LCD Display

Other I/O
¢ 2-line, 16 character LCD display

i = 4-bit interf:
LCD display i ?n erface |
= Relatively easy to use once you have it mapped
Flash ROM

into your processor’s memory-mapped I/O
SPI EPROM = Send characters to it, they show up on the screen
Keyboard (PS/2) = Not fast!

UART connectors e Scrolling at half-second intervals is about as fast as
you can go and still have a clear display
DAC

ADC

Spartan-3E FPGA Character LCD Table 5-1: Character LCD Interface
Signal Name FPGA Pin Function
SF_D<11> 3902 Shar S s
1s) DB7 SFDAl> M5 Data bit DB7 Shated with StrataFlash pins
P SF.D<10-300 | SF_D<10> P17 Data bit DB6 SED<11:8>
P17 81 Four-bit data -
SF D<o~ 3900 our-bit da SF_D<0> Ri6 Data bit DB5
(R16) oF Dop. 00 DBs SFD<s> RI5 Data bit DB4
(R15) 6> DB4 LCDE MIs Read/Wite Enable Pulse
)(— DB[3:0] Unused 0: Disabled A Character LCD
LoD E 1: Read/ Write operation enabled = on
(M18) E TCD_RS TS Register Select g [o—SEDT> 087
(L1g) LCDRS RS 0: Instruction register during P . Busy |7) SFD<10> 200 oo Fourbi e
LcD AW - Flash during read operations SF D<o 39002 iertace.
L17) RW 1: Data for read or write operations 4 oF Do, 2o |0
LCD_RW L7 Read/Write Control = DB4
. 0: WRITE, LCD accepts data)% DBI3:0] Unused
Intel StrataFlash 1: READ, LCD presents data N Leo E .
LCD_RS
Dl11:8] [RS
SF_CEo—1— CEo o Lo R
[repp— Intel StrataFlash
D[11:8]
SF_CE0—1 CEO0
[

LCD Control

Table 5-1: Character LCD Interface

Signal Name FPGA Pin Function
SF_D<11> MI5 Data bit DB7 Shared with StrataFlash pins
SF_D<10> P17 Data bit DBA SE_D<11:8>
SF_D<9> R16 Data bit DB5
SF_D<8> RI5 Data bit DB4
LCD_E Mi18 Read/Write Enable Pulse
0: Disabled A Character LCD
1: Read/ Write operation enabled =
= = 3 — SF_D<11> 39002
LCD_RS L1s Register Select 5 DB7
0: Instruction registes g write oper s. y SF_D<10> %0
jon register during write operations. Busy | 7) DB6 .
" Four-bit data
Flash during read operations SF_D<g> 3900 interface
1: Data for read or write operations) oF Do, 2o |2
LCD_RW L7 Read/Write Control - B4
0: WRITE, LCD accepts data F DB(3:0]
1: READ, LCD presents data 8 LCcD E £
@ LCD RS RS
w LCD_RW AW
Table 5-2: LCD/StrataFlash Control Interaction -
SF_CEO | SF BYTE [LCD_RW Operation Intel StrataFlash
T X X | StrataFlash disabled. Full read/write o)
X X 0 LCD write access only. Full access to Strata o cro_1 .
X 0 X StrataFlash in byte-wide (x8) mode. Upper address lines, . .
are not used. Full access to both LCD and StrataFlash. pre——

LCD Data

¢ Three memory areas inside LCD
= DD RAM — memory to hold the characters being
displayed

e Two rows of 16 characters to display
e Also 24 extras per line that can be scrolled

= CG ROM - Pre-defined character map
e 192 pre-defined characters

= CG RAM — RAM to hold 8 custom characters
e 5x8 bit character/glyphs

DD RAM

¢+ DD RAM — memory to hold the characters

being displaye

d

Character Display Addresses

Undisplayed
Addresses

OﬂlOl‘02|03|04|05‘%‘07|UBIW|OA|(ﬁIOCIOD|OE 0F|10

2Q 40 [41 [0 43 44|45 46|47 [48] 20 [4a]4B]4C|[4D|4E[4F]50

12 3 4 5 6 7

8 9 10 11 12 13
Figure 5-3: DD RAM Hexadecimal Addresses (No Display Shifting)

