
EECS 427 RISC PROCESSOR

ISA FOR EECS 427 PROCESSOR

ImmHi/ ImmLo/

OP Code Rdest OP Code Ext Rsrc

Mnemonic Operands 15-12 11-8 7-4 3-0 Notes (* is Baseline)

ADD Rsrc, Rdest 0000 Rdest 0101 Rsrc *

ADDI Imm, Rdest 0101 Rdest ImmHi ImmLo * Sign extended Imm

ADDU Rsrc, Rdest 0000 Rdest 0110 Rsrc

ADDUI Imm, Rdest 0110 Rdest ImmHi ImmLo Sign extended Imm

ADDC Rsrc, Rdest 0000 Rdest 0111 Rsrc

ADDCI Imm, Rdest 0111 Rdest ImmHi ImmLo Sign extended Imm

MUL Rsrc, Rdest 0000 Rdest 1110 Rsrc

MULI Imm, Rdest 1110 Rdest ImmHi ImmLo Sign extended Imm

SUB Rsrc, Rdest 0000 Rdest 1001 Rsrc *

SUBI Imm, Rdest 1001 Rdest ImmHi ImmLo * Sign extended Imm

SUBC Rsrc, Rdest 0000 Rdest 1010 Rsrc

SUBCI Imm, Rdest 1010 Rdest ImmHi ImmLo Sign extended Imm

CMP Rsrc, Rdest 0000 Rdest 1011 Rsrc *

CMPI Imm, Rdest 1011 Rdest ImmHi ImmLo * Sign extended Imm

AND Rsrc, Rdest 0000 Rdest 0001 Rsrc *

ANDI Imm, Rdest 0001 Rdest ImmHi ImmLo * Zero extended Imm

OR Rsrc, Rdest 0000 Rdest 0010 Rsrc * NOP=OR R0,R0

ORI Imm, Rdest 0010 Rdest ImmHi ImmLo * Zero extended Imm

XOR Rsrc, Rdest 0000 Rdest 0011 Rsrc *

XORI Imm, Rdest 0011 Rdest ImmHi ImmLo * Zero extended Imm

MOV Rsrc, Rdest 0000 Rdest 1101 Rsrc *

MOVI Imm, Rdest 1101 Rdest ImmHi ImmLo * Zero extended Imm

LSH Ramount, Rdest 1000 Rdest 0100 Ramount * -15 to 15 (2s compl)

LSHI Imm, Rdest 1000 Rdest 000s ImmLo * s = sign (0=left, 2s comp)

ASHU Ramount, Rdest 1000 Rdest 0110 Ramount -15 to 15 (2s comp)

ASHUI Imm, Rdest 1000 Rdest 001s ImmLo s = sign (0=left, 2s comp)

