
1

Other I/O

LCD display
Flash ROM
SPI EPROM

Keyboard (PS/2)
UART connectors

DAC
ADC

LCD Display

 2-line, 16 character LCD display
  4-bit interface
  Relatively easy to use once you have it mapped

into your processor’s memory-mapped I/O
  Send characters to it, they show up on the screen
  Not fast!

  Scrolling at half-second intervals is about as fast as
you can go and still have a clear display

LCD LCD Control

2

LCD Control LCD Data

 Three memory areas inside LCD
  DD RAM – memory to hold the characters being

displayed
  Two rows of 16 characters to display
  Also 24 extras per line that can be scrolled

  CG ROM – Pre-defined character map
  192 pre-defined characters

  CG RAM – RAM to hold 8 custom characters
  5x8 bit character/glyphs

DD RAM

 DD RAM – memory to hold the characters
being displayed

  Data written to each of these locations is the
8-bit address of a character in the CG ROM/
RAM

CG ROM/RAM

 For example,
8’h53 = S
  Note the

Japanese kana
characters…

 Also, notice the
8 CG RAM
locations
  Addresses

8’h00 to 8’h07

3

CG RAM

 This example is custom character 0’h03
  Note that there are 8 rows in custom character 3
  So, it takes 8 writes to make a custom character
  Row address is incremented automatically…

Operation Overview

 Pick an LCD screen location
  Write an 8-bit character address to that location
  Then it shows up on the screen

 Pick a CG RAM location
  Write 8 bytes starting at that location
  Now you can use that new custom character

 Do it all with just a four-bit interface…
  Lots of little nibble writes….

Command Set

 Commands are sent upper-nibble first

Command Set

4

Command Set Command Set

 Commands are sent upper-nibble first

Write Timing Memory Mapped I/O

 So, as a practical matter, the easiest way to
deal with the LCD is to map the interface to a
memory-mapped location
  Now you can, under program control, change the

values on the data and control wires

Your
Processor

en

I/O
Reg

Writing to the
address of the
LCD Reg will
update its value

5

Initialization

Remember, this display is SLOW compared to 50MHz!!!

Configuration

Using the Display Remember timing!

 The LCD_E enable pulse must be high for at
least 230ns (12 clock cycles at 50MHz)

 The two nibbles must be separated by 1µs
(50 cycles)

 Two different commands must be separated
by 40µs (2000 cycles)
  But, these are easily done in an assembly

language program… (as are the even longer
configuration delays)

6

Strata Flash

 16 MByte
(8 Mword) flash
ROM
  Designed to hold

configuration data
for the Spartan part

  But, can be used for
general non-volatile
data

Strata Flash

 Some data lines are
shared with the
LCD
  But, if you don’t

read back from the
LCD they can both
work together

Writing to the Strata Flash

 Tricky!
 Luckily, there is reference design on the

Xilinx web site that implements a Flash
programmer
  You can use this to load data to your board
  See class web site in the xilinx examples

directory
  www.eng.utah.edu/~3710/xilinx-docs/examples
  s3esk_picoblaze_nor_flash_programmer

Xilinx
Flash

Project

7

Reading from the Flash

 Not as tricky
  But, the flash has a 75ns access time
  So, it will take four 50MHz cycles to read data

  Each cycle is 20ns

  Set SF_oe and SF_ce active (low) and wait for
four cycles (80ns) before grabbing return data…

  As usual map the flash into your processor’s
memory-mapped address space

Xilinx Example

Xilinx
Example Read Waveforms

75ns

8

Page Mode Read
75ns

25ns

SPI Serial Flash

 16Mbit – SPI serial protocol
 Mostly used for Xilinx configuration

  But, you can use it for data if you want to

 You can program it using the Impact tool
 As with all Flash – reading is (relatively)

easy, writing is more complex
  In this case, reading one byte takes 40 clock

ticks…

SPI Serial Flash Serial Output
  Two pins: Clk and Data

  New data presented at Data pin on every clock
  Looks like a shift register

9

SPI Serial Flash

SPI Serial Flash
32 clocks before data starts coming back (runs up to 75MHz)
 Then 8 more ticks to get the data (MSB first)

PS/2 Keyboard Interface

 Standard keyboard interface
  Serial protocol similar to UART, but with its

own clock
  When you press a key, the keyboard sends a

“make code” (one, sometimes two, bytes)
  When you release the key, the keyboard sends a

“break code” (two, sometimes three, bytes)
  Collectively, these are known as “scan codes”

10

PS/2 Keyboard Interface PS/2 Keyboard Interface

Codes are sent
LSB first with
Odd parity

Note that 11 bits
are sent for each code
start, 8-data, odd parity, stop

20-30 kHz

Scan Codes (Make Codes)

Break codes are the same, but prefixed with 0xF0
 for example – Q break code is 0xF0 0x15, is E0 F0 74

ASCII codes

11

PS/2 Things to Keep in Mind

  When you press and hold a key, the make code is
sent every 100ms or so

  If no key is pressed, both clk and data are in their
idle state

  Probably want a PS/2 controller that grabs codes
and puts them in a register that can be read by
your program (memory mapped I/O)

  Probably want to set a bit that says “new code”
that gets cleared when the code is read

PS/2 Mouse

Whenever the mouse moves it
Sends three bytes.

Status tells you state of buttons
sign of X and Y, and overflow
for X and Y

UART

Two main parts:
Connectors
Voltage translator

You provide the
UART circuit!

(See 3700 UART
for details)

UART Basics

9600 * 8 = 76.8kHz
50MHz/651 = 76.805kHz

12

UART Basics UART Basics

Use rcv-req as a flag to be read by your program?
Assert xmt-req by your program to initiate send?

50MHz
clock

Digital to Analog Converter

 Four-channel 12-bit DAC
 Serial SPI protocol - up to 50MHz
 32-bit data format

SPI ADC

13

SPI ADC Other SPI Parts

 Remember to disable the other SPI devices…

Analog Capture

 Programmable scaling pre-amplifier
 14-bit ADC
 SPI interface to both of them

Analog to Digital Converter

14

SPI to Pre-amp SPI to ADC

Summary

  All I/O can be mapped into your memory space
  You have lots of room left over in the addressable space if

you use block RAMs only
  Might need custom FSMs to actually talk to the I/O

  Control the devices under program control
  Some memory locations will be data, some will be control
  Writing or reading these locations will have I/O side

effects
  Remember to consider timing!

  Think about how your program will interact with I/O

Memory Map
I/O

Switches/LEDs
UART

Code/Data

Flash ROM?

Code/Data
0000

3FFF
4000

7FFF
8000

BFFF
C000

FFFF

16k words
(32k bytes)

Top two address
bits define regions?

Word
addresses

4k additional words

Block RAM

Frame buffer?

Glyphs?