14

15 16 17

27
67
40

= Data written to each of these locations is the
8-bit address of a character in the CG ROM/

RAM

CG ROM/RAM

stggg‘f"ﬁ???": 11
DBS 5170011110011
1—253—001010101010L
¢ For example, sx<oo00] [[BRIFT P [[Eede]
8°h53 = S sooxxnoot | [T1{R|@a=(a [FIF|uE]d
= xxxxootol [TZ[B[R[b(H] T <[EE
+ Note he e,
xxxx0100 - | T|

Japanese kana soocx0101 FASIEEu- [T
2xxxx0110 i L et S
characters... 3 S
Esocxor 11| 7 e GE|WE[=[FFEFaT

+ Also, notice the Erococtooo| | T[RRI DRI
Escxx1001| (3 T[VT [l T| L[]

8 CG RAM xxxx 1010 T [T2 d[z[=[AL] 1]F
1 sxxxx1011] +3 [K|Ck[<[=[FEDF |
locations soooct100| o |2 [CFIT]e 221

= Addresses oot 101 == IR F R [RER

b} k) xxxx 1110 [M m(=+a3 [=[] A
8’h00 to 8’h07 — POl B
gaaa I

CG RAM

¢ This example is custom character 0°’h03
= Note that there are 8 rows in custom character 3
= So, it takes 8 writes to make a custom character
= Row address is incremented automatically...

UpperNibble | Lower Nibble

Write Data to CG RAW or DD RAM
A5 | A+ | As [A2 A1 [A0 | D7 D6 05| D4 D3] 02Dt DO
Character Address | Row Address | Don't Care. Charactor Bitmap

0| 1 T 0] o

0 1
0 1
0 1
0 1
0 1
0 1

0
0 1
0 0
o1 |1
1 0
1 1
1 0

1

1
1
1
1
1
1
1

0 NERE olofoo]a0

Figure 5-5:_Example Custom Checkerboard Character with Character Code 0X03

Operation Overview

¢ Pick an LCD screen location
= Write an 8-bit character address to that location
= Then it shows up on the screen
¢ Pick a CG RAM location
= Write 8 bytes starting at that location
= Now you can use that new custom character
¢ Do it all with just a four-bit interface...
= Lots of little nibble writes....

Command Set

¢ Commands are sent upper-nibble first

2 ; Upper Nibble Lower Nibble
Function ala = PP I ~ 1= 1=
S|8|a(8|8 5|8 |8 & |&
ey ST e s T o T T o T
Return Cursor Home 0 0 0 0 0 0 0 0 1
Entry Mode Set 0 0 0 0 0 o 0 1 /D S
Display On/Off 0 0 0 0 0 0 1 D C B
Cursor and Display Shift 0 0 0 0 0 1 S/C | R/L
Function Set 0 0 0 0 1 0 1 0
Set CG RAM Address 0 0 0 A5 | A4 A3 A2 Al A0
Set DD RAM Address 0 0 1 A6 | A5 | A4 A3 A2 Al A0
Read Busy Flag and Address 0 1 BF | A6 | A5 | A4 A3 A2 Al A0
Write Data to CG RAM or DD RAM 1 0 D7 | D6 | D5 | D4 D3 D2 D1 Do
Read Data from CG RAM or DD RAM 1 1 D7 | D6 | D5 | D4 D3 D2 D1 Do

Command Set

Clear Display
Clear the display and return the cursor to the home position, the top-left corner.

This command writes a blank space (ASCII/ ANSI character code 0x20) into all DD RAM
addresses. The address counter is reset to 0, location 0x00 in DD RAM. Clears all option
settings. The I/D control bit is set to 1 (increment address counter mode) in the Entry Mode
Set command.

Execution Time: 82 s — 1.64 ms

Return Cursor Home

Return the cursor to the home position, the top-left corner. DD RAM contents are
unaffected. Also returns the display being shifted to the original position, shown in
Figure 5-3.

The address counter is reset to 0, location 0x00 in DD RAM. The display is returned to its
original status if it was shifted. The cursor or blink move to the top-left character location.

Execution Time: 40 s - 1.6 ms

Command Set

Entry Mode Set

Sets the cursor move direction and specifies whether or not to shift the display.

