several maskable interrupts occur simultaneously, the Interrupt Con-
trol Unit (ICU) determines the highest priority interrupt, and requests
the CR16A to service this interrupt.

CompactRISC CR16A Programmer’s Reference Manual EXCEPTIONS 3-8

Figure 3-4. Exception Processing Flowchart

Before
executing an
instruction

Before executing an instruction, the CR16A checks for pending inter-
rupts and trace traps, in that order. It responds to the interrupts in or-
der of descending priority (i.e., first non-maskable interrupts, then
maskable interrupts and lastly, ISE interrupts.

If no interrupt is pending, and PSR.P is 1 (i.e., a trace trap is pending),
then the CR16A clears PSR.P and processes the trace trap.

Initialize

PSR.P := 0

Update PC Process Exception
Complete

Instruction
Execution

Begin Instruction
Execution

UND
?

NMI

?

Suspend Instruction
Execution

PSR.P = 1
?

?
SVC, DVZ, FLG

or BPT

PSR.P := PSR.T

Reset

Yes

No

Yes

No

Yes

Yes

No

?

ISE
Pending

No

Yes

Pending

No

?
Yes

Pending

No

Interrupt

CompactRISC CR16A Programmer’s Reference Manual EXCEPTIONS 3-9

If no trace trap or interrupt is pending, then the CR16A begins execut-
ing the instruction by copying PSR.T to PSR.P. While executing an in-
struction, the CR16A may detect a trap.

During
execution of an
instruction

First, the CR16A checks for an undefined instruction (UND) trap; then
it looks for any of the following mutually exclusive traps: SVC, DVZ,
FLG or BPT. The CR16A responds to the first trap it detects by sus-
pending the current instruction and executing the trap.

If an undefined instruction is detected, then no data references are per-
formed for the instruction.

If an interrupt becomes pending during execution of the MULi instruc-
tion the CR16A clears PSR.P to 0 and responds to the requested inter-
rupt.

If no exception is detected while the instruction is executing, then the
instruction is completed (i.e., values are changed in registers and mem-
ory, except for PSR.P, which was changed earlier) and the PC is updated
to point to the next instruction.

3.2.6 Nested Interrupts

A nested interrupt is an interrupt that occurs while another interrupt is
being serviced. Since the PSR.I bit is automatically cleared before any
interrupt is serviced (see Table 3-1), nested maskable interrupts are not
serviced by default. However, the Exception Service Procedure can ex-
plicitly allow nested maskable interrupts at any point, by setting the
PSR.I bit using a LPR instruction. In this case, pending maskable inter-
rupts are serviced normally even in the middle of the currently execut-
ing Exception Service Procedure.

It is possible to enable nesting of specific maskable interrupts inside a
certain Exception Service Procedure. This is done by programming the
Interrupt Control Unit (ICU) to mask the undesired interrupt sources,
during the execution of the Exception Service Procedure. This should be
done before the PSR.I bit is set.

Nested Non Maskable Interrupt (NMI) and nested ISE interrupt are al-
ways serviced.

The interrupt nesting level is limited only by the amount of memory that
is available for the interrupt stack.

CompactRISC CR16A Programmer’s Reference Manual EXCEPTIONS 3-10

3.3 RESET

A reset occurs when the appropriate signal is activated. Reset must be
used at power-up to initialize the CR16A.

As a result of a reset operation:

• All instructions currently being executed are terminated.

• Results and flags normally affected by the terminated instruction
are unpredictable.

• The results of instructions, whose execution started but did not yet
end, may not be written to their destinations.

• Any pending interrupts and traps are eliminated.

Upon reset, the following operations are executed:

1. The current values of bits 1 through 16 of the PC are stored in R0,
and the current value of the PSR is stored in R1.

2. The following internal registers are cleared to 0: PC, CFG and PSR,
except for PSR.E, which is set to 1.

After reset, the processor begins normal execution at memory location
0, and the reserved bits in these registers, and the contents of all other
registers, are unpredictable.

CompactRISC CR16A Programmer’s Reference Manual ADDITIONAL TOPICS 4-1

Chapter 4
ADDITIONAL TOPICS

This chapter discusses debugging support and instruction execution order.

4.1 DEBUGGING SUPPORT

The CR16A provides the following features to make program debugging
easier.

• Instruction Tracing
• Soft Break Generation by Breakpoint Instruction
• ISE Support

The PSR is used to control these features.

4.1.1 Instruction Tracing

Instruction tracing can be used during debugging to single-step through
selected portions of a program. The CR16A uses two bits in the PSR to
enable and generate trace traps. Tracing is enabled by setting the T bit
in the PSR register.

During the execution of each instruction, the CR16A copies the PSR.T
bit into the PSR.P (trace pending) bit. Before beginning the next instruc-
tion, the CR16A checks the PSR.P bit to determine whether a Trace
(TRC) trap is pending. If PSR.P is 1, i.e., a trace trap is pending, the
CR16A generates a trace trap before executing the instruction.

If any other trap or interrupt is requested during execution of a traced
instruction, its entire service procedure is allowed to complete before
the TRC trap occurs.

For example, if an Undefined Instruction (UND) trap is detected while
tracing is enabled, the TRC trap occurs after execution of the RETX in-
struction that marks the end of the UND service procedure. The UND
service procedure can use the PC value saved on top of the interrupt
stack to determine the location of the instruction. The UND service pro-
cedure is not affected, whether instruction tracing was enabled or not.

CompactRISC CR16A Programmer’s Reference Manual ADDITIONAL TOPICS 4-2

Each interrupt and trap sequence can update the PSR.P bit, when re-
quired for proper tracing. This guarantees only one TRC trap per in-
struction, and that the return address pushed during a TRC trap is
always the address of the next instruction to be traced.

Note the following:

• LPR (on PSR) and RETX instructions cannot be reliably traced be-
cause they may alter the PSR.P bit during their execution.

• If instruction tracing is enabled while the WAIT instruction is exe-
cuted, a trace trap occurs after the next interrupt, when the inter-
rupt service procedure returns.

The Breakpoint
Instruction

The breakpoint instruction (EXCP BPT) may be used by debuggers to
stop the execution of a program at specified instructions, to examine
the status of the program. The debugger replaces these instructions
with the breakpoint instruction. It then starts the program execution.
When such an instruction is reached, the breakpoint instruction causes
a trap, which enables the debugger to examine the status of the pro-
gram at that point.

4.1.2 In-System Emulator (ISE) Support

The CR16A core provides the following to support the development of
real-time In-System Emulator (ISE) equipment and Application Develop-
ment Boards (ADBs).

• Status signals that indicate when an instruction in the execution
pipeline is completed and the length of this instruction.

• Status signals that indicate the type of each bus cycle, e.g., fetch.

• Status signals that indicate when there is a non-sequential fetch.

• An ISE interrupt signal.

• An interrupt acknowledge cycle.

• A special bus status signal during exception handling, that indi-
cates that the dispatch table is being read.

• Upon reset, the CR16A stores the contents of the PSR in R1 and
the contents of bits 1 through 16 of the PC in R0.

CompactRISC CR16A Programmer’s Reference Manual ADDITIONAL TOPICS 4-3

4.2 INSTRUCTION EXECUTION ORDER

The CR16A has four operating states in which instructions may be exe-
cuted and exceptions may be processed. They are:

• Reset
• Executing Instructions
• Processing Exception
• Waiting for Interrupt

These states and the transitions between them are shown in Figure 4-1.

Figure 4-1. CR16A Operating States

Reset When the reset input signal is activated, the CR16A enters the reset
state. In the reset state, the contents of certain dedicated registers are
initialized, as specified in “Reset” on page 3-10.

Executing
Instructions

When the reset signal is deactivated the CR16A enters the executing-in-
structions state. In this state, the CR16A executes instructions repeat-
edly until an exception is recognized or a WAIT instruction is executed.

Processing
Exception

When an exception is recognized the CR16A enters the processing ex-
ception state in which it saves the PC and the PSR contents. The pro-
cessor then reads an absolute address from the Interrupt Dispatch
Table and branches to the appropriate exception service procedure. Re-
fer to “The interrupt process” on page 3-2 for more information.

To process maskable interrupts, the CR16A also reads a vector value
from an Interrupt Control Unit (ICU).

Reset

Processing
Exception

Reset

No Reset

Interrupt or Trap

Service Call Complete

InterruptWAIT Instruction
Executed

Executing
Instructions

Waiting
for

Interrupt

CompactRISC CR16A Programmer’s Reference Manual ADDITIONAL TOPICS 4-4

After successfully completing all data references required to process an
exception, the CR16A reverts to the executing instructions state.

Waiting for
Interrupt

When a WAIT instruction is executed, the CR16A enters the wait for in-
terrupt state in which it is idle. When an interrupt is detected the pro-
cessor enters the processing exception state.

