
Original author: Prof. Brunvand
Nexys 3 Revisions: Paymon Saebi

CS/ECE 3710 – Computer Design Lab
VGA Tutorial/Exercise

This tutorial/exercise is meant to help you understand and design a simple VGA controller

driving a VGA display. It has been said that “There are two kinds of engineers – those who think

VGA is hard, and those who understand VGA.” That is to say, it’s a little intimidating when you

first see it, but it’s really a very simple protocol for sending output information to a video screen.

The steps are:

1. Read and understand the VGA specification. I recommend breaking this down into a

VGA control circuit that generates the timing signals, and a Bitgen circuit that defines

what color each pixel should be as the information is being sent to the display.

2. Design and implement a VGA control/timing circuit and simulate that circuit using ISE.

3. Design and demonstrate a very simple Bitgen allow for the movement a square using the

buttons and change its color using the switches while the rest of the screen changes color

randomly.

4. Think about how the Bitgen needs to interface to the simple inputs (buttons/switches)

and it can instead interface with one of the read ports of a dual port block RAM (frame

buffer) while the processor writes VGA information into the block.

VGA Basics

The term VGA really means one of two things depending on how you use the acronym. It’s

either a standard 15-pin connector used to drive video devices (e.g. a VGA cable) or it’s the

protocol used to drive information out on that cable (e.g. a VGA interface spec.). The interface

defines how information is sent across the wires from your board to the VGA device. The cable

defines which pins you use on the standard connector for those signals.

There is a nice description of VGA (both the connector and the protocol) in the Nexys 3 board

reference manual pages 15-17. The most basic thing to know about VGA is that it is a protocol

designed to be used with analog CRT (cathode ray tube) output devices. On these devices the

electron beam moves across the screen from left to right as you’re looking at the screen at a fixed

rate (the refresh rate defines how fast the beam moves), and also moves down the screen from

top to bottom at a fixed rate. While it’s moving across and down the screen, you can modify the

Red, Green, and Blue values on the VGA interface to control what color is being painted to the

screen at the current location. So, painting a certain color on the screen is as easy as keeping

track of where the beam is, and making sure the R, G, and B signals are at the right values when

the beam is over the point on the screen where you want that color.

If you don’t do anything to stop it, the beam will move to the right and bottom of the screen and

get stuck there. You can force the beam to move back to the left by asserting an active-low signal

called hSync (horizontal sync). You can force the beam to move back to the top of the screen by

asserting an active-low signal called vSync (vertical sync). Because the beam moves at a fixed

rate (defined by the monitor’s refresh rate), you can keep track of where the beam is on the

screen by counting clock ticks after the hSync and vSync signals.

http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm.pdf
http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm.pdf

Original author: Prof. Brunvand
Nexys 3 Revisions: Paymon Saebi

So, the basics of the VGA control/timer circuit are just a pair of counters to count horizontal

ticks and vertical ticks of the VGA clock. How many ticks are there? That depends on how fast

your clock is, and how many pixels you want to paint during the time the beam moves across the

screen. The basic (ancient) standard for “plain” VGA is 640 pixels on each line, and 480 lines

down the screen. This is “640x480” mode. Figure 1 shows a 640x480 screen, and the horizontal

sync (hSync) timing required to make it work. After the hSync pulse, you must wait for a certain

number of ticks before painting pixels to the screen. This gives the beam time to get back to the

left and start moving forward again. This time is called the “back porch” because it’s after the

hSync timing pulse. Then you count 640 pixels as the beam moves. After the 640th pixel, you

wait for some amount of time (this is the “front porch” because it’s before the hSync), then assert

the hSync signal (asserted low) for a certain amount of time.

Figure1: CRT VGA Horizontal Timing Example

Original author: Prof. Brunvand
Nexys 3 Revisions: Paymon Saebi

The timing for all this depends on the monitor refresh rate. For a monitor with 60Hz refresh in

640x480 mode and a 25MHz pixel clock, you can use the timings in Figure 2. The timings in this

figure define the display time (the time when the pixel is one of the 640 visible pixels in a line),

pulse width (hSync or vSync), and the front porch and back porch timings. These times (in μs or

ms) can also be measured in terms of the number of ticks of the 25MHz pixel clock, or in terms

of the number of horizontal lines. That is, the vertical timing can be measured in terms of how

many hSync pulses have been seen. The bottom line is that both the horizontal and vertical

timing for the VGA_Controller are just counters. You may have to enable things or reset things

or change things when the counters get to a certain value, but basically they’re just counters.