Command Set

¢ Commands are sent upper-nibble first

I 11 1 e o6 o 2008

These operations are performed during data reads and writes. ¢ |z Upper Nibble Lower Nibble
Function ! |
- g la & ez 2 s |z s
Execution Time: 40 s 8|8 (5|88 |8 /8|8 8|8
Bit DB1: (I/D) Increment/Decrement Clear Display O jojojojo|o 0 0 0 1
Return Cursor Home 0 0 0 0 0 o 0 0 1
‘ 0 ‘ Auto-decrement address counter. Cursor /blink moves to left. ‘ Frvry Mode Set oo lolololo] o 1 [im]|s
‘ 1 ‘ Auto-increment address counter. Cursor,/blink moves to right. ‘ Display On/Off oJofofoJoJotp]c]s
Cursor and Display Shift 0 0 0 o 0 1 S/C | R/L -
This bit either auto-increments or auto-decrements the DD RAM and CG RAM address Fanction Set 0 51110 T 0 n n
counter by one location after each Write Data to CG RAM or DD RAM or Read Data from - - —
CGRAM or DD RAM command. The cursor or blink position moves accordingly. Set CORAM Address bl e T
Set DD RAM Address 0 0 1 A6 | A5 | A4 A3 2 Al A0
Bit DBO: (S) Shift Read Busy Flag and Address 0 | 1 | BF | A6 | A5 | A% | A3 | A2 | A1 | AO
0 | Shifting disabled Write Data to CG RAM or DD RAM 1 0 D7 | D6 | D5 | D4 D3 D2 D1 Do
ifting disablec Read Data from CG RAM or DD RAM 1 1 D7 | D6 | D5 | D4 D3 D2 D1 Do
1| During a DD RAM write operation, shift the entire display value in the direction
controlled by Bit DBI (I/D). Appears as though the cursor position remains constant
and the display moves.
CLOCK
* So, as a practical matter, the easiest way to
LCD_RS 0 = Command, 1= Data . . .
— deal with the LCD is to map the interface to a
SF_D[11:8] Valid Data K
o —\ — memory-mapped location
e \| = Now you can, under program control, change the
[The data values on SE_D<11:8>, and the register select (LCD_RS) and the read /write 230 ns Values on the data and COntrOl wires
(LCD_RW) 1LCD_E
ocs High. T t High for 230 ns or L 2 — — Spartan-3E FPGA Character LCD
Jor more clock cycles at 50 MHz. 40 10ns R —————
’ CDRW 8 . . G ne SF_D<11> 300
pplications,the LCD_RY signal conbe i Lovw permanenty because the FRGA B wis) 1 087
has 1o reason to read information from the display. —— 100 3000 ..
/O |#™ SFD<10> 086 Fourpit data ertmg to the
" . SFD<o> 2008 | g5 Interface dd f£th
joper ower
4bits 4bits - ~ Your Reg| s|—se0e 30 | oa address o .e
LCD_RsS .
e Processor oo e Yoo s | LCD Reg will
LCD_RW 1) P £ ate its val
LD E en w LcO he Rs up! date its value
Lco_Aw
1us 40 s w AW

Initialization

Power-On Initialization

The initialization sequence first establishes that the FPGA application wishes to use the
four-bit data interface to the LCD as follows:

e Wait 15 ms or longer, although the display is generally ready when the FPGA finishes
configuration. The 15 ms interval is 750,000 clock cycles at 50 MHz.

e Write SF_D<11:8> = 0x3, pulse LCD_E High for 12 clock cycles.
e Wait 4.1 ms or longer, which is 205,000 clock cycles at 50 MHz.
e Write SF_D<11:8> = 0x3, pulse LCD_E High for 12 clock cycles.
o Wait 100 us or longer, which is 5,000 clock cycles at 50 MHz.

o Write SF_D<11:8> = 0x3, pulse LCD_E High for 12 clock cycles.
e Wait 40 ps or longer, which is 2,000 clock cycles at 50 MHz.

e Write SF_D<11:8> = 0x2, pulse LCD_E High for 12 clock cycles.
o Wait 40 ps or longer, which is 2,000 clock cycles at 50 MHz.

Remember, this display is SLOW compared to SOMHz!!!

Configuration

Display Configuration

After the power-on initialization is completed, the four-bit interface is now established.

The next part of the sequence configures the display:

* Issue a Function Set command, 0x28, to configure the display for operation on the
Spartan-3E Starter Kit board.