4.2.1 The Instruction Pipeline

The operations for each instruction are not necessarily completed before
the operations of the next instruction begin. The CR16A can overlap op-
erations for several instructions, using a pipelined technique to enhance
its performance. While the CR16A is fetching one instruction, it can si-
multaneously be decoding a second instruction and calculating results
for a third instruction. See Figure 4-2.

In most cases, pipelined instruction execution improves performance
while producing the same results as strict sequential instruction execu-
tion. Under certain circumstances, however, the effects of this perfor-
mance enhancement are visible to system software and hardware as
differences in the order of memory references performed by the CR16A.
See explanation below.

Instruction
Fetches

The CR16A fetches an instruction only after all previous instructions
have been completely fetched. But, it may begin fetching the instruction
before all of the source operands have been read, and before results
have been written for previous instructions.

Operands and
Memory
References

The source operands for an instruction are read only after all data
reads, and data writes in previous instructions have been completed.
This process and the order of precedence of memory reference for two
consecutive instructions is illustrated in Figure 4-2. The arrows indicate
order of precedence between operations in an instruction and between
instructions.

CompactRISC CR16A Programmer’s Reference Manual ADDITIONAL TOPICS 4-5

Figure 4-2. Memory References for Consecutive Instructions

Overlapping
Operations

As a consequence of overlapping the operations for several instructions,
the CR16A may fetch an instruction, but not execute it (for example, if
the previous instruction causes a trap). The CR16A reads source oper-
ands and writes destination operands for executed instructions only.

Dependencies The CR16A does not check for dependencies between the fetching of the
next instruction and the writing of the results of the previous instruc-
tions. Therefore, special care is required when executing self-modifying
code.

4.2.2 Serializing Operations

The CR16A serializes instruction execution after processing an excep-
tion. This means that it finishes writing all the results of the preceding
instructions to a destination, before it fetches the next instruction. This
fetch is non-sequential.

The CR16A also serializes instruction execution after executing the fol-
lowing instructions: LPR, RETX, and EXCP.

Instruction n Instruction n+1

Data Read or Write

Instruction Fetch

Instruction Fetch

Data Read or Write

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-1

Chapter 5
INSTRUCTION SET

This chapter describes each of the CR16A instructions, in detail.

5.1 INSTRUCTION DEFINITIONS

The name of each operand appears in bold italics, and indicates its use.
In addition, the valid addressing modes, access class and length are
specified for each operand. The addressing mode may be: reg (register),
procreg (processor register), imm (immediate), abs (absolute), rel (rela-
tive) or far (far relative). The access class may be read, write, rmw (read-
modify-write), addr (address) or disp (displacement). The access class is
followed by a data length attribute specifier. See Figure 5-1.

Figure 5-1. Instruction Header Format

The data length attribute specifier specifies how the operands will be in-
terpreted, and represents a character that is incorporated into the name
of the actual instruction. The i specifier stands for a B (byte) or W (word)
in the actual instruction name.

ADDi
ADDUi Add Integer

ADDB, ADDW, ADDUB, ADDUW

ADDi src, dest

reg/imm reg
read.i rmw.i

ADDUi src, dest
reg/imm reg
read.i rmw.i

Name

Syntax

Valid
Forms

Addressing

Access

Operands

Data Length Attribute Specifiers

Short
Description

Data Length Attribute Specifiers in Generic Instruction Name

Mnemonic

Mode

Classes

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-2

Each instruction definition is followed by a detailed example of one or
more typical forms of the instruction. In each example, all the operands
of the instruction are identified, both those explicitly stated in assembly
language and those that will be implicitly affected by the instruction.

For each example, the values of operands before and after execution of
the instruction are shown. Often the value of an operand is not changed
by the instruction. When the value of an operand changes, it’s field is
highlighted, i.e., its box is grey. See Figure 5-2.

Figure 5-2. Instruction Example Format

The least significant digit of the least significant byte is the rightmost
digit. Values are expressed in terms of a radix in a subscript to the value.

An x represents a binary digit or a hexadecimal digit (4 bits) that is ei-
ther ignored or unchanged.

5.2 DETAILED INSTRUCTION LIST

The following pages describe in detail the instruction set.

This example adds the low order byte of register R0 to
the low order byte of register R3, and places the result
in the low order byte of register R3. The remaining
bytes of R3 are not affected.

r0
xx9F16
(-9710)

addb r0, r3

r0
xx9F16
(-9710)

r3
xx6216
(+9810)

r3
xx0116
(+110)

PSR enzfltc PSR enz0lt1

Operand Values
Before Execution

Operand Values
After Execution

Description
of Example Instruction Name

Changed by

by Execution
Unchanged

Execution

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-3

ADDi
ADDUi Add Integer

ADDi, ADDUi (Add Integer)ADDB, ADDW, ADDUB, ADDUW

ADDi src, dest
reg/imm reg
read.i rmw.i

ADDUi src, dest
reg/imm reg
read.i rmw.i

The ADDi and ADDUi instructions add the src and dest operands, and
place the result in the dest operand.

Flags: During execution of an ADDi instruction, PSR.C is set to 1 on a carry
from addition, and cleared to 0 if there is no carry. PSR.F is set to 1 on
an overflow from addition, and cleared to 0 if there is no overflow. PSR
flags are not affected by the ADDUi instruction.

Traps: None

Example: This example adds the low order byte of register R0 to the low order
byte of register R3, and places the result in the low order byte of regis-
ter R3. The remaining bytes of R3 are not affected.

r0
xx9F16
(-9710)

addb r0, r3

r0
xx9F16
(-9710)

r3
xx6216
(+9810)

r3
xx0116
(+110)

PSR enzfltc PSR enz0lt1

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-4

ADDCi Add Integer with Carry

ADDCi (Add Integer with Carry) ADDCB, ADDCW

ADDCi src, dest
reg/imm reg
read.i rmw.i

The ADDCi instructions add the src operand dest operand and the
PSR.C flag, and places the sum in the dest operand.

Flags: PSR.C is set to 1 if a carry occurs, and cleared to 0 if there is no carry.
PSR.F is set to 1 if an overflow occurs, and cleared to 0 if there is no
overflow.

Traps: None

Examples: 1. Example 1 adds 32, the low order byte of register R0, and the PSR.C
flag contents and places the result in the low order byte of register
R0. The remaining bytes of register R0 are unaffected.

2. Example 2 adds the contents of registers R5 and R0, and the con-
tents of the PSR.C flag, and places the result in register R0.

r0
xx0F16
(+1510)

addcb $32, r0
r0

xx3016
(+4810)

PSR enzflt1 PSR enz0lt0

r5
FFFF16
(-110)

addcw r5, r0

r5
FFFF16
(-110)

r0
003016
(+4810)

r0
003016
(+4810)

PSR enzflt1 PSR enz0lt1

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-5

ANDi Bitwise Logical AND

ANDi (Bitwise Logical AND) ANDB, ANDW

ANDi src, dest
reg/imm reg
read.i rmw.i

The ANDi instructions perform a bitwise logical AND operation on the
src and dest operands, and places the result in the dest operand.

Flags: None

Traps: None

Example: This example ANDs the low order bytes of registers R0 and R11 and
places the result in the low order byte of register R11. The remaining
byte of register R11 is unaffected.

r0 xx16 100100102 andb r0, r11 r0 xx16 100100102

r11 xx16 011101112 r11 xx16 000100102

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-6

ASHUi Arithmetic Shift

ASHUi (Arithmetic Shift) ASHUB, ASHUW

ASHUi count, dest
reg/imm reg
read.B rmw.i

The ASHUi instructions perform an arithmetic shift on the dest operand
as specified by the count operand. Both operands are interpreted as
signed integers.

The sign of count determines the direction of the shift. A positive count
specifies a shift to the left; a negative count specifies a shift to the
right. The absolute value of the count specifies the number of bit posi-
tions to shift the dest operand. The count operand value must be in
the range !7 to +7 if ASHUB is used; and in the range !15 to +15 if
ASHUW is used. Otherwise, the result is unpredictable.

If the shift is to the left, high order bits (including the sign bit) shifted
out of dest are lost, and low order bits emptied by the shift are filled
with zeros. If the shift is to the right, low order bits shifted out of dest
are lost, and high order bits emptied by the shift are filled from the orig-
inal sign bit of dest.

Flags: None

Traps: None

Examples: 1. Example 1 shifts the low order byte of register R5 two bit positions
to the left. The remaining byte of register R5 is unaffected.