Figure2: VGA Control Timing at 60Hz refresh and 25MHz pixel clock

VGA_Controller circuit

I recommend designing a circuit that has two counters: one to keep track of horizontal location

and one that keeps track of vertical location. The horizontal counter should count up in 25MHz

ticks, and the vertical counter should count once for each full horizontal line.

Note that if you’re going to use a purely synchronous design method (which I highly

recommend!), you should NOT expect to have a 25MHz clock at your disposal. The system

clock on the Nexys 3 board is 100MHz. You either need to setup the board’s digital clock

manager to give a phase locked divided clock (more accurate, but complicated) or you could

divide the clock by four and use it as the 25MHz clock, but that would NOT be purely

synchronous because you would be using a derived signal as your clock. Instead you should

Original author: Prof. Brunvand
Nexys 3 Revisions: Paymon Saebi

generate an enable signal (pulse) that is asserted every four 100MHz clocks, and use that enable

signal in your horizontal pixel counter. For example, the horizontal pixel counter might look like:

// An example of a counter that only counts when En is high.

// This particular En is assumed to be high for a single clock

// cycle when it’s time to count

always@(posedge clk100MHz)

 if (clr)

 count <= 0; // clear count if clr is asserted

 else if (En)

 count <= count + 1; // If En is high, count

 // otherwise, hold previous value (default)

Of course, there are potentially lots of details missing here (like when to wrap around back to 0,

for example), but this is an example of how you might count synchronously at 25MHz if there

was a 25MHz pulse signal available.

For your vertical counter, I recommend generating an enable signal from your horizontal counter

once per line and letting your vertical counter count up by one only when it’s enabled.

The main thing your VGA control circuit should do is generate hSync and vSync at the

appropriate times based on the VGA timing. However, if you’re going to know where the beam

is on the screen so that your Bitgen signal knows what color to put there, you also need to know

which pixel and which line the beam is currently over. So, you also need to export the hCount

and vCount signals so you can figure out which pixel is being painted. Finally, it’s a good idea to

generate a signal from your VGA control circuit that is asserted whenever the beam is in a “pixel

bright” area of the screen. That is, you are NOT in a front porch, back porch, or sync section of

the timing.

I recommend that your VGA control circuit have the following interface:

module VGA_Controller(input clock, clear,

 output reg hSync, vSync, bright,

 output reg [9:0] hCount, vCount);

The body of this module is, of course, up to you. It should generate the outputs based on the

640x480 60Hz refresh timing in Figure 2. You can validate the timing by simulating the

VGA_Controller circuit in the ISE simulator. Some things to consider when you define this

module:

 Remember that hSync and vSync are asserted low, high the rest of the time.

 hCount and vCount are used by your Bitgen circuit so that it knows where you are on the

screen. It’s handy if the value of hCount is the value of the pixel. That is, if you start

counting at 0 when you start the Horizontal Display Time from Figure 1, then the number

on the counter will be the pixel number in the line (between 0 and 639).

 In the same way, if you start counting vertical lines in the Vertical Display Time portion

of the vertical timing, then the value on the counter will be the line number (between 0

and 479)

Original author: Prof. Brunvand
Nexys 3 Revisions: Paymon Saebi

 The bright signal can be either asserted high or low – it’s used by your Bitgen circuit to

tell that you’re in a section of the screen where you want to turn on the pixel. If you’re

“not bright” you should force the RGB output to all zeros so that you’re not driving the

screen.

The VGA_Bitgen Circuit

This is the combinational circuit that takes the hCount, vCount, and bright signals, and decides

for each pixel what color should be on the screen. At a minimum a Bitgen circuit would have the

following interface:

module VGA_Bitgen(input bright,

 input [7:0] pixelData,

 input [9:0] hCount, vCount,

 output reg [7:0] rgb);

How does your Bitgen circuit know what the color should be? There are lots of ways, but the

three general techniques are:

1. Bitmapped graphics: in this technique you have a “frame buffer” that holds the RGB values

for every pixel on the screen. You can address this buffer using the hCount and vCount signals to

retrieve the color at each of the 640x480 locations on the screen. Generally the VGA portion of

the block RAM (frame buffer) is dual-ported so that, for example, a CPU can be putting data into

the frame buffer and the VGA Bitgen circuit can be reading it out at the same time. This is the

most memory-intensive technique and in 640x480 it has 307,200 pixel locations on the screen. If

you pack two 8-bit rgb pixel values in each 16-bit word in memory, that’s still 153,600 words of

storage to hold the whole 640x480 screen (~300kBytes) and you are a limited to 32k of 16-bit

words for your entire system using the Nexys 3 block RAM.

