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Optimal Permanent-Magnet Geometries for Dipole Field Approximation

Andrew J. Petruska and Jake J. Abbott
Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84112 USA

The dipole approximation for magnetic fields has become a common simplifying assumption in magnetic-manipulation research when
dealing with permanent magnets because the approximation provides convenient analytical properties that are a good fit at large dis-
tances. What is meant by “good fit at large distances” is generally not quantified in the literature. By using a parameterized multipole
expansion and collaborating finite-element analysis (FEA) simulations to represent the magnet’s field, we quantify the error associated
with the dipole approximation as a function of distance from the permanent magnet. Using this expression, we find cylindrical, washer,
and rectangular-cross-section bar permanent-magnet aspect ratios that minimize the error of the dipole approximation. For cylinders
and rectangular-cross-section bars, these aspect ratios are a diameter-to-length ratio of 1/4/3 and a cube, respectively.

Index Terms—Magnetic analysis, magnetostatics, permanent magnets.

[. INTRODUCTION

HE magnetic fields generated by current distributions and

permanent magnet can be modeled in numerous ways
from direct integration of the Biot—Sivart law, to finite-element
analysis (FEA), to harmonic expansions of the fields. The
dipole approximation, the first spherical harmonic of the field,
provides a concise and easily manipulated representation of the
magnetic field and is increasingly accurate with distance. This
approximation is commonly used for localization of objects
in areas ranging from medical imaging applications [1], to
military applications [2]-[4], to object tracking [5]-[20]. The
dipole representation also provides interesting applications in
real-time control of magnetic devices for medical applications
[21]-[24]. A pure dipole field can be generated by a uniformly
magnetized spherical permanent magnet; however, other shapes
of permanent magnets can be represented by a dipole field as an
approximation at large distances. Understanding the limitations
of this approximation for the commonly available cylindrical,
washer, and rectangular-cross-section bar permanent magnets
is the focus of this paper, along with answering the question:
“What shape of cylindrical/washer/bar permanent magnet is
best represented by a pure dipole field?”

There are works that explicitly address the accuracy of the
dipole approximations of permanent magnets. Hu et al. [6]-[9]
propose placing a cylindrical permanent magnet inside a cap-
sule endoscope for localization. They use the dipole approx-
imation to describe the magnetic field produced by the per-
manent magnet and use linear calibration techniques to mini-
mize the error associated with the strength of the magnet. Wang
and Meng [11] explore the accuracy of the dipole model for
two types of cylindrical magnets for use as magnetic markers
in capsule endoscopes. They quantify the error along the axis
and radius of the cylindrical magnet and suggest a rectangular
“keep-out region” for the approximation that is three times the
dimension of the magnet, but they do not examine the error asso-
ciated with the model for other locations. They also indicate that
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an axially magnetized magnet with a diameter-to-length ratio
of 2.5 is better represented by the dipole model than an axially
magnetized magnet with a diameter-to-length ratio of 0.5. Foun-
tain ef al. [21] examine the use of a rotating permanent magnet
to control helical swimmers and propose using a dipole model
to represent the field of the cylindrical permanent magnets. The
approximation is justified a posteriori by a least squares fit of the
dipole model to experimental data collected along the magneti-
zation axis for both diametrically magnetized and axially mag-
netized cylindrical magnets. Interestingly, the fit to the diametric
magnet shows better agreement with the dipole model than the
axial magnet with the same geometry. Mahoney et al. [23] con-
tinued this research and exploited the linear-algebraic properties
of the dipole field to show interesting force and torque combi-
nations can be applied by one rotating permanent magnet acting
on another sympathetically rotating permanent magnet. They
then use the dipole model to demonstrate that rotating magnetic
fields can be generated about arbitrary axes in space using a
single rotating permanent magnet in any relative position [24].
The above works show the dipole model is an accurate approx-
imation for distances far away from the permanent magnet and
imply that using a permanent magnet that is more accurately
modeled by the dipole approximation at distances nearer to the
magnet will enable more accurate real-time magnetic control of
untethered devices. Two observations in the works by Fountain
et al. and by Wang and Meng indicate there may be an optimal
aspect ratio and magnetization direction to accurately represent
the magnetic field produced by a cylindrical permanent magnet
using the dipole approximation.