2. Example 2 reads a byte from register R4. Based on this value, it
shifts the low order byte of register R6 accordingly. The remaining
byte of register R6 is unaffected.

r5 xx16 000111112
ashub $2, r5

r5 xx16 011111002

r4 xx16
111111102
(-210) ashub r4, r6 r4 xx16

111111102
(-210)

r6 xx16 111110002 r6 xx16 111111102

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-7

Bcond Conditional Branch

Bcond (Conditional Branch)BEQ, BNE, BCS, BCC, BHI, BLS, BGT,
BLE, BFS, BFC, BLO, BHS, BLT, BGE

Bcond dest
imm
disp

If the condition specified by cond is true, the Bcond instruction causes
a branch in program execution. Program execution continues at the lo-
cation specified by dest, sign extended to 18 bits, plus the current con-
tents of the Program Counter. Both the least significant bit and the
most significant bit of the address are cleared to 0. If the condition is
false, execution continues with the next sequential instruction.

cond is a two-character condition code that describes the state of a flag
or flags in the PSR. If the flag(s) are set as required by the specified
cond, the condition is true; otherwise, the condition is false. The following
table describes the possible cond codes and the related PSR flag settings:

Flags: None

Traps: None

cond Code Condition True State

EQ Equal Z flag is 1

NE Not Equal Z flag is 0

CS Carry Set C flag is 1

CC Carry Clear C flag is 0

HI Higher L flag is 1

LS Lower or Same L flag is 0

GT Greater Than N flag is 1

LE Less Than or Equal N flag is 0

FS Flag Set F flag is 1

FC Flag Clear F flag is 0

LO Lower Z and L flags are 0

HS Higher or Same Z or L flag is 1

LT Less Than Z and N flags are 0

GE Greater Than or Equal Z or N flag is 1

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-8

Examples: 1. Example 1 passes execution control to the instruction labeled LOOP
by adding 1FF6816 to the PC, if the PSR.Z and PSR.L flags are 0.

2. Example 2 passes execution control to a non-sequential instruction
if the PSR.Z flag is 0. The instruction passes execution control by
adding 16 to the PC register.

PC 0909816

blo LOOP

PC 0900016

LOOP
(900016)

xxxx16
LOOP

(900016)
xxxx16

PSR en0f0tc PSR en0f0tc

PC
09FF016
(4094410)

bne *+16

PC
0A00016

(4096010)

*+16
(A00016)

xxxx16
*+16

(A00016)
xxxx16

PSR en0fltc PSR en0fltc

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-9

BAL Branch and Link

BAL (Branch and Link) BAL

BAL link, dest
reg imm
write.W disp

The address of the next sequential instruction is first stored in the reg-
ister specified as the link operand. Then, program execution continues
at the address specified by dest, sign extended to 18 bits, plus the cur-
rent contents of the PC register. Both the least significant bit and the
most significant bit of the address are cleared to 0.

Flags: None

Traps: None

Example: This example saves bits 1 through 16 of the PC of the next sequential
instruction in register RA, and passes execution control to the instruc-
tion labeled L by adding 00F6C16 to the current PC.

PC
0909816

(3701610)

bal ra, L

PC
0A00416

(4096410)

L
(A00416)

xxxx16
L

(A00416)
xxxx16

ra xxxx16 ra
0484E16

(37020 10 ÷ 2)

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-10

BR Unconditional Branch

BR (Unconditional Branch) BR

BR dest
imm
disp

dest is sign extended to 18 bits and added to the current contents of
the PC register. The most and least significant bits of the PC are cleared
to 0. The result is loaded into the PC. Program execution continues at
the location specified by the updated PC.

Flags: None

Traps: None

Example: This example passes execution control to the instruction labeled ERROR
by adding 1FF6816 to the PC.

PC
0909816

(3701610) br ERROR
PC

0900016
(3686410)

ERROR
(900016)

xxxx16
ERROR
(900016)

xxxx16

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-11

CMPi Compare Integer

CMPi (Compare Integer) CMPB, CMPW

CMPi src1, src2
reg/imm reg
read.i read.i

The CMPi instruction subtracts the src1 operand from the src2 oper-
and, and sets the PSR.Z, PSR.N, and PSR.L flags to indicate the com-
parison result. The PSR.N flag indicates the result of a signed integer
comparison; the PSR.L flag indicates the result of an unsigned compar-
ison. Both types of comparison are performed.

Flags: PSR.Z is set to 1 if src1 equals src2; otherwise it is cleared to 0. PSR.N
is set to 1 if src1 is greater than src2 (signed comparison); otherwise it
is cleared to 0. PSR.L is set to 1 if src1 is greater than src2 (unsigned
comparison); otherwise it is cleared to 0.

Traps: None

Example: The following example compares low order bytes in registers R0 and R3.

r0
xxFF16

(signed: -110)
(unsigned: +25510)

cmpb r0, r3

r0
xxFF16

(signed: -110)
(unsigned: +25510)

r3
xx7E16
(+12610)

r3
xx7E16

(+12610)

PSR enzfltc PSR e00f1tc

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-12

DI Disable Maskable Interrupts

DI (Disable Maskable Interrupts) DI

DI

The DI instruction clears PSR.E to 0. Maskable interrupts are disabled
regardless of the value of PSR.I.

Flags: PSR.E is cleared to 0.

Traps: None.

Example: The following example clears the PSR.E bit.

PSR enzfltc
di

PSR 0nzfltc

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-13

EI Enable Maskable Interrupts

EI (Enable Maskable Interrupts) EI

EI

The EI instruction sets PSR.E to 1. If PSR.I is also 1, maskable inter-
rupts are enabled.

Flags: PSR.E is set to 1.

Traps: None

Example: The following example sets the PSR.E bit to 1.

PSR enzfltc
ei

PSR 1nzfltc

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-14

EXCP Exception

EXCP (Exception) EXCP

EXCP vector

The EXCP instruction activates the trap specified by the vector oper-
and. The return address pushed onto the interrupt stack is the address
of the EXCP instruction itself.

Flags: None

Traps: The traps that will occur are determined by the value of the vector op-
erand as shown in the following table.

Example: This example activates the Supervisor Call Trap.

excp svc

Flags:

Traps:

Example:

Vector Trap Name

SVC Supervisor Call

DVZ Division by Zero

FLG Flag

BPT Breakpoint

UND Undefined Instruction

otherwise reserved

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-15

Jcond Conditional Jump

Jcond (Conditional Jump)JEQ, JNE, JCS, JCC, JHI, JLS, JGT,
JLE, JFS, JFC, JLO, JHS, JLT, JGE

Jcond dest
reg
addr.W

If the condition specified by cond is true, the Jcond instruction causes
a jump in program execution. Program execution continues at the ad-
dress specified in the dest register, by loading its contents into bits 1
through 16 of the PC register. Bits 0 and 17 of the PC are cleared to 0.
If the condition is false, execution continues with the next sequential in-
struction.

cond is a two-character condition code that describes the state of a flag
or flags in the PSR. If the flag(s) are set as required by the specified
cond, the condition is true; otherwise, the condition is false. The following
table describes the possible cond codes and the related PSR flag settings:

Flags: None

Traps: None

cond Code Condition True State

EQ Equal Z flag is 1

NE Not Equal Z flag is 0

CS Carry Set C flag is 1

CC Carry Clear C flag is 0

HI Higher L flag is 1

LS Lower or Same L flag is 0

GT Greater Than N flag is 1

LE Less Than or Equal N flag is 0

FS Flag Set F flag is 1

FC Flag Clear F flag is 0

LO Lower Z and L flags are 0

HS Higher or Same Z or L flag is 1

LT Less Than Z and N flags are 0

GE Greater Than or Equal Z or N flag is 1

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-16

Example: In this example, the CR16A loads the address held in R3 into bits 1
through 16 of the PC register, and program execution continues at that
address, if the PSR.Z and PSR.L flags are 0.

r3 100416

jlo r3

r3 100416

PC 0909816 PC
0200816

(100416 × 2)

PSR en0f0tc PSR en0f0tc

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-17

JAL Jump and Link

JAL (Jump and Link) JAL

JAL link, dest
reg, reg
write.W addr.W

Program execution continues at the address specified in the dest regis-
ter, by loading its contents into bits 1 through 16 of the PC register.
Bits 0 and 17 of the PC register are cleared to 0.Bits 1 through 16 of
the address of the next sequential instruction are stored in the register
specified by the link operand.

Flags: None

Traps: None

Example: This example loads the address held in R3 into the bits 1 through 16 of
the PC register. Program execution continues at that address. Bits 1
through 16 of the address of the next sequential instruction are stored
in register RA.

r3 100416

jal ra, r3

r3 100416

PC 0909816 PC
0200816

(100416 × 2)

ra xxxx16 ra
0484D16

(909A16 ÷ 2)

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-18

JUMP Jump

JUMP (Jump) JUMP

JUMP dest
reg
addr.W

Program execution continues at the address specified in the dest regis-
ter, by loading its contents into bits 1 through 16 of the PC register,
and clearing the least and most significant bits to 0.

Flags: None

Traps: None

Example: This example loads the address held in R3 into bits 1 through 16 of the
PC register. Program execution continues at that address.

r3 100416
jump r3

r3 100416

PC 0909816 PC
0200816

(100416 × 2)

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-19

LOADi Load Integer

LOADi (Load Integer) LOADB, LOADW

LOADi src, dest
abs/rel/far reg
read.i write.i

The LOADi instructions load the src operand from memory, and places
it in the dest register operand.