2. Character/glyph graphics: Instead of storing each of the pixels in the frame buffer, you can

break the screen into chunks and store a pointer to a glyph in each screen chunk. For example, if

you break the screen into 8x8 pixel chunks, then there are 80x60 chunk locations on the screen

(this is 4800 locations total). If you have 256 possible 8x8 glyphs stored somewhere else, then

you only need 4800 bytes (4.69kBytes) to store the screen (one 8-bit glyph pointer for each

screen chunk), but at each location on the screen you are limited to one of the 256 8x8 glyphs.

The glyphs themselves need to be in a separate memory that consists of 2k-4k locations of 8-bits

each. So, the total storage requirement is at least 6848 bytes (6.69kBytes), a lot less than

150kBytes, but less flexible. It’s common to have alphanumeric characters and some graphic

glyphs in the glyph memory. You can use the hCount and vCount values not only to tell which

chunk you’re in, but also which pixel of the glyph you’re currently in. Hints – If the glyphs are 8

pixels across, which bits of the hCount counter define the pixel within the glyph? How many bits

does it take to count to 8 pixels? Which bits of hCount define which glyph you’re in? You only

want those bits to change once every 8 ticks of the pixel clock.

Original author: Prof. Brunvand
Nexys 3 Revisions: Paymon Saebi

3. Direct graphics: Instead of storing information about what’s at each screen location, you can

design a circuit that checks the current hCount and vCount and draws directly on the screen

when you’re in the right spot. For example, if you want to draw a white box at a particular

location on the screen, your Bitgen circuit might have the following Verilog code:

parameter BLACK = 8’b000_000_00;

parameter WHITE = 8’b111_111_11;

parameter RED = 8’b111_000_00;

parameter GREEN = 8’b000_111_00;

parameter BLUE = 8’b000_000_00;

always@(*) // paint a white box on a red background

 if (~bright)

 rgb = BLACK; // force black if not bright

 else if (((hCount >= 100) && (hCount <= 300)) &&

 ((vCount >= 150) && (vCount <= 350)))

 rgb = WHITE; // check to see if you’re in the box

 else

 rgb = RED; // background color

Simple VGA_Driver system

The image above is meant to show you one way of putting together the VGA circuit but not the

only way for sure, and note that the Bitgen circuit was tailored to the demo using

switches/buttons and drawing based on an [X,Y] location. Think about how this VGA_Driver

circuit could be changed to generate memory addresses to read off pixel information from your

frame buffer and feed the information to the Bitgen circuit instead of the switches.

RGB Colors

Original author: Prof. Brunvand
Nexys 3 Revisions: Paymon Saebi

The Nexys 3 board has a VGA interface with 8 wires connected to the Xilinx part, 3 for the

RED, 3 for the GREEN, and 2 for the BLUE signals. This means you can make a generous 256

colors on the screen by turning on combinations of the R, G, and B as shown in the color

parameters in the code snippet above. Figure 3 shows the colors you can get with 3-bits of data.

Figure 3: Eight colors from one-­bit each of R, G, and B.

Now that you understand how 3-bit color with 8 different colors works so now you can expand it

to 8-bits with 256 possibilities for some nicer shades. Simply give RED and GREEN three bits

each and the BLUE two bits to get a wider range of colors.

VGA Connector

The standard VGA connector pin assignment can be found in the Nexys 3 board reference

manual page 15. The pin assignments for using the connector are also in the User Guide but I’ll

repeat them here too in Figure 4. The HSYNC (hs) and VSYNC (vs) signals come from your

VGA_Controller module. The RGB come from your VGA_Bitgen module.

NET "hs" LOC = N6 | IOSTANDARD = LVCMOS33;

NET "vs" LOC = P7 | IOSTANDARD = LVCMOS33;
NET "rgb[7]" LOC = U7 | IOSTANDARD = LVCMOS33;

NET "rgb[6]" LOC = V7 | IOSTANDARD = LVCMOS33;

NET "rgb[5]" LOC = N7 | IOSTANDARD = LVCMOS33;

NET "rgb[4]" LOC = P8 | IOSTANDARD = LVCMOS33;

NET "rgb[3]" LOC = T6 | IOSTANDARD = LVCMOS33;

NET "rgb[2]" LOC = V6 | IOSTANDARD = LVCMOS33;

NET "rgb[1]" LOC = R7 | IOSTANDARD = LVCMOS33;

NET "rgb[0]" LOC = T7 | IOSTANDARD = LVCMOS33;

Figure 4: UCF Constraints for the Nexys 3 board VGA connector.

http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm.pdf
http://www.digilentinc.com/Data/Products/NEXYS3/Nexys3_rm.pdf