LUI Imm, Rdest 1111 Rdest ImmHi ImmLo * Load & 8 bit Left Shift



EECS 427

2

LOAD Rdest, Raddr 0100 Rdest 0000 Raddr *

STOR Rsrc, Raddr 0100 Rsrc 0100 Raddr *

SNXB Rsrc, Rdest 0100 Rdest 0010 Rsrc

ZRXB Rsrc, Rdest 0100 Rdest 0110 Rsrc

Scond Rdest 0100 Rdest 1101 cond

Bcond disp 1100 cond DispHi DispLo * 2s comp displacement

Jcond Rtarget 0100 cond 1100 Rtarget *

JAL Rlink, Rtarget 0100 Rlink 1000 Rtarget *

TBIT Roffset, Rsrc 0100 Rsrc 1010 Roffset Offset = 0 to 15

TBITI Imm, Rsrc 0100 Rsrc 1110 Offset Offset = 0 to 15

LPR Rsrc, Rproc 0100 Rsrc 0001 Rproc

SPR Rproc, Rdest 0100 Rproc 0101 Rdest

DI 0100 0000 0011 0000

EI 0100 0000 0111 0000

EXCP vector 0100 0000 1011 vector

RETX 0100 0000 1001 0000

WAIT 0000 0000 0000 0000

Unused OP code 0000 0100

Unused OP code 0000 1000

Unused OP code 0000 1100

Unused OP code 0000 1111

Unused OP code 0100 1111

Unused OP code 1000 0101

Unused OP code 1000 0111

Unused OP code 1000 1xxx

ISA FOR EECS 427 PROCESSOR



E
E

C
S

 427

3

ISA FOR EECS 427 PROCESSOR
Opcodes, Extended Opcodes and Condition Codes

OP Code Shift

Bits 13,12 Bits 5,4

15,14 00 01 10 11 7,6 00 01 10 11

00 Register ANDI ORI XORI 00 LSHI LSHI ASHUI ASHUI

01 Special ADDI ADDUI ADDCI 01 LSH ASHU

10 Shift SUBI SUBCI CMPI 10

11 Bcond MOVI MULI LUI 11

Register cond

Bits 5,4 Bits 9,8/1,0

7,6 00 01 10 11 11,10/3,2 00 01 10 11

00 WAIT AND OR XOR 00 EQ NE CS CC

01 ADD ADDU ADDC 01 HI LS GT LE

10 SUB SUBC CMP 10 FS FC LO HS

11 MOV MUL 11 LT GE UC

Special

Bits 5,4

7,6 00 01 10 11

00 LOAD LPR SNXB DI Blank entries are unused codes
Unshaded instructions are Baseline01 STOR SPR ZRXB EI

10 JAL RETX TBIT EXCP

11 Jcond Scond TBITI



EECS 427

4

EECS 427 RISC PROCESSOR
The group projects for EECS 427 will be based on the processor specification given in this docu-
ment. The processor specification is based on RISC concepts and is implemented as a two stage
pipeline. It uses a 16 bit word and address space, although for simplicity, each address refers to a
complete word (two bytes), so the address space is 217 bytes. All instructions are single word. Fol-
lowing the RISC approach, almost all instructions refer to a 16 entry register file. The highest nyb-
ble is the operation code, the next nybble is usually the destination register address, the remaining
byte is an immediate data value for some instructions, or is split into a four bit operation code ex-
tension and a four bit source register address for other instructions. (A few instructions are differ-
ent, so read the specifications carefully.) In order to make the project feasible for most groups in
the available time, a “baseline” implementation is also given. This uses a selected subset of the in-
structions and the expectation is that implementation of the baseline processor is the minimum re-
quirement for this course. Each group should plan a customization beyond the baseline, which
makes the processor useful for a particular application. Typically, this may involve adding a few
instructions beyond the baseline, special registers which allow certain operations to be done more
efficiently, and an interface logic to external input/output devices. (Note: most projects are usually
much closer to the baseline, than the full implementation.) All the baseline instructions should be
implemented without change, so that your processor can execute a test program at the end of the
term. Added instructions should normally use the “unused opcodes” which are listed in the Instruc-
tion Set Architecture (ISA). If it is necessary to replace some of the additional instructions (beyond
the baseline), discuss it with the instructor. Because the register file can be physically large, it is
acceptable to implement only eight of the sixteen registers (addresses 0 through 7) for the baseline
processor, although the instruction format should not be changed.

A block diagram is given of the architecture of the baseline processor as a guideline, but you are
free to make additions and changes to it, but you should still follow the RISC approach with pipe-
lined stages. The following sections discuss the functions of the instructions. You should also refer
to the notes in the list of instructions.

Notes on the Baseline Instruction Set

All ALU instructions (except CMP, CMPI - see below) write the result back to the destination reg-
ister. Instructions ending with I are immediate and use the eight least-significant bits of the instruc-
tion as data, the others are direct, (i.e. instruction “op Rsrc/Imm, Rdest” performs

Rdest <-- Rdestop Imm (sign extended)
or

Rdest <-- Rdestop Rsrc
respectively).

For the baseline EECS 427 processor, the instructions marked with an asterisk in the instruction
table should be implemented. Successive memory addresses can refer to 16 bit words instead of
bytes. Of the baseline subset of instructions, the only ones which can change the program status
register (PSR) are the arithmetic instructions ADD, ADDI, SUB,SUBI, CMP, CMPI. CMP and
CMPI perform the same operations as SUB, SUBI but affect different PSR flags (see below) and
do not write back the result. Only flags FLCNZ are needed for the baseline implementation.

ADD, ADDI, SUB,SUBI set the C flag if a carry/borrow from the most significant bit position oc-
curs when the operands are treated as unsigned numbers, and set the F flag if an overflow occurs
when the operands are treated as two’s complement numbers. (Note: the processor does not know
which interpretation you are using, so must set both flags appropriately for each operation.) CMP,



EECS 427

5

CMPI perform a subtraction without write back to Rdest and set the Z flag if the result is zero, set
the L flag if Rsrc/Imm > Rdest when the operands are treated as unsigned numbers (i.e. when a
carry/borrow occurs), and set the N flag if Rsrc/Imm > Rdest when the operands are treated as
two’s complement numbers (N can be computed as the exclusive-or of L and the sign bits of Rsrc/
Imm and Rdest). All other baseline instructions leave the flags unchanged.