* Issuean Entry Mode Set command, 0x06, to set the display to automatically
increment the address pointer.

« Issuea Display On/Off command, 0x0C, to turn the display on and disables the
cursor and blinking.

« Finally, issue a Clear Display command. Allow at least 1.64 ms (82,000 clock cycles)
after issuing this command.

Using the Display

To write data to the display, specify the start address, followed by one or more data values.

Before writing any data, issue a Set DD RAM Address command to specify the initial 7-bit
address in the DD RAM. See Figure 5-3 for DD RAM locations.

Wite data to the display using a Write Data to CG RAM or DD RAM command. The 8-bit
data value represents the look-up address into the CG ROM or CG RAM, shown in
Figure 5-4. The stored bitmap in the CG ROM or CG RAM drives the 5 x 8 dot matrix to
represent the associated character.

If the address counter is configured to auto-increment, as described earlier, the application
can sequentially write multiple character codes and each character is automatically stored
and displayed in the next available location.

Continuing to write characters, however, eventually falls off the end of the first display
line. The additional ck rs do not ically appear on the second line because the
DD RAM map is not consecutive from the first line to the second.

Remember timing!

¢ The LCD_E enable pulse must be high for at
least 230ns (12 clock cycles at SOMHz)

¢ The two nibbles must be separated by 1ps
(50 cycles)

¢ Two different commands must be separated
by 40us (2000 cycles)
= But, these are easily done in an assembly

language program... (as are the even longer
configuration delays)

Strata Flash

Intel StrataFlash

Strata Flash

Intel StrataFlash

CE2 . CE2
+ 16 MByte Spartan-3E FPGA F oo * Some data lines are spartan-3e Frca F o
SF_CE0 : SF_CE0
(8 Mword) flash LDco[—— "= | cEo shared with the LDco[—— "= | cEo
LDC1 OE# LDC1 OE#
ROM HDC SF_WE WE# LCD HDC SF_WE WE#
SF BYTE SF BYTE
. LDC2 B BYTE# . LDC2 B BYTE#
= Designed to hold SF_STS ots = But, if you don’t SF_STS sTs
. SF_D<15:12> SF_D<15:12>
configuration data e LLIE read back from the o LLIE
f he S — D[11:8] LCD th both — D[11:8]
or the Spartan part o] SEDT> | oy they can bot o1 SFDT1> | po
SPI MISO SPI MISO
= But, can be used for i VR TS e work together i VR TS e
. | - | -
general non-volatile Atoro—SEASIN0 |0 Aftoro—SEASIN0 |0
data A[23:20] —X ‘ Table 11-2: FPGA Control for StrataFlash and LCD
SF_CE0 LCD_RW Function
CoolRunner-ll CPLD Character LCD Character LCD
) 1 1 The FPGA reads from the character LCD.
= 0 0 The FPGA accesses the StrataFlash PROM. DB[7:4
. aloid)
=
D@ &3 08 & | —

Writing to the Strata Flash

¢ Tricky!

¢ Luckily, there is reference design on the
Xilinx web site that implements a Flash

programmer

= You can use this to load data to your board

= See class web site in the xilinx examples

directory

= www.eng.utah.edu/~3710/xilinx-docs/examples

= s3esk picoblaze nor flash programmer

PicoBlaze NOR FLASH Progranmer vi. 00

Simple menu of commands
(repeat list using 'H’ help command)

Commands can be entered at the > prompt in upper
o lower case

[coneiru Eraze (¥/a) ¥
Erase in Progress

oy
confirmed with an upper case ‘Y’

op
Wolting for NCS rm\

The welcome message
should appear at start.

Erase and Erase Blocks commands must be

Program command waits for file to be sent

Comeiwd tiaz_erion s T wm

Xilinx
Flash
Project

Reading from the Flash

+ Not as tricky

= But, the flash has a 75ns access time
= So, it will take four SOMHz cycles to read data
e Each cycle is 20ns
= Set SF_oe and SF_ce active (low) and wait for
four cycles (80ns) before grabbing return data. ..