Flags: None

Traps: None

Examples: 1. Example 1 loads a byte operand in address 9(R5) to the low order
byte of register R7. The remaining byte of register R7 is unaffected.

2. Example 2 loads a word operand in address 632 to register R9.

3. Example 3 loads a word operand in address 3000216 to register R7.
The address is formed by adding 2000016 to the value in R4 concat-
enated with the value in R5.

r5 200016

loadb 9(r5), r7

r5 200016

200916
(memory)

1716
200916

(memory) 1716

r7 xxxx16 r7 xx1716

63216
(memory) 009816 loadw 0x632, r9

63216
(memory) 009816

r9 xxxx16 r9 009816

r4 000216

loadw 0x20000(r5,r4),r7

r4 000216

r5 xxxxxxxxxxxxxx012 r5 xxxxxxxxxxxxxx012

3000216
(memory)

AA5516
3000216
(memory) 5516

r7 xxxx16 r7 AA5516

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-20

LPR Load Processor Register

LPR (Load Processor Register) LPR

LPR src, dest
reg procreg
read.W write.W

The LPR instruction copies the src operand to the processor register
specified by dest.

If dest is ISP or INTBASE, only bits 0 through 15 are written, and the
least significant bit (bit 0) and the two most significant bits (bits 16,17)
of the address are cleared to 0.

The following processor registers may be loaded:

Refer to “REGISTER SET” on page 2-3 for more information on these
registers.

Flags: PSR flags are affected by the values loaded into them. Otherwise, no
PSR flags are affected.

Traps: None.

Example: This example loads register PSR from register R1.

Register procreg

Processor Status Register PSR

Interrupt Base Register INTBASE

Interrupt Stack Pointer ISP

r1 000016 lpr r1, psr r1 000016

PSR enzfltc PSR 00000002

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-21

LSHi Logical Shift Integer

LSHi (Logical Shift Integer) LSHB, LSHW

LSHi count, dest
reg/imm reg
read.B write.i

The LSHi instruction performs a logical shift on the dest operand as
specified by the count operand.

The count operand is interpreted as a signed integer; the dest operand
is interpreted as an unsigned integer. The sign of count determines the
direction of the shift. A positive count specifies a left shift; a negative
count specifies a right shift. The absolute value of the count gives the
number of bit positions to shift the dest operand. The count operand
value must be within the range !7 to +7 if LSHB is used, and !15 to
+15 if LSHW is used; otherwise, the result is unpredictable. All bits shift-
ed out of dest are lost, and bit positions emptied by the shift are filled
with zeros.

Flags: None

Traps: None

Examples: 1. Example 1 shifts the low order byte of register R1 four bit positions
to the left. The remaining bytes of register R1 is unaffected.

2. Example 2 reads a byte from register R5. Based on this value, it
shifts the low order byte of register R7. The remaining bytes of regis-
ter R7 is unaffected.

r1 xx16 111111102
lshb $4, r1

r1 xx16 111000002

r5 xx16 111111112 lshb r5, r7 r5 xx16 111111112

r7 xx16 111111102 r7 xx16 011111112

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-22

MOVi Move Integer

MOVi (Move Integer) MOVB, MOVW

MOVi src, dest
reg/imm reg
read.i write.i

The MOVi instructions copy the src operand to the dest register.

Flags: None

Traps: None

Examples: 1. This example copies the contents of register R0 to register R6.

2. This example sets R8 to the value 1716.

r0 123416 movw r0, r6 r0 123416

r6 xxxx16 r6 123416

r8 xxxx16
movw $0x17, r8

r8 001716

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-23

MOVXB Move with Sign-Extension

MOVXiB (Move with Sign-Extension) MOVXB

MOVXBsrc, dest
reg reg
read.i write.W

The MOVXB instruction converts the signed integer src operand to the
word dest operand. The sign is preserved through sign-extension.

Flags: None

Traps: None

Examples: These examples copy the low order byte of register R8 to the low order
byte of register R0, and extend the sign bit of the byte through the next
8 bits of register R0.

1. This example illustrates negative sign extension.

2. This example illustrates positive sign extension.

r8
xxF016

(low byte: !1610) movxb r8, r0
r8

xxF016
(low byte: !1610)

r0 xxxx16 r0
FFF016
(!1610)

r8
7016

(low byte: +11210) movxb r8, r0
r8

7016
(low byte: +11210)

r0 xxxx16 r0
007016

(+11210)

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-24

MOVZB Move with Zero Extension

MOVZiB (Move with Zero Extension) MOVZB

MOVZBsrc, dest
reg reg
read.i write.W

The MOVZB instruction converts the unsigned integer src operand to the
unsigned word dest operand. The high order bits are filled with zeros.

Flags: None

Traps: None

Example: This example copies the low order byte of register R8 to the low order
byte of register R0, and sets the next 8 bits of register R0 to zero.

r8
xxFF16

(low byte: +25510) movzb r8, r0
r8

xxFF16
(low byte: +25510)

r0 xxxx16 r0
00FF16

(+25510)

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-25

MULi Multiply Integer

MULi (Multiply Integer) MULB, MULW

MULI src, dest
reg/imm reg
read.i rmw.i

The MULi instructions multiply the src operand by the dest operand
and places the result in the dest operand. Both operands are interpret-
ed as signed integers. If the resulting product cannot be represented ex-
actly in the dest operand, then the high order bits are truncated.

Flags: None

Traps: None

Example: This example multiplies register R5 by R0, and places the result in reg-
ister R0.

r5
000516
(+510) mulw r5, r0

r5
000516
(+510)

r0
000A16
(+1010)

r0
003216
(+5010)

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-26

NOP No Operation

NOP (No Operation) NOP

NOP

The NOP instruction passes control to the next sequential instruction.
No operation is performed.

Flags: None

Traps: None

Example: nop

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-27

ORi Bitwise Logical OR

ORi (Bitwise Logical OR) ORB, ORW

ORi src, dest
reg/imm reg
read.i rmw.i

The ORi instructions perform a bitwise logical OR operation on the src
and dest operands, and places the result in the dest operand.

Flags: None

Traps: None

Example: This example ORs the low order bytes of registers R5 and R7, and plac-
es the result in the low order byte of register R7. The remaining byte of
register R7 is unaffected.

r5 xx16 110110002 orb r5, r7 r5 xx16 110110002

r7 xx16 000010112 r7 xx16 110110112

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-28

RETX Return from Exception

RETX (Return from Exception) RETX

RETX

The RETX instruction returns control from a trap service procedure. The
following steps are performed:

1. The instruction pops a 16-bit return address from the interrupt
stack, and loads it into bits 1 through 16 of the PC.

2. The instruction then pops a 16-bit PSR value from the interrupt
stack into the PSR.

The RETX instruction does not change the contents of memory locations
indicated by an asterisk *. However, information that is outside the
stack should be considered unpredictable for other reasons.

Flags: All PSR flag states are restored from the stack.

Traps: None

Example: This example returns control from an interrupt service procedure.

PC 0F03416

retx

PC
1200816

(900416 × 2)

ISP 0100016 ISP 0100416

PSR xxxx16 PSR 084516

01000
(stack)

900416
01000

(stack)
xxxx16 "

01002
(stack)

084516
01002

(stack)
xxxx16 "

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-29

Scond Save Condition as Boolean

Scond (Save Condition as Boolean)SEQ, SNE, SCS, SCC, SHI, SLS, SGT,
SLE, SFS, SFC, SLO, SHS, SLT, SGE

Scond dest
reg
write.W

The Scond instruction sets the dest operand to the integer value 1 if
the condition specified in cond is true, and clears it to 0 if it is false.

cond is a two-character condition code that specifies the state of a flag
or flags in the PSR. If the flag(s) are set as required by the specified
cond, the condition is true; otherwise, the condition is false. The follow-
ing table describes the possible cond codes and the related PSR flag set-
tings:

Flags: None

Traps: None

cond Code Condition True State

EQ Equal Z flag is 1

NE Not Equal Z flag is 0

CS Carry Set C flag is 1

CC Carry Clear C flag is 0

HI Higher L flag is 1

LS Lower or Same L flag is 0

GT Greater Than N flag is 1

LE Less Than or Equal N flag is 0

FS Flag Set F flag is 1

FC Flag Clear F flag is 0

LO Lower Z and L flags are 0

HS Higher or Same Z or L flag is 1

LT Less Than Z and N flags are 0

GE Greater Than or Equal Z or N flag is 1

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-30

Examples: 1. Example 1 sets register R0 to 1 if the PSR.Z flag is set and to 0 if it
is clear.