Jcond, Bcond are absolute and relative jumps respectively based on the condition codes specified
in the condition code (cond) table. (See Table 1.)

JAL (jump and link) stores the address of the next instruction in Rlink, and jumps to Rtarget. Its
main use is for subroutine calls. Return with a JUC Rlink (where Rlink is the same register used to
store the link).

LSH is a logical left shift by the number of bits specified in Rsrc/Imm treated as a signed twos com-
plement number (which must be in the range -15 to +15). A negative left shift is effectively a right
shift.

LOAD and STOR instructions load to, and store from the data memory location whose address is
in register Raddr. The NOP instruction is really OR r0, r0 and does not need to be implemented
separately. Unconditional jumps (JUMP) and branches (BR) are equivalent to JUC and BUC re-
spectively, so do not need separate implementation either. Compilers may have these alternative
instruction ops for convenience, however.

LUI (load upper immediate) loads the 8 bit immediate data into the upper (most significant) bits of
the destination register.

MOV copies the source register or immediate into the destination register.

Notes on the Additional Instructions

In a full implementation, PSR (program status register) is a dedicated 16 bit register with flag en-
tries (in the following order, MSB at the left)rrrrIPE0NZF00LTC , where the “r” entries are re-
served, the “0” entries are zeros, I, E are used for interrupt processing, T, P are for program tracing
(debugging), and the rest are flags have been defined elsewhere.

ADDU does the same as ADD but does not affect the PSR flags.

ADDC does the same as ADD except the C flag is also added in. It affects the same flags.

ASHU does an arithmetic left shift interpreting both operands as signed twos complement.

MUL multiplies: Rdest <-- Rsrc/Imm * Rdest. High order bits are truncated if they do not fit in
Rdest. No flags are affected.

SUBC does the same as SUB except that the C flag is also subtracted. It affects the same flags.

SNXB converts the 8-bit operand in Rsrc to 16 bits in Rdest with sign-extension.

Scond sets Rdest = 1 if the condition is true (i.e. if the bit in the PSR is set), and resets Rdest = 0
if it is false (same condition codes as jump and branch instructions).

DI, EI, EXCP, RETX deal with interrupts and exceptions. Ask if you are interested in implement-
ing any of them.

LPR, SPR load the PSR from Rsrc and store PSR into Rdest, respectively.

TBIT copies the bit in positionoffset to the F flag of the PSR

WAIT suspends program execution until an interrupt occurs (or for ever, if interrupts are not im-
plemented).

ZRXB converts the 8-bit operand in Rsrc to 16 bits in Rdest with zeros-extension.



EECS 427

6

Table 1: COND Values for Jcond, Bcond, and Scond

Mnemonic Bit Pattern Description PSR Values

EQ 0 0 0 0 Equal Z=1

NE 0 0 0 1 Not Equal Z=0

GE 1 1 0 1 Greater than or Equal N=1 or Z=1

CS 0 0 1 0 Carry Set C=1

CC 0 0 1 1 Carry Clear C=0

HI 0 1 0 0 Higher than L=1

LS 0 1 0 1 Lower than or Same as L=0

LO 1 0 1 0 Lower than L=0 and Z=0

HS 1 0 1 1 Higher than or Same as L=1 or Z=1

GT 0 1 1 0 Greater Than N=1

LE 0 1 1 1 Less than or Equal N=0

FS 1 0 0 0 Flag Set F=1

FC 1 0 0 1 Flag Clear F=0

LT 1 1 0 0 Less Than N=0 and Z=0

UC 1 1 1 0 Unconditional N/A

1 1 1 1 Never Jump N/A



E
E

C
S

 427

7

Data
Memory

PC

Register
File

ALU

D
ec

od
e

In
st

ru
ct

io
n 

R
eg

Shifter

Displacement

Addr. A

Addr. B/WR

Immediate

FETCH EXECUTE

Baseline RISC Architecture

Instruction
Memory


	EECS 427 RISC PROCESSOR
	ISA FOR EECS 427 PROCESSOR
	EECS 427 RISC PROCESSOR
	Notes on the Baseline Instruction Set
	Notes on the Additional Instructions
	Table 1: COND Values for Jcond, Bcond, and Scond




