
1

Other I/O

LCD display
Flash ROM
SPI EPROM

Keyboard (PS/2)
UART connectors

DAC
ADC

LCD Display

 2-line, 16 character LCD display
  4-bit interface
  Relatively easy to use once you have it mapped

into your processor’s memory-mapped I/O
  Send characters to it, they show up on the screen
  Not fast!

  Scrolling at half-second intervals is about as fast as
you can go and still have a clear display

LCD LCD Control

2

LCD Control LCD Data

 Three memory areas inside LCD
  DD RAM – memory to hold the characters being

displayed
  Two rows of 16 characters to display
  Also 24 extras per line that can be scrolled

  CG ROM – Pre-defined character map
  192 pre-defined characters

  CG RAM – RAM to hold 8 custom characters
  5x8 bit character/glyphs

DD RAM

 DD RAM – memory to hold the characters
being displayed

  Data written to each of these locations is the
8-bit address of a character in the CG ROM/
RAM

CG ROM/RAM

 For example,
8’h53 = S
  Note the

Japanese kana
characters…

 Also, notice the
8 CG RAM
locations
  Addresses

8’h00 to 8’h07

3

CG RAM

 This example is custom character 0’h03
  Note that there are 8 rows in custom character 3
  So, it takes 8 writes to make a custom character
  Row address is incremented automatically…

Operation Overview

 Pick an LCD screen location
  Write an 8-bit character address to that location
  Then it shows up on the screen

 Pick a CG RAM location
  Write 8 bytes starting at that location
  Now you can use that new custom character

 Do it all with just a four-bit interface…
  Lots of little nibble writes….

Command Set

 Commands are sent upper-nibble first

Command Set

4

Command Set Command Set

 Commands are sent upper-nibble first

Write Timing Memory Mapped I/O

 So, as a practical matter, the easiest way to
deal with the LCD is to map the interface to a
memory-mapped location
  Now you can, under program control, change the

values on the data and control wires

Your
Processor

en

I/O
Reg

Writing to the
address of the
LCD Reg will
update its value

5

Initialization

Remember, this display is SLOW compared to 50MHz!!!

Configuration

Using the Display Remember timing!

 The LCD_E enable pulse must be high for at
least 230ns (12 clock cycles at 50MHz)

 The two nibbles must be separated by 1µs
(50 cycles)

 Two different commands must be separated
by 40µs (2000 cycles)
  But, these are easily done in an assembly

language program… (as are the even longer
configuration delays)

6

Strata Flash

 16 MByte
(8 Mword) flash
ROM
  Designed to hold

configuration data
for the Spartan part

  But, can be used for
general non-volatile
data

Strata Flash

 Some data lines are
shared with the
LCD
  But, if you don’t

read back from the
LCD they can both
work together

Writing to the Strata Flash

 Tricky!
 Luckily, there is reference design on the

Xilinx web site that implements a Flash
programmer
  You can use this to load data to your board
  See class web site in the xilinx examples

directory
  www.eng.utah.edu/~3710/xilinx-docs/examples
  s3esk_picoblaze_nor_flash_programmer

Xilinx
Flash

Project

7

Reading from the Flash

 Not as tricky
  But, the flash has a 75ns access time
  So, it will take four 50MHz cycles to read data

  Each cycle is 20ns

  Set SF_oe and SF_ce active (low) and wait for
four cycles (80ns) before grabbing return data…

  As usual map the flash into your processor’s
memory-mapped address space

Xilinx Example

Xilinx
Example Read Waveforms

75ns

8

Page Mode Read
75ns

25ns

SPI Serial Flash

 16Mbit – SPI serial protocol
 Mostly used for Xilinx configuration

  But, you can use it for data if you want to

 You can program it using the Impact tool
 As with all Flash – reading is (relatively)

easy, writing is more complex
  In this case, reading one byte takes 40 clock

ticks…

SPI Serial Flash Serial Output
  Two pins: Clk and Data

  New data presented at Data pin on every clock
  Looks like a shift register

9

SPI Serial Flash

SPI Serial Flash
32 clocks before data starts coming back (runs up to 75MHz)
 Then 8 more ticks to get the data (MSB first)

PS/2 Keyboard Interface

 Standard keyboard interface
  Serial protocol similar to UART, but with its

own clock
  When you press a key, the keyboard sends a

“make code” (one, sometimes two, bytes)
  When you release the key, the keyboard sends a

“break code” (two, sometimes three, bytes)
  Collectively, these are known as “scan codes”

10

PS/2 Keyboard Interface PS/2 Keyboard Interface

Codes are sent
LSB first with
Odd parity

Note that 11 bits
are sent for each code
start, 8-data, odd parity, stop

20-30 kHz

Scan Codes (Make Codes)

Break codes are the same, but prefixed with 0xF0
 for example – Q break code is 0xF0 0x15,  is E0 F0 74

ASCII codes

11

PS/2 Things to Keep in Mind

  When you press and hold a key, the make code is
sent every 100ms or so

  If no key is pressed, both clk and data are in their
idle state

  Probably want a PS/2 controller that grabs codes
and puts them in a register that can be read by
your program (memory mapped I/O)

  Probably want to set a bit that says “new code”
that gets cleared when the code is read

PS/2 Mouse

Whenever the mouse moves it
Sends three bytes.

Status tells you state of buttons
sign of X and Y, and overflow
for X and Y

UART

Two main parts:
Connectors
Voltage translator

You provide the
UART circuit!

(See 3700 UART
for details)

UART Basics

9600 * 8 = 76.8kHz
50MHz/651 = 76.805kHz

12

UART Basics UART Basics

Use rcv-req as a flag to be read by your program?
Assert xmt-req by your program to initiate send?

50MHz
clock

Digital to Analog Converter

 Four-channel 12-bit DAC
 Serial SPI protocol - up to 50MHz
 32-bit data format

SPI ADC

13

SPI ADC Other SPI Parts

 Remember to disable the other SPI devices…

Analog Capture

 Programmable scaling pre-amplifier
 14-bit ADC
 SPI interface to both of them

Analog to Digital Converter

14

SPI to Pre-amp SPI to ADC

Summary

  All I/O can be mapped into your memory space
  You have lots of room left over in the addressable space if

you use block RAMs only
  Might need custom FSMs to actually talk to the I/O

  Control the devices under program control
  Some memory locations will be data, some will be control
  Writing or reading these locations will have I/O side

effects
  Remember to consider timing!

  Think about how your program will interact with I/O

Memory Map
I/O

Switches/LEDs
UART

Code/Data

Flash ROM?

Code/Data
0000

3FFF
4000

7FFF
8000

BFFF
C000

FFFF

16k words
(32k bytes)

Top two address
bits define regions?

Word
addresses

4k additional words

Block RAM

Frame buffer?

Glyphs?