= As usual map the flash into your processor’s
memory-mapped address space

Xilinx Example

Reading the StrataFLASH NOR memory is relatively straightionward. The only issue for PicoBlaze is that it does not have a 24-bit address range and
therefore multple ports are used to achieve the operation

SE_byte_read: OUTPUT 59, SE_addr_hi_port
OUTPUT se, SF_addr_mi_port | b Set24-bitaddress form which o read
EZ;EUT]’7'DSSFJ“" —lo_port Bit0 - strataflash_read="1"
s1, Enables memory outputs (sirataflash_oe=0)

QUTPUT s1, SF_control_port } Set controls for read Tri-states the Spartan outputs (strataflash_d=7)
LOAD s1, 06 BiL1 - statafash,_co='0
LOAD s1, 06 Enables memory
TNPUT 50, SF_data_in_port Read data B2 e W=t e o o cparaton)

i 2 e enable s of (read operatin)
CTeon iy st Deselect StrataFLASH memory

Al PicoBlaze instructions execute in 2 clock eycles and the design uses the SOMHz clock source on the board. This makes al timing of the design easy to
predict and to ensure that the specifications for the StrataFLASH memory are met.

ls z
EiElEieifiolalsitiE The access time of the memory is 75ns (see Intel data sheet for detals).
2i3i3j3j3j3j2|%j23 |k By including an additional LOAD instruction, the time between setting the
controls to read the memory and the actual point of reading is increased
oMz olock [TTLMLUTUUUUUL UL ULULULT by 4ons andthe access time in adequate.
strataflash_a N
- £ Note that the input port multiplexer is pipelined which means that the data
strataflash_oe from the memory is captured on the first clock edge of the INPUT
strataflash_os = instruction (as indicated) and then passed into the 0’ register on the
T E second clock edge.
strataflash_we
strataflash_d [Spartafi drivjng | || Hint—Datais read from the memory when it is in ‘read array’ mode

(which is the default mode after power up). However, the same read
100ns operation is used to acoess memory status and device information

when in other modes.
Actual

read point -

SF_byte_read: OUTPUT s9, SF_addr_hi_port

OUTPUT s8, SF_addr_mi_port | s XilinX

OUTPUT s7, SF_addr_lo_port

LOAD s1, 05 E 1
OUTPUT sl, SF_control_port Xamp e

LOAD sl, 06

LOAD sl, 06
INPUT s0, SF_data_in_port
QUTPUT sl, SF_control_port

RETURN

Read Waveforms

—> 75ns
Figure 9: Single Word Asyn¢hronouq Read Waveform

51515 5 ziE
2iadizdio o ia 5ia
EISI5181E18181315 15

soMHz elook T LML LML UL LML L UL U UL Uy

strataflash_a X}

strataflash_oe |

strataflash_ce |

strataflash_we |

strataflash_d Spartah driving

100ns

Actual
read point

l_, R1 »

e
le ol R}
laaress o) I X | - —
f——R————————— R8—]
cexfEl T {5\ - (i —

je-Ro-»|
OE# [G] _”_ I
wer v

e »f Pmo
Data [ra] —§§—

BYTEAF __{f / .
RP#[P] j“

Figure 10: 4-Word Asynchror

Page Mode Read

—> 75ns

lous Pag¢ Mode Read Waveform

———

e R1 N
f 1 1
AMAX:3) [A] [S ‘ .
AR (A] I S 00 o1 X 10 X i} Y |
P—RB—-
cexEl T §5T N\
——Ré—
OE#[G] ss) ‘
WERIW) |
|-> 25ns 1| re
[«R6- »R10 R10
+[R7| ——{R15 R9-
D[15:0] [Q] 45 T @2 E
|47R5
rReEPl _ / {§

SPI Serial Flash

¢ 16Mbit — SPI serial protocol
¢ Mostly used for Xilinx configuration
= But, you can use it for data if you want to
¢ You can program it using the Impact tool
¢ As with all Flash — reading is (relatively)
easy, writing is more complex

= In this case, reading one byte takes 40 clock
ticks...