To explore the nature of a shape that is optimally represented
by the dipole-model approximation and to quantify the error
in the model at any location outside the magnet, a parameter-
ized multipole expansion is presented in this paper for axially
and diametrically magnetized cylindrical magnets and rectan-
gular-cross-section bar magnets. The accuracy of this expan-
sion is verified by comparisons to FEA models of the mag-
netic fields from different magnet geometries. Since the dipole
approximation is the first term of this expansion, analytically
calculating the optimal shape aspect ratios can be achieved by
minimizing the contribution of the remaining terms to the field
representation.

The paper is structured as follows. First, the theoretical foun-
dation for a multipole expansion for representing the magnetic
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field of a permanent magnet is reviewed, and the criteria for
defining the shape with minimal dipole-model error will be in-
troduced. Then, the multipole expansion for axially and diamet-
rically magnetized cylindrical magnets and rectangular-cross-
section bar magnets is solved and compared to FEA models of
several different magnet geometries to validate the expansion.
The optimal aspect ratios for cylindrical magnets and rectan-
gular bars is then solved and extended to washers. Finally, the
error associated with the dipole approximation for both the op-
timal and other commonly available shapes is presented.

II. PERMANENT-MAGNET FIELD APPROXIMATION

The magnetization M inside a permanent magnet is a
function of the applied field H,, the magnetic remanence of
the material H,., the susceptibility of the material y, and the
shape demagnetization factors along the principal axes of the
magnet V;

- 1 -
1
0 0 _
L 1+ xNs |

where all vectors are expressed relative to the principal axes
of the magnet. The demagnetization factors are a set of three
fractional values, which sum to one, that describe how a given
shape magnetically interacts with itself, and how susceptible the
shape is to magnetization in each of the principle directions;
for a sphere, the demagnetization factors are 1/3 in each prin-
ciple direction. The demagnetization factors for ellipsoids of
revolution, cylinders with ellipsoidal cross sections, and rect-
angular bars have been calculated [25]-[28]. For hard-magnetic
materials with relatively low magnetic recoil susceptibilities for
applied fields weaker than the coercive field strength, such as
NdFeB with x = .05, the demagnetizing field becomes negli-
gible and the magnetization reduces to the magnetic remanence
of the material. For a permanent magnet with no external field
applied, the magnetic H field can be described as the gradient of
a scalar potential ®, which can be defined by the magnetization
of the object [29]

H=-V9, VZd =V -M. )

This can be solved using direct integration [29]

1
- d
w\ et f ) O

where M is the magnetization, n is the normal unit vector
pointing out of the surface of the magnetized material, p is the
vector from the center of the magnetized volume to the point of
interest and is independent of the integral, p is the vector from
the center of the magnetized volume to the point of integration,
and p and p are their respective unit vectors.

For permanent magnets with low susceptibilities and uniform
remanence, which is a reasonable assumption for permanent

o(p) =
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magnets that are saturated during manufacturing, the divergence
in the volume (V - M) is equal to zero, reducing (3) to

1 n-M
") = 37 f e @
5
This can be rewritten using a Taylor series as a multipole expan-
sion if the points of interest are outside the minimum bounding
sphere (i.e., the smallest sphere that will encompass the magnet)
surrounding the permanent magnet [30]

1< 1 7 .
®(p) = - Z —T %/)nPn(P p)(n
n=0 p 'S

‘M)da (5

where P, () are Legendre polynomials p = |p| and p = |p|.
The magnetic field represented by this scalar potential is only
defined outside the permanent magnet and is

B=yH=-uV® (6)

where p is the permeability of the surrounding medium (for free
space 1 = pg = 47 x 107N - A?),

As a consequence of V - B = 0, no even terms (e.g.,
1/p%, < 1/pt,...) exist in (6). The first nonzero term of the
expansion is the dipole term (x 1/p3), which is independent
of geometry and is commonly used for approximation of the
magnetic field for control applications because of its convenient
vector form. This term is
o 1
4 p?
where I is a 3 x 3 identity matrix and m is being introduced
here as the dipole moment of the object defined by

mE/MM. (8)
'V

Bdipole(p) (Jﬁf)T - I)m (7)

The next nonzero term in the series is the quadrupole term (x
1/p°) and the next is a hexapole (o< 1/p”), all of which are func-
tions of magnet geometry. In these higher order terms, 8 will
represent any factors that parameterize the shape of the magnet,
such as a diameter-to-length ratio for a cylinder.