2. Example 2 sets register R2 to 1 if the PSR.Z and PSR.L flags are
clear and to 0 if they are not clear.

r0 xxxx16 seq r0 r0
000116
(True)

PSR en1fltc PSR en1fltc

r2 xxxx16 slo r2 r2
000016
(False)

PSR en1f1tc PSR en1f1tc

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-31

SPR Store Processor Register

SPR (Store Processor Register) SPR

SPR src, dest
procreg reg
read.W write.W

The SPR instruction stores the processor register specified by src, in
the dest operand. If src is INTBASE or ISP, only bits 0 through 15 of
src are stored.

The following processor registers may be stored:

Refer to “REGISTER SET” on page 2-3 for more information on these
registers.

Flags: None

Traps: None.

Example: This example copies the INTBASE register to register R0.

Register procreg

Processor Status Register PSR

Interrupt Base Register INTBASE

Interrupt Stack Pointer ISP

intbase 0010016
spr intbase, r0

intbase 0010016

r0 xxxx16 r0
008016

(0010016 ÷ 2)

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-32

STORi Store Integer

STORi (Store Integer) STORB, STORW

STORi src, dest
reg abs/rel/far
read.i write.i

The STORi instructions store the src register operand in the dest mem-
ory operand.

Flags: None

Traps: None

Examples: 1. This example copies the contents of register R0 to the word at ad-
dress 912016.

2. Example 2 stores the low order byte from r7 at address 3000216.
The address is formed by adding 2000016 to the value in R5 concat-
enated with the value in R4.

r0 567816 storw r0, 0x9120 r0 567816

912016 xxxx16 912016 567816

r7 xx5516

storb
r7,0x20000(r5,r4)

r7 xx5516

r4 000216 r4 000216

r5 xxxxxxxxxxxxxx0116 r5 xxxxxxxxxxxxxx0116

3000216
(memory)

xx16
3000216
(memory) 5516

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-33

3. Example 3 copies the contents of register R3 to the non-aligned
word at address 9(R5).

r3 AA5516

stord r3,9(r5)

r3 xxxxAA5516

r5 200016 r5 200016

200816
(memory)

xxxx16
200816

(memory)
55xx16

200A16
(memory)

xxxx16
200A16

(memory)
xxAA16

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-34

SUBi Subtract Integer

SUBi (Subtract Integer) SUBB, SUBW

SUBi src, dest
reg/imm reg
read.i rmw.i

The SUBi instructions subtract the src operand from the dest operand,
and places the result in the dest operand.

Flags: During execution of a SUBi instruction, PSR.C is set to 1 if a borrow oc-
curs, and cleared to 0 if no borrow occurs. PSR.F is set to 1 if an over-
flow occurs, and cleared to 0 if there is no overflow.

Traps: None

Examples: 1. Example 1 subtracts the low order byte of register R0 from the low
order byte of register R1, and places the result in the low order byte
of register R1. The remaining byte of register R1 is not affected.

2. Example 2 subtracts the word in register R7 from the word in regis-
ter R8, and places the result in register R8.

r0
xx0116
(+110)

subb r0, r1

r0
xx0116
(+110)

r1
xx7F16

(+12710)
r1

xx7E16
(+12610)

PSR enzfltc PSR enz0lt1

r7
FFFE16
(!210)

subw r7, r8

r7
FFFE16
(!210)

r8
100016

(+409610)
r8

100216
(+409810)

PSR enzfltc PSR enz0lt0

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-35

SUBCi Subtract Integer with Carry

SUBCi (Subtract Integer with Carry)SUBCB, SUBCW

SUBCi src, dest
reg/imm reg
read.i rmw.i

The SUBCi instructions subtract the sum of the src operand and the
PSR.C flag from the dest operand, and places the result in the dest op-
erand.

Flags: PSR.C is set to 1 if a borrow occurs and cleared to 0 if there is no bor-
row. 0 PSR.F is set to 1 if an overflow occurs and cleared to 0 if there
is no overflow.

Traps: None

Example: This example subtracts the sum of 32 and the PSR.C flag value from
the low order byte of register R1 and places the result in the low order
byte of register R1. The remaining bytes of register R1 is not affected.

r1
xx5016
(+8010) subcb $32, r1 r1

xx2F16
(+4710)

PSR enzflt1 PSR enz0lt0

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-36

TBIT Test Bit

TBIT (Test Bit) TBIT

TBIT offset, src
reg/imm reg
read.W read.W

The TBIT instruction copies the bit located in register src at the bit po-
sition specified by offset, to the PSR.F flag. The offset value must be
in the range 0 through 15; otherwise, the result is unpredictable.

Flags: PSR.F is set to the value of the specified bit.

Traps: None

Example: This example copies bit number 3, i.e., the fourth bit from the right, in
register R1 to the PSR.F flag.

Flags:

Traps:

Example:

r1 0016 000010002 tbit $3, r1 r1 0016 000010002

PSR enzfltc PSR enz1ltc

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-37

WAIT Wait for Interrupt

WAIT (Wait for Interrupt) WAIT

WAIT

The WAIT instruction suspends program execution until an interrupt oc-
curs. An interrupt restores program execution by passing it to an inter-
rupt service procedure. When the WAIT instruction is interrupted, the
return address saved on the stack is the address of the instruction fol-
lowing the WAIT instruction.

Flags: None

Traps: None

Example: wait

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET 5-38

XORi Bitwise Logical Exclusive OR

XORi (Bitwise Logical Exclusive OR) XORB, XORW

XORi src, dest
reg/imm reg
read.i rmw.i

The XORi instructions perform a bitwise logical exclusive OR operation
on the src and dest operands, and places the result in the dest oper-
and.

Flags: None

Traps: None

Example: This example XORs the low order bytes of registers R1 and R2, and
places the result in the low order byte of register R2. The remaining
byte of R2 is unaffected.

r1 xx16 111100002 xorb r1, r2 r1 xx16 111100002

r2 xx16 100101012 r2 xx16 011001012

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET ENCODING A-1

Appendix A
INSTRUCTION SET ENCODING

This appendix describes instruction encoding. Most instructions are en-
coded using one of the basic instruction formats. Where formats for in-
structions differ from the basic formats, e.g., load and store
instructions, branch instructions and jump instructions, those differ-
ences are described separately.

Tables at the end of this Appendix summarize this instruction encoding
information.

A.1 INTRODUCTION

Instructions may have zero, one or two operands and are encoded using
two or four bytes. All instructions must be word-aligned.

Figure A-1 shows the basic structure of a two-operand instruction.

Figure A-1. Basic Instruction Structure

Two or three bits code the operation (op code in bits 14, 15 and some-
times bit 0). One bit indicates the operation length (i in bit 13). Four
bits (bits 9 through 12) may further specify the operation or be used for
a displacement value. Eight bits (bits 1 through 4 and bits 5 through 8)
specify two instruction operands.

Bit 0 Bit 0 is used to extend other fields, e.g., op code or the first operand.
See each format for more details.

Bits 1-4 When bits 1 through 4 (operand 1) specify a general purpose register, it
is usually the source register. This field may also contain a vector, a
constant (immediate) value or a displacement value. If the constant or
displacement value does not fit in the space allotted to it (its length is
medium), it may be encoded in the next two bytes. See the format de-
scriptions that follow for details.

15 14 13 12 9 8 5 4 1 0

op code i op code operand 2 operand 1

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET ENCODING A-2

Bits 5-8 When bits 5 through 8 (operand 2) specify a general purpose register, it
is usually the destination register. This field may also specify other spe-
cial instruction options, such as a condition or a dedicated processor
register, depending on the instruction.

Bits 9-12 Bits 9 through 12 may contain the operation code and/or a displace-
ment value.

Bit 13 Bit 13 indicates the integer operation length (i). If i = 0, it is a byte (8-
bit) operation; if i = 1, it is a word (16-bit) operation.

Bits 14-15 Bits 14 and 15, and sometimes bit 0, specify an operation code. Often,
other bits are used with this op code to further specify the operation.

A.2 INSTRUCTION FORMATS

Most instructions use one of the basic formats described in the next
section. In addition, load and store instructions, branch instructions
(BR, Bcond and BAL) and jump instructions (JUMP, Jcond and JAL) each
use a different format. These formats are all described in the sections
that follow.

A.2.1 Basic Instruction Formats

The ADDi, ADDCi, ADDUi, ANDi, ASHUi, CMPi, LSHi, MOVi, MULi, ORi,
SUBi, SUBCi, TBIT and XORi instructions use one of the basic formats
described in this section. The format used depends on the operands.

Register to
register
operations

Figure A-2 shows the format for instructions with two general purpose
register operands.

Figure A-2. Register to Register Format

Short
immediate to
register
operations

A short immediate value is one that fits in the space provided in a 2-
byte basic instruction format. The value !16 and all values in the range
!14 through 15 can be encoded in this format.

Figure A-3 shows the basic format for instructions that have short im-
mediate values as operands. The core sign-extends the value in bits 0
through 4 (imm) to form a 16-bit immediate operand.