SPI Serial Flash

Spartan-3E FPGA

STMicro M25P16
SPI Serial Flash

mosics|_B| (4| —SPLMOS! [
DINDO | (N10)f-—SPLMISO_{q
coLk | wig—FLSK o
csoB| (gL B |5
U220, o501 000208
Figure 12-1: Spartan-3E FPGAs Have an Optional SPI Flash Configuration Interface
Table 12-1: SPI Flash Interface Signals
Signal | FPGA Pin | Direction Description
SPI_MOSI T4 FPGA-SPI | Serial data: Master Output, Slave Input
SPI_MISO N10 FPGA€SPI | Serial data: Master Input, Slave Output
SPI_SCK Ule FPGA-SPI | Clock
SPI_SS_B u3 FPGA-SPI | Asynchronous, active-Low slave select input

Serial Output

* Two pins: Clk and Data
= New data presented at Data pin on every clock
= Looks like a shift register

Figure 4: Microwire Protocol
| |
Clock 1 | 2 3 4 6

| o]]
|1 Iole Lel st el 171 e
| | | | | | | | | | | | | | | |
IO, T G G G G G TR
N Forb
=3 N L N T T O O e I A I e Y
| | | | | | | | | | | | | | | |
| | | | | | | | | | | | | | | |
st: Data lofched $0: Dala changes
(shified In) (shified ouf)
onfising on falling

clock edge clock edge

Slave

Pt Device #1

> Device:

SPI Serial Flash

Table 4. Instruction set
b One-byte instruction | Address | Dummy Data
code bytes bytes bytes
WREN Write Enable 0000 0110 06h 0 0 0
WRDI Write Disable 0000 0100 04h 0 0 0
RDID Read Identification 1001 1111 9Fh 0 0 11020
RDSR Read Status Register 0000 0101 05h 0 0 Ttow
WRSR Write Status Register 0000 0001 01h 0 0 1
READ Read Data Bytes 0000 0011 03h 3 0 1tox
FAST_READ |[Read Data Bytes at Higher Speed 0000 1011 0Bh 3 1 Ttow
PP Page Program 0000 0010 02h 3 0 110256
SE Sector Erase 1101 1000 D8h 3 0 0
BE Bulk Erase 1100 0111 C7h 0 0 0
DP Deep Power-down 1011 1001 B9h 0 0 0
Release from Deep quer—down, 0 3 Ttom
RES and Read Electronic Signature 1010 1011 ABh

Release from Deep Power-down

SPI Serial Flash

32 clocks before data starts coming back (runs up to 7SMHz)
Then 8 more ticks to get the data (MSB first)

Figure 13. Read Data Bytes (READ) instruction sequence and data-out sequence

5\

0 1 23 45 6 7 8 9 10 2829 30 31 32 33 34 35 36 37 38 39

Data Out 1

a ,0000008

MsB

Data Out 2

High Impedance

~

AI03748D

1. Address bits A23 to A21 are Don't care.

PS/2 Keyboard Interface

¢ Standard keyboard interface

= Serial protocol similar to UART, but with its

own clock

= When you press a key, the keyboard sends a

“make code” (one, sometimes two, bytes)

= When you release the key, the keyboard sends a
“break code” (two, sometimes three, bytes)

= Collectively, these are known as “scan codes”

PS/2 Keyboard Interface

2700
PS2_DATA: (G13)

2700
— AAA—— PS2_CLK: (G14)

G230_c8._01_021808

PS/2 Keyboard Interface

Table 8-2: PS/2 Bus Timing 20-30 kHz
Symbol Parameter Min Max

Tcx | Clock High or Low Time 30 us 50 us

Tsy Data-to-clock Setup Time Sus 25us

Tarp | Clock-to-data Hold Time Sus 25us
Codes are sent Edge 0, IIE:B , /Edge 10
LSB first with o1k psac) —\J—_/—il—\/_/—
Odd parity ! I

|
1=T,
T R !

Tsu—l |
Note that 11 bits ~ PATA (PS2D) m& /‘1

Y

are sent for each code

start, 8-data, odd parity, stop 0" start bit
Figure 8-2: PS/2 Bus Timing Waveforms

'1" stop bit

UG220_09_02 021808

Scan Codes (Make Codes)

Alt
29 EO011

Figure 8-3: PS/2 Keyboard Scan Codes

Ue210.c4_ 03 cersce

Break codes are the same, but prefixed with 0xF0
for example — Q break code is 0xF0 0x15, =» is EO FO 74