For an approximation of the field consisting of the first T’
terms, the relative error at any given point is

Error(p, )
— |Bactua.l - Bapproxl
o |Bactual|
Bri1(p,8) + Bryo(p. 8) + Z B, :ﬁ)‘
n=T+3
= = )
23%9@

Without loss of generality, 7' will be assumed to be an odd
number, requiring the even terms (Br, and By, 3) to be zero,
simplifying the error to

’BT+2(p,[f) + i Bn(pvﬁ)‘
n=T+4

Error(p, 3) = (10)

ARM
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Fig. 1. Geometry definition for cylindrical magnets. The spherical coordinate
definition is shown for the axially magnetized case only.

As B4 and higher order terms are asymptotically bounded
by the By 2 term, the optimal approximation geometry for dis-
tances much greater than the radius of the minimum bounding
sphere radius E, can be determined by minimizing the mag-
nitude of the Br42 term alone. As this provides the optimal
geometry for distances far away from the minimum bounding
sphere, it is conceivable that at some intermediate distance a
different geometry could provide a locally optimal solution. To
determine locally optimal solutions, the integral of (10) over the
region of interest would need to be minimized and more terms
than just the Br42 term would need to be considered. As this
minimization is application specific, only the far-field optimal
geometry for the dipole approximation (7" = 1) will be con-
sidered in this paper and the quadrupole term By term will be
minimized by finding the value of /3 that sets the contribution of
the By term to zero at every location in space.

III. MAGNET MULTIPOLE EXPANSION

A. Cylindrical Magnet

Cylindrical permanent magnets are most readily available
in the axially magnetized and diametrically magnetized forms.
Without loss of generality, the axis of the cylinder is aligned
with the Cartesian z-axis, as shown in Fig. 1. The parameter that
characterizes the shape of the cylinder is the diameter-to-length
aspect ratio 3. The following equations summarize some useful
relationships using this parametrization, where R is the radius
of the minimum bounding sphere and V' is the volume of the
cylinder:

3 2

B3
D:2<V_ﬂ)3
27

VvV o\?
t=2(57)

For materials like NdFeB with small susceptibilities (|x| < 1),
(1) and (8) simplify to m ~ H,V, which, given a minimum
bounding sphere, maximizes when 3 = /2. However, max-
imizing the dipole moment of the magnet given a sphere size
does not ensure a dipole approximation with minimal error; for
that, a multipole expansion of the shape is required.

(11)

In the following sections, a spherical coordinate system will
be used. All primed variables are defined relative to the magnet
for integration and all nonprimed coordinates are defined rela-
tive to a global coordinate system in which the point of interest
p is defined. In this convention, § is measured from the mag-
netization axis of the material, ¢’ is measured from a conve-
nient axis orthogonal to the magnetization axis (typically along
the length of the magnet), and p’ is defined as a radial distance
from the center of the material. In the global frame, p is the
vector from the center of the magnetized material to the point
of interest and will be described in a spherical frame with: ¢
measured from the global z-axis and @ pointing in the positive
6 direction, ¢ measured from the positive z-axis and ¢ pointing
in the positive ¢ direction, and p taken as the magnitude of the
p vector with ¥ pointing in the p direction (the difference in
variable name is to avoid confusion when switching between
spherical and coordinate-free descriptions). For reference, Fig. 1
shows the coordinate system with both the global and material
coordinate systems aligned.

1) Axially Magnetized Cylinder: The multipole expansion
defined by (5) is adapted to axially magnetized cylinders by
taking i’ - M to be M = |[M]| on the top surface, —M on
the bottom surface, and 0 on the cylindrical wall

0 )n+2
Z i Da(p. ) (12)
where
ertanil(i) (A A/) o
Sin
Dy(p,B) :/ / W]yd(/)’

27 ki

)

0 7—tan—1(3)

P.(p- p)qm@

LA S e i [ [
(cos 9’)”4‘3 ¢

Using the substitution x = cos §’, D,, can be further simplified

//

14 32

nPP

e n odd

= T lde' dr,
D, (p,

0, n even

p-p = \/1 — x2 sin §(sin ¢ sin ¢’ + cos ¢ cos @’) + x cos 6.
(13)
The magnetic field of an axially magnetized cylindrical magnet
described in cylindrical coordinates is then
dD,, ;
"9 (14
7 ) (14)

(5"
pn+2
where 2 is the magnitude of the dipole moment m. Noticing
that 7 cos 0t = ppTm and that m sin #6 = (ppT — I)m, the
spherical-coordinate field definition can be converted into a co-
ordinate-free form. The first term is the dipole term, as expected.