15 14 13 12 9 8 5 4 1 0

0 1 i op code dest reg src reg 1

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET ENCODING A-3

Figure A-3. Short Immediate Value to Register Format

Medium
immediate to
register
operations

An immediate value that does not fit in the space allocated for the first
operand in a 2-byte format, as shown in Figure A-3, is a medium value.
The signed 16-bit medium value is placed (encoded) in the next two
bytes. All values in the range -32768 through 32767 can be encoded in
this format.

Figure A-4 shows the basic format, when the first operand is a medium
immediate value (imm).

Figure A-4. Medium Immediate Value to Register Format

Instructions
with special or
no operands

The DI, EI, EXCP, LPR, MOVXB, MOVZB, RETX, Scond, SPR and WAIT in-
structions either have unique operands or no operands at all. These in-
structions use the format illustrated in Figure A-5.

Figure A-5. Format for Instructions with Special or No Operands

A.2.2 Load and Store Instructions

The LOADi and STORi instructions use the same formats. However, their
op codes in bits 14 and 15 differ, and they specify different registers
(reg in bits 5 through 8).

For the LOADi instruction, the op code (bits 14 and 15) is 10 and the
reg field identifies the destination register. For the STORi instruction,
the op code is 11 and the reg field identifies the source register. See Ta-
ble A-1.

15 14 13 12 9 8 5 4 0

0 0 i op code dest reg imm

31 16 15 14 13 12 9 8 5 4 0

imm 0 0 i op code dest reg 1 0 0 0 1

15 14 13 12 9 8 5 4 1 0

0 1 1 op code procreg/cond/reg reg/vector 0

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET ENCODING A-4

Table A-1. Coding for Load and Store Op code and Register Type

The format to use for load and store instructions depends on the ad-
dressing mode and on the length of their displacement values. See also
“Addressing Modes” on page 2-9.

Relative Addressing Mode

Short
Displacement
Values

A short displacement value fits within the field allotted for the displace-
ment value in a 2-byte format (bit 0 and bits 9 through 12). This applies
to any odd or even displacement value in the range 0 through 15, or
any even displacement value in the range 16 through 30.

During execution, the core zero-extends the displacement field to 18
bits.

Figure A-6 shows the format for load and store instructions, when the
displacement value is short.

Figure A-6. Load/Store Format, Relative with Short Displacement Value

Medium
Displacement
Values

A medium displacement value is one that does not fit in a 2-byte for-
mat. In this case, the 18-bit displacement value is encoded by using two
additional bytes.

Figure A-7 shows the format for load and store instructions when the
addressing mode is relative and the displacement value is medium.

Figure A-7. Load/Store Format, Relative with Medium Displacement Value

Instruction op code reg

Load 1 0 Destination Register

Store 1 1 Source Register

15 14 13 12 9 8 5 4 1 0

op code i disp (d4!d1) reg base reg d0

31 16 15 14 13 12 11 10 9 8 5 4 1 0

disp (d15!d0) op code i 1 0 d17 d16 reg base reg 1

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET ENCODING A-5

Far- Relative Addressing Mode

The addressing mode of load and store instructions is called far-relative
when the base address is specified by a pair of adjacent registers. See
Figure A-8.

The base pair field may encode any general purpose register except SP,
i.e., R0-RA that contains the 16 least significant bits of the base ad-
dress. The two most significant bits of the base address are taken from
the next consecutive register. In this case, the entire 18-bit displace-
ment value is encoded by using two additional bytes.

Figure A-8. Load/Store Format, Far-Relative

Absolute Addressing Mode

Figure A-9 shows the format for load and store instructions when the
addressing mode is absolute.

Figure A-9. Load/Store Format, Absolute

A.2.3 Branch Instructions

Branch instructions, i.e., Bcond, BAL and BR, specify the target address
as a displacement from the address currently in the Program Counter
(PC). The displacement value is interpreted as a signed integer. The tar-
get address is the value in the displacement field plus the address cur-
rently in the PC.

Since all instructions are word-aligned, in the Bcond, BAL and BR in-
structions, displacement values must be even.

31 16 15 14 13 12 11 10 9 8 5 4 1 0

disp (d15!d0) op code i 1 1 d17 d16 reg base pair 1

31 16 15 14 13 12 11 10 9 8 5 4 0

abs (d15!d0) op code i 1 1 d17 d16 reg 1 1 1 1 1

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET ENCODING A-6

BR and Bcond Instructions

The BR and Bcond instructions can be encoded in 2 or 4 bytes, depend-
ing on whether the displacement value is short or medium, respective-
ly. The core sign-extends short and medium branch displacement
values to 18 bits.

In the Bcond instruction, bits 5 through 8 specify the condition.

Short
Displacement
Values

Even displacement values in the range -256 through 254 are called
short. Short values fit in nine bits provided in a 2-byte format. The dis-
placement value is encoded in bits 0 through 4 (d0 through d4, respec-
tively) and bits 9 through 12 (d5 through d8, respectively).

Figure A-10 shows the format of BR or Bcond instructions with short
displacement values. Note that in this format, bit 0 (d0) must be 0.

Figure A-10. BR or Bcond Format, Short Displacement Value

Medium
Displacement
Values

When the displacement value does not fit in the 2-byte format, it is
called medium and encoded into two additional bytes as shown in Fig-
ure A-11. Note that bit 16 (d0) must be 0.

Figure A-11. BR or Bcond Format, Medium Displacement Value

The BAL Instruction

The BAL
Instruction

For the BAL instruction, the displacement value is encoded as shown in
Figure A-12. Bits 5 through 8 specify the link register. As in BR and
Bcond instructions, bit 16 (d0) must be 0.

15 14 13 12 9 8 5 4 0

0 1 0 disp (d8!d5) cond disp (d4!d0)

31 16 15 14 13 12 9 8 5 4 3 0

disp (d15!d0) 0 0 0 1 0 1 0 cond d16 1 1 1 0

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET ENCODING A-7

Figure A-12. BAL Format

A.2.4 Jump Instructions

The JUMP and
Jcond
Instructions

JUMP and Jcond instructions use the format shown in Figure A-13.

Figure A-13. JUMP and Jcond Instruction Format

The JAL
Instruction

In the JAL instruction, bits 5 through 8 specify the link register. It is
encoded as shown in Figure A-14.

Figure A-14. JAL Instruction Format

A.3 UNDEFINED OP CODES

The following op codes cause an undefined instruction trap.

Table A-2. Undefined Op Codes

31 16 15 14 13 12 9 8 5 4 3 0

disp (d15!d0) 0 0 1 1 0 1 0 link reg d16 1 1 1 0

15 14 13 12 9 8 5 4 1 0

0 1 0 1 0 1 0 cond target reg 1

15 14 13 12 9 8 5 4 1 0

0 1 1 1 0 1 0 link reg target reg 1

Op
Code i Op

Code
Operand

2
Operand

1
Op Code or
Operand 1 Comment

0 0 0 1 0 1 1 X X X X X X X X X TBIT on a byte instead of a word

0 0 X 1 0 1 0 X X X X X X X X 1 Bcond, BR or BAL with odd target

0 0 X 0 0 1 0 X X X X X X X X X reserved

0 1 X 0 0 1 0 X X X X X X X X 1 reserved

0 1 1 0 1 1 0 X X X X X X X X 0 reserved

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET ENCODING A-8

A.4 CR16A INSTRUCTION SET SUMMARY

Table A-3. Notation Conventions for Instruction Set Summary

0 1 1 0 0 X X X X X X X X X X 0 reserved

0 1 1 1 0 1 X X X X X X X X X 0 reserved

0 1 0 1 0 1 1 X X X X X X X X 1 TBIT on a byte instead of a word

Op
Code i Op

Code
Operand

2
Operand

1
Op Code or
Operand 1 Comment

i =

Operation length field
0 – Byte (8 bits)
1 – Word (16 bits)

abs = Absolute address

imm = Immediate value

disp = Displacement value

dest = Destination

src = Source

Rsrc, Rdest, Rlink, Rbase,
Rpair, Rtarget, Roffset =

Source, destination, link, base, base pair, target or offset register,
respectively.