ASCII codes

BsBsBy

BsB;B1By || 000 | 001 | 010 {011 | 100 | 101 | 110 | 111
0000 NUL | DLE | SP | 0O @ P ‘)
0001 SOH | DC1 ! 1 Al Q a q
0010 STX | DC2 " 2 B R b T
0011 ETX | DC3 | # 3 C N c s
0100 EOT | DC4 | § 4 D T d t
0101 ENQ | NAK | % 5 E U e u
0110 ACK | SYN | & 6 F v f v
0111 BEL | ETB 7 G w g w
1000 BS | CAN | (8 H | X h X
1001 HT | EM) 9 I Y i y
1010 LF | SUB | * H I z] z
1011 VT | ESC | + : K [k {
1100 FF FS . < L \ 1 —
1101 CR | GS - = | M] m }
1110 SO RS . > | N - n N
1111 SI Us / ?) _ o | DEL

10

PS/2 Things to Keep in Mind

= When you press and hold a key, the make code is
sent every 100ms or so

= [f no key is pressed, both clk and data are in their
idle state

= Probably want a PS/2 controller that grabs codes
and puts them in a register that can be read by
your program (memory mapped 1/O)

= Probably want to set a bit that says “new code”

PS/2 Mouse

Mouse status byte— [— X direction byte —— [— Y direction byte
] o [c[R]o] s Jrsvspo] P o [roxDxe]xa] xdxe[xexr[e 1] o [vo]vi]ve[va]v4]vs]ve 7] p] »
t
dle state Start bit Stop bit SZN[bit Stop bit Sta" bt

Whenever the mouse moves it
Sends three bytes.

Status tells you state of buttons
sign of X and Y, and overflow ..

(xs=1)

Stop bi

+Y values (YS=0)

. for X and Y
that gets cleared when the code is read
=Y values (YS=1)
UART UART Basics
o Standard Standard
.__‘ N Yot oms Tare P D ’ff’f’f;f’f’l Taie
| r— v
o Pmé Two main parts: Figure 2: Data Byte Transmission Format
- N 089 Sertt bt Gomnector Connectors sgare Paricy '
—~ :.m(.ua — — ‘Mu-:et ‘ Voltage translator Iale : N 2 : " - - o ’SBHPESE“PE Taie
" | \ L A A |
el ey You provide the
N GND . .
o | RS-232 Voltage Translator (IC2) | UART circuit! Figure 3: Framing Error
gl e gl g
i HE (See 3700 UART 9600 * 8 = 76.8kHz
LI il for details) S0MHz/651 = 76.805kHz

(R7) (M14) (M13) (us)
Spartan-3€ FPGA

Figure 7-1: RS-232 Serial Ports

11

UART Basics

BsBsBy

BsB;B1By || 000 | 001 [010 | 011|100 | 101 | 110 | 111
0000 NUL [DLE |[SP | 0 |@ | P | ~ | p
0001 SOH | DC1 ! 1 A Q a q
0010 STX | DC2 | 2 B R b T
0011 ETX | DC3 | # 3 C S c s
0100 EOT | DC4 | § 4 D T d t
0101 ENQ | NAK | % 5 E U e u
0110 ACK | SYN | & 6 F v f v
0111 BEL | ETB : 7 G| W/ | g w
1000 BS | CAN | (8 H X h X
1001 HT | EM) 9 1 Y i y
1010 LF | SUB | * : J z i z
1011 VT | ESC | + : K [k {
1100 FF FS < L \ 1 —
1101 CR GS - = M 1 m }
1110 SO RS . > N ~ n -
1111 ST UsS / ? [¢] o | DEL

From

50MHz
clock

UART Basics

DTE se

Circuit

nder

8 * 9600 Hz Clock

=MT

To DTE

Use rev-req as a flag to be read by your program?
Assert xmt-req by your program to initiate send?

Digital to Analog Converter

¢ Four-channel 12-bit DAC
¢ Serial SPI protocol - up to S0MHz
¢ 32-bit data format

Spartan-3E FPGA

SPI ADC

SR (17T) (o —— -

VOUTA

i2

REFA
33v DACA

VOUTB

{ia

VOUTC

REFB
DACB
i2
REFC
25v DACC
REFD

VOUTD:

DACD

(N10)

"

no|RAC CS i fooD
w SP1_SCK SCK SPI Control Interface
el DACCIRE |0 o

SPI_MISO

Figure 9-2: Digital-to-Analog Connection Schematics

GND

vce
ieav

UG230_co 02 021806

12

SPI ADC Other SPI Parts

* Remember to disable the other SPI devices...