0000 – R0
0001 – R1
0010 – R2
0011 – R3
0100 – R4
0101 – R5
0110 – R6
0111 – R7
1000 – R8
1001 – R9
1010 – R10
1011 – R11
1100 – R12
1101 – R13
1110 – RA
1111 – SP

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET ENCODING A-9

Rproc =

Dedicated CPU register
0001 – PSR
0011 – INTBASE
1011 – ISP

cond =

Condition code field
0000 – EQ Equal Z = 1
0001 – NE Not Equal Z = 0
1101 – GE Greater than or Equal N = 1 or Z = 1
0010 – CS Carry Set C = 1
0011 – CC Carry Clear C = 0
0100 – HI Higher than L = 1
0101 – LS Lower than or the Same as L = 0
1010 – LO Lower than L = 0 and Z = 0
1011 – HS Higher than or the Same as L = 1 or Z = 1
0110 – GT Greater Than N = 1
0111 – LE Less than or Equal N = 0
1000 – FS Flag Set F = 1
1001 – FC Flag Clear F = 0
1100 – LT Less Than N = 0 and Z = 0

vector =

Exception vector (used by EXCP instruction)
0101 – SVC
0110 – DVZ
0111 – FLG
1000 – BPT
1010 – UND
others! reserved

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET ENCODING A-10

Table A-4. Instruction Encoding

Mnemonic Operands 15 14 13 12 9 8 5 4 1 0
MOVES

MOVi
Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

1
1

1
1

0
0

0
0

Rdest
Rdest

Rsrc
imm

1
i0

MOVXB Rsrc, Rdest 0 1 1 0 1 0 0 Rdest Rsrc 0
MOVZB Rsrc, Rdest 0 1 1 0 1 0 1 Rdest Rsrc 0

INTEGER ARITHMETIC

ADDi
Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

0
0

0
0

0
0

0
0

Rdest
Rdest

Rsrc
imm

1
i0

ADDUi
Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

0
0

0
0

0
0

1
1

Rdest
Rdest

Rsrc
imm

1
i0

ADDCi
Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

1
1

0
0

0
0

1
1

Rdest
Rdest

Rsrc
imm

1
i0

MULi
Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

0
0

0
0

1
1

1
1

Rdest
Rdest

Rsrc
imm

1
i0

SUBi
Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

1
1

1
1

1
1

1
1

Rdest
Rdest

Rsrc
imm

1
i0

SUBCi
Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

1
1

1
1

0
0

1
1

Rdest
Rdest

Rsrc
imm

1
i0

INTEGER COMPARISON

CMPi
Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

0
0

1
1

1
1

1
1

Rdest
Rdest

Rsrc
imm

1
i0

LOGICAL AND BOOLEAN

ANDi
Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

1
1

0
0

0
0

0
0

Rdest
Rdest

Rsrc
imm

1
i0

ORi
Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

1
1

1
1

1
1

0
0

Rdest
Rdest

Rsrc
imm

1
i0

Scond Rdest 0 1 1 0 1 1 1 cond Rdest 0

XORi
Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

0
0

1
1

1
1

0
0

Rdest
Rdest

Rsrc
imm

1
i0

SHIFTS

ASHUi
Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

0
0

1
1

0
0

0
0

Rdest
Rdest

Rsrc
imm

1
i0

LSHi
Rsrc, Rdest
imm, Rdest

0
0

1
0

i
i

0
0

1
1

0
0

1
1

Rdest
Rdest

Rsrc
imm

1
i0

BITS

TBIT
Roffset, Rsrc
imm, Rsrc

0
0

1
0

1
1

1
1

0
0

1
1

1
1

Rsrc
Rsrc

Roffset
imm

1
i0

CompactRISC CR16A Programmer’s Reference Manual INSTRUCTION SET ENCODING A-11

PROCESSOR REGISTER MANIPULATION
LPR Rsrc, Rproc 0 1 1 1 0 0 0 Rproc Rsrc 0
SPR Rproc, Rdest 0 1 1 1 0 0 1 Rproc Rdest 0

JUMPS AND LINKAGE

Bcond disp 0
0

1
0

0
0

d8
1

d7
0

d6
1

d5
0

cond
cond d4 d16

d3
1

d2
1

d1
1

0
0

BAL Rlink, disp 0 0 1 1 0 1 0 Rlink d16 1 1 1 0

BR disp 0
0

1
0

0
0

d8
1

d7
0

d6
1

d5
0

1
1

1
1

1
1

0
0 d4 d16

d3
1

d2
1

d1
1

0
0

EXCP vector 0 1 1 1 1 0 1 1 1 1 1 vector 0
Jcond Rtarget 0 1 0 1 0 1 0 cond Rtarget 1
JAL Rlink, Rtarget 0 1 1 1 0 1 0 Rlink Rtarget 1
JUMP Rtarget 0 1 0 1 0 1 0 1 1 1 0 Rtarget 1
RETX 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0

LOAD AND STORE
LOADi disp(Rbase), Rdest 1 0 i d4 d3 d2 d1 Rdest Rbase d0

disp(Rbase), Rdest 1 0 i 1 0 d17 d16 Rdest Rbase 1
disp(Rpair+1, Rpair), Rdest 1 0 i 1 1 d17 d16 Rdest Rpair 1
abs, Rdest 1 0 i 1 1 d17 d16 Rdest 1 1 1 1 1

STORi Rsrc, disp(Rbase) 1 1 i d4 d3 d2 d1 Rsrc Rbase d0
Rsrc, disp(Rbase) 1 1 i 1 0 d17 d16 Rsrc Rbase 1
Rsrc, disp(Rpair+1, Rpair) 1 1 i 1 1 d17 d16 Rsrc Rpair 1
Rsrc, abs 1 1 i 1 1 d17 d16 Rsrc 1 1 1 1 1

MISCELLANEOUS
DI 0 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0
EI 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0
NOP 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
WAIT 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

Mnemonic Operands 15 14 13 12 9 8 5 4 1 0

CompactRISC CR16A Programmer’s Reference Manual CR16 INSTRUCTION SET B-1

Appendix B
CR16 INSTRUCTION SET

The following instructions are included in the CR16A:

Mnemonic Operands Description Flag
MOVES

MOVi Rsrc/imm, Rdest Move
MOVXB Rsrc, Rdest Move with sign extension
MOVZB Rsrc, Rdest Move with zero extension

INTEGER ARITHMETIC
ADDi Rsrc/imm, Rdest Add CF
ADD[U]i Rsrc/imm, Rdest Add
ADDCi Rsrc/imm, Rdest Add with carry CF
MULi Rsrc/imm, Rdest Multiply
SUBi Rsrc/imm, Rdest Subtract (Rdest := Rdest ! Rsrc) CF

SUBCi Rsrc/imm, Rdest Subtract with carry
(Rdest := Rdest ! Rsrc ! PSR.C) CF

INTEGER COMPARISON
CMPi Rsrc/imm, Rdest Compare (Rdest ! Rsrc) ZNL

LOGICAL AND BOOLEAN
ANDi Rsrc/imm, Rdest Logical AND
ORi Rsrc/imm, Rdest Logical OR
Scond Rdest Save condition code as boolean
XORi Rsrc/imm, Rdest Logical exclusive OR

SHIFTS
ASHUi Rsrc/imm, Rdest Arithmetic left/right shift
LSHi Rsrc/imm, Rdest Logical left/right shift

BITS
TBIT Roffset/imm, Rsrc Test bit

PROCESSOR REGISTER MANIPULATION
LPR Rsrc, Rproc Load processor register CTLFZNEPI
SPR Rproc, Rdest Store processor register

CompactRISC CR16A Programmer’s Reference Manual CR16 INSTRUCTION SET B-2

JUMPS AND LINKAGE
Bcond disp Conditional branch
BAL Rlink, disp Branch and link
BR disp Branch
EXCP vector Trap (vector)
Jcond Rtarget Conditional Jump
JAL Rlink, Rtarget Jump and link
JUMP Rtarget Jump
RETX Return from exception

LOAD AND STORE
LOADi disp(Rbase), Rdest Load (register relative)

disp(Rpair+1, Rpair), Rdest Load (far-relative)
abs, Rdest Load (absolute)

STORi Rsrc, disp(Rbase) Store (register relative)
Rsrc, disp(Rpair +1, Rpair) Store (far-relative)
Rsrc, abs Store (absolute)

MISCELLANEOUS

DI Disable maskable interrupts E
EI Enable maskable interrupts E
NOP No operation
WAIT Wait for interrupt

Mnemonic Operands Description Flag

CompactRISC CR16A Programmer’s Reference Manuall INDEX-1

A
absolute addressing mode 2-10
acknowledge

exception 3-5
ADDCi instructions 5-4
ADDi instructions 5-3
addition

integer instructions, ADD[U]i 5-3
integer with carry instructions, ADDCi 5-4
with carry 2-5

address
registers, dedicated 2-4

addressing mode
absolute 2-10
immediate 2-9
in instructions 5-1
register 2-9
relative 2-10