SPI_MISO
L o Slave: LTC2624 DAC a1 Table 9-2: Disabled Devices on the SPI Bus
SP'-MOS'->|x|x|x|x|0I1I2I3I4I5IGI7I8|9|1tj11' Teededee ok XXX X XXX Signal Disabled Device Disable Value
Master [DAC.CS b msb SPI_SS_B SPI serial Flash 1
Spartan-3E | SPI_SCK, . .)
FPGA L Don't Care 12-bit Unsigned Don't Care AMP_CS Programmable pre-amplifier 1
DATA COMMAND AD_CONV Analog-to-Digital Converter (ADC) 0
ADDRESS SF_CEO0 StrataFlash Parallel Flash PROM 1
0/0/0f0[DACA
oTololTToAcE FPGA_INIT_B Platform Flash PROM 1
0]0[1f{o[DACC
0]0[1[1[DACD
)AL UG230_c9_04_021806
Figure 9-4: SPI C icati to LTC2624 DAC

Analog Capture Analog to Digital Converter

Hoader J7

o
¢ Programmable scaling pre-amplifier o
| - LTC 69121 AMP R - LTC 1407A-1 ADC —
¢ 14-bit ADC | O £
. wal 3 Pos
¢ SPI interface to both of them olm — 1
z%aL!?
w e eammEe | e
B |- |cce ‘oo e
s e j- =

(P1n) AD_CONV

Amp_pout
sp1miso

Figure 10-2: Detalled View of Analog Capture Circult

SPI to Pre-amp

Table 10-2: Programmable Gain Settings for Pre-Amplifier

i A3 Az A1 Ao Input Voltage Range
Gain B3 B2 B1 Bo Minimum | Maximum
o o o o o
-1 o o o 1 04 29
-2 o o 1 o 1.025 2275
-5 o o 1 1 14 19
-10 o 1 o o 1.525 1.775
-20 o 1 o 1 1.5875 17125
-50 o 1 1 o 1.625 1.675
-100 o 1 1 1 1.6375 1.6625
AMP_DOUT
L _ o Slave: LTC2624-1
SPI_MOSI

Spartan-3E | AMP_CS
FPGA
Master

SPISCK

a2%_ct0.05_ 030306

Figure 10-3: SPI Serlal Interface to Amplifier

SPI to ADC

SPI_MISO

L Slave: LTC1407A-1 A/D Converter

O 2 12 o P 2 | A 2 A 1 8 Y A Y A e

Spartar 1Z— —|
FPGA [sPiscK

stor Channel 1

Z1
Channel 0
Gonverted data is presented with a latency of one
‘The sampled analog value s converted to digital data 32 SPI_SCK cycles after asserting AD_CONV.
Sample The converted values is then presented after the next AD_CONV puise.

Sample
B voint point
apcCONV__ [| —————
SPI_SCK .
Cramei0 Cravels]
8P_mso BOCOOO O—BOCOCOX

Figure 10-6: Analog-to-Digital Conversion Interface

Figure 10-7 shows detailed transaction timing. The AD_CONYV signal is not a traditional
SPI slave select enable. Be sure to provide enough SPI_SCK clock cycles so that the ADC
leaves the SPI_MISO signal in the high-impedance state. Otherwise, the ADC blocks
communication to the other SPI peripherals. As shown in Figure 10-6, use a 34-cycle

communications sequence. The ADC 3-states its data output for two clock cycles before
and after each 14-bit data transfer.

Summary

¢ All I/O can be mapped into your memory space

= You have lots of room left over in the addressable space if
you use block RAMs only

= Might need custom FSMs to actually talk to the I/O
¢ Control the devices under program control

= Some memory locations will be data, some will be control

= Writing or reading these locations will have 1/O side
effects

= Remember to consider timing!

¢ Think about how your program will interact with I/O

Memory Map

FFFF 1/0
Word 8
addresses SWItSf;{I_EEDS Top two address
8000 bits define regions?
TFFF
Flash ROM? Glyphs?
C000
BFFF Block RAM
Code/Data Frame buffer?
4000 | 4k additional words
3FFF
16k words
Code/Data (32K bytes)
0000

14