ADDUi instructions 5-3
ANDi instructions 5-5
arithmetic

shift instructions, ASHUi 5-6
ASHUi instructions 5-6

B
BAL instruction 5-9
Bcond instructions 5-7
bits, reserved 2-3
bitwise logical

AND instructions, ANDi 5-5
OR instructions, ORi 5-27

boolean data type 2-1
boolean, instructions to save condition as,

Scond 5-29
borrow, see also carry 2-5
BPT trap 3-3, 3-4, 3-9
BR instruction 5-10
branch

and link instruction, BAL 5-9
unconditional, instruction, BR 5-10

breakpoint
generation 4-1
trap, BPT 3-3, 3-4, 3-9

byte order
for data references 2-8

C
C, carry bit in PSR 2-5
cache

on-chip 2-6
carry bit, PSR.C 2-5
CFG register 2-6
CMPi instructions 5-11
comparison

integer instructions, CMPi 5-11
operations 2-5

cond, condition code 5-29
conditional instructions

branch, Bcond 5-7
jump, Jcond 5-15
save, Scond 5-29

configuration register, see also CFG 2-6
convert

sign integer to word, MOVXB 5-23
unsigned integer to unsigned double-word,

MOVZi 5-24
unsigned integer to unsigned word, MOVZB 5-

24
counter

program, PC register 2-4

D
data

length attribute specifier in instructions 5-1
organization 2-7
references, byte order 2-8
types 2-1

debug
features 4-1

dedicated address registers 2-4
DI instruction 5-12
DISABLE instruction 2-6
dispatch table, IDT

in SF architecture 3-1
see also IDT 3-1

division by zero
trap, DVZ 3-4

DVZ trap 3-4

E
E, local maskable interrupt enable bit in PSR 2-6
EI instruction 5-13

INDEX

CompactRISC CR16A Programmer’s Reference Manual INDEX-2

ENABLE instruction 2-6
encoding, instruction set A-1
exception

acknowledge 3-5, 3-6
defined 3-1
handler 3-1
instruction, EXCP 5-14
number, see also, interrupt vector 3-2
priority 3-7
processing 3-4
processing table 3-6
processing, flowchart 3-8
return instruction, RETX 5-28
service procedure 3-6

EXCP instruction 3-7
and serialized instructions 4-5

EXCP instruction 5-14
executing-instructions operating state 4-3
execution

program suspension instruction, WAIT 5-37

F
F

flag bit of PSR 2-5, 5-36
fetch

stage in integer pipeline, IF 2-4
flag

bit, PSR.F 2-5, 5-36
FLG trap 3-4

G
general purpose registers 2-4

H
handler

exception 3-1

I
I, maskable interrupt enable bit of PSR 2-6
ICU, interrupt control unit 4-3
IDT, interrupt dispatch table 3-1, 4-3
IF

stage in integer pipeline 2-4
immediate

addressing mode 2-9
instruction

dependency 4-5

endings 3-4
execution order 4-1, 4-3
execution speed 1-6
format 5-1
parallel execution 4-4
pipeline execution 4-4
serial execution 4-5
set, encoding A-1
set, summary 2-1
suspended, completion 3-7
tracing 4-1

In-System Emulator interrupt, see ISE interrupt
INTBASE register 2-4, 3-1
integer

addition instructions, ADD[U]i 5-3
addition with carry instructions, ADDCi 5-4
arithmetic shift instructions, ASHUi 5-6
comparison instructions, CMPi 5-11
convert to unsigned 5-24
data type 2-1
load instructions, LOADi 5-19
logical shift integer instructions, LSHi 5-21
move instructions, MOVi 5-22
multiplication instructions, MULi 5-25
sizes 2-1
store instructions, STORi 5-32
subtract with carry instructions, SUBCi 5-35
subtraction instruction, SUBi 5-34

internal register 2-3
interrupt

base register, see also INTBASE 3-1
defined 3-1
dispatch table, IDT 3-1
maskable 2-6
maskable, DI instruction 5-12
maskable, EI instruction 5-13
non-maskable 2-6, 3-3
priority 3-7
stack pointer, see also ISP register 2-4
stack, and RETX instruction 5-28
stack, description 2-9
stack, during exception 3-2, 3-7
stack, for context switching 3-3
vector, see also, dispatch table, INTBASE 3-2,

5-14
wait for interrupt instruction, WAIT 5-37

ISE interrupt 3-3
ISE support 4-1
ISP register 2-4

J
JAL instruction 5-17
Jcond instructions 5-15
jump

conditional, instructions, Jcond 5-15
jump and link insturction, JAL 5-17
JUMP instruction 5-18

CompactRISC CR16A Programmer’s Reference Manual INDEX-3

L
L, low flag of PSR 2-5
link after branch instruction, BAL 5-9
little-endian byte order 2-8
load

integer instructions, LOADi 5-19
processor register instruction, LPR 5-20

LOADi instructions 5-19
logical

AND instructions, ANDi 5-5
exclusive OR instructions, XORi 5-38
OR instructions, ORi 5-27
shift integer instructions, LSHi 5-21

low flag, PSR.L 2-5
LPR instruction

and PSR.P bit 4-2
and serialized instructions 4-5

LPR instruction
description 5-20

LSHi instructions 5-21

M
maskable

interrupt enable bit, PSR.E 2-6
maskable interrupt 3-3
maskable interrupt disable instruction, DI 5-12
maskable interrupt enable bit, PSR.I 2-6
maskable interrupt enable instruction, EI 5-13
memory

organization 2-7
references using LOAD and STORE 2-8

mnemonic name for instructions 2-1, 1
model, programming 2-1
move

integer instructions, MOVi 5-22
with sign extension instruction, MOVXB 5-23

MOVi instructions 5-22
MOVXB instruction 5-23
MOVZB instruction 5-24
MULi instructions 5-25
multiplication

integer instructions, MULi 5-25

N
N, negative bit in PSR 2-6
negative bit, PSR.N 2-6
no operation instruction, NOP 5-26
non-maskable interrupt 3-3
NOP instruction 5-26

O
on-chip

caches, control by CFG register 2-6
operand

access class and length in instructions 5-1
in instructions 5-1

OR logical
exclusive, instructions, XORi 5-38

order, byte, for data references 2-8
ORi instructions 5-27

P
P, trace trap pending bit in PSR 2-6, 4-1
parallel processing

in pipeline 4-4
PC register

and exceptions 3-2, 3-3
description 2-4

pipelined instruction execution 4-4
priority, exception 3-7
processing-an-exception operating state 4-3
processor

registers and load instruction, LPR 5-20
status register, see also PSR 2-4, 3-2

program
counter, see also PC 2-4
modes 2-1
stack 2-9

PSR register
and CMPi instructions 5-11
and DI instruction 5-12
and exceptions 3-2, 3-3
description 2-4

R
R0, R1 registers 2-5
references to memory 2-8
register

addressing mode 2-9
configuration, see also CFG 2-6
dedicated address 2-4
general purpose 2-4
internal 2-3
processor, and store instruction, SPR 5-31

relative addressing mode 2-10
reserved bits 2-3
reset 3-10, 4-3
resume execution after WAIT 5-37
return

from exception instruction, RETX 5-28
value, undefined 2-3

RETX instruction

CompactRISC CR16A Programmer’s Reference Manual INDEX-4

after exceptions 3-2
and serialized instructions 4-5
in exception service procedure 3-7
tracing 4-2

RETX instruction
description 5-28

RST signal 3-10

S
save, on condition instructions, Scond 5-29
Scond instructions 5-29
shift

arithmetic, instructions, ASHUi 5-6
logical, integer instructions, LSHi 5-21

sign extension plus move instruction, MOVXB 5-23
signed integer data type 2-1
SP

general purpose register 2-4
speed of instruction execution 1-6
SPR instruction

description 5-31
stack

interrupt and program 2-9
interrupt, during exception 3-2, 3-7
interrupt, for context switching 3-3
interrupt, in RETX instruction 5-28

store
integer instructions, STORi 5-32
processor register instruction, SPR 5-31

STORi instructions 5-32
SUBCi instructions 5-35
SUBi instructions 5-34
subtraction

integer instruction, SUBi 5-34
with carry 2-5
with carry, integer instructions, SUBCi 5-35

supervisor
call trap, SVC 3-4

suspend execution instruction, WAIT 5-37
SVC trap 3-4

T
T, trace bit in PSR 2-5, 4-1
TBIT instruction 2-8
TBIT instruction 5-36
test bit instruction, TBIT 5-36
trace

bit, PSR.T 2-5, 4-1
trap pending bit, PSR.P 2-6, 4-1
trap TRC, description 3-4
trap, TRC 4-1

tracing
instructions 4-1

program 2-5
trap

defined 3-1
list and descriptiohns 3-4
table with vecor for each type 5-14
trace, TRC 2-6

TRC trap
description 3-4
in exception service procedure 3-6
in instruction tracing 4-1
pending bit, PSR.P 2-6

U
unconditional branch instruction, BR 5-10
UND trap 3-4

definition 3-7
undefined

instruction trap, UND 3-4
return value 2-3

undefined instruction
trap, UND 3-7

unsigned integer data type 2-1

V
vector

interrupt table 5-14
interrupt, to addressing dispatch table 3-2
interrupt, to compute exception address 3-2
see also, INTBASE

W
WAIT instruction 4-4
WAIT instruction 5-37
waiting-for-an-interrupt operating state 4-3

X
XORi instructions 5-38

Z
Z, zero bit in PSR 2-5
zero

bit, PSR.Z 2-5