The next two terms will be used in Sections I'V-A and IV-C to

fo m

i 'V
n odd

B(p) =

((n + 1)D,r —
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find the geometry that maximizes the contribution of the dipole
term to total field

1o 1 A AT
B, =2 (3ppT — 1
1= pg( PP jm
fio 1 (L)2 (4—3/32)
B, = =
47rp 8
: ((35(m 5 — 15) ppT — (1.5(rhTf>)2 . 3) 1) m
g 1l (L */158% — 6052 + 24
ST qmpt \ 2 64

a4 105, .
((231( p) - 20 (mTp)’ + 35) pp"

- (105(mTp)4 — 70( " p)’ ) ) (15)

2) Diametrically Magnetized Cylinder: Adapting the multi-

pole expansion to diametrically magnetized cylinders requires

taking the i’ - M term in (5) to be M sin ¢’ on the cylindrical

wall and 0 on the top and bottom surfaces. This aligns the mag-

netization direction with the Cartesian y-axis, and the scalar po-
tential described by (5) becomes

n+2

n+1
n=0 p

®(p, ) = p.53) (16)

where

r—tan”! 8 27

pivn= [ [

tan—

L3 p p S1n¢

0, T aant2 d¢/d0/

blIl
and
p-p = cosfsind sing’ + cos ¢sin b cos§’

+ sin ¢ sin G sin 6’ cos ¢,
The magnetic field described in spherical coordinates is then

Dyn+2
B(p) = (;,3+2

Lo m

4V
n odd

((n +1)D, ¢

dD,, - 1 dD,, -
TR ey de ¢>‘ {17
Noticing that m cos 6t = ppTm, msin 06 = (ppT — Dm
and m sin ¢p = —p x m, and defining 1to run along the axis of
the magnet, the spherical-coordinate field definition can be con-
verted into a coordinate-free form. The first term is the dipole
term. The next two terms will be used in Sections [V-A and IV-C

po 1

o 1 213824
B,=t0 (P
4 pd\ 2 8

(35(mTp)2—25)

B1—
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Fig. 2. Definition of a rectangular-cross-section bar magnet geometry.

_@i<g)4<5ﬂ4—20/32+8>
CAmpT\ 2 64
.(21(3(7—11@%)2)%
+(1800Tp)’ —14)<|;I§1|>2+1>ﬁfﬂm
—3(21(1—5(mTf>)2)§i—12;

+(42(mT;3)2—14)<mi24§1|> +1)m

1TpmTppT (mxl) /. ST a2 .
S (5(1 ) —1)p><m . (18)

B. Rectangular-Cross-Section Bar Magnet

Rectangular bar magnets require two aspect ratios to describe
their shape. For this discussion, the height of the magnet H will
be taken along the magnetization direction and will be oriented
with the z-axis, and J; and > will be taken as the length-to-
height and width-to-height aspect ratios and will be oriented
along the z- and y-axes, respectively. The geometry is shown

in Fig. 2. For this geometry, (5) is adapted by taking n’ - M to
be +M on the top and —M on the bottom and becomes
M & P, 51, 52)
= I Z e (19)
where
ﬁ?H G%H
Dy(p, b1, 2) = ()" Po(D - p')da' dy/
G:H/2 BLHJ2 =4
B8y H 81 H
- ()" Pu(p - §')d' dy
_B.H/2 - $H/2 o=-f
and
5. 5 7' cosgpsinf + ' sinpsinf + 2z’ cos b
p-p = .

/:U/Q + y/2 +z/2
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D,, can be further simplified to
Dn (p7 /Hl ’ /32)

2 2
)2 / / (o) Po(D - p')da' dy’ , nodd
8o H/2 4 1/2 =4
0, n even.

The magnetic field described in spherical coordinates is then

Ho ™ 1 an
B(p)=7

D, g
irV Oddp”+2((n+ ) a9 °

sind d¢
A (20)
Defining 1 to point along the L direction, and noticing

that mcosft = ppTm, msindd = (PppT — Dm
m smﬁqﬂ = —p X m,cosd = pTl/|p x m|, and sin¢ =
pT(mh x 1)/|p x 1, the spherical-coordinate ficld definition

can be converted into a coordinate-free form. The first term is
the dipole term. The next term will be used in Section IV-B

po 1o
=20 3ppT -1
1 47rpg,( pp  —I)m

PN
_'U’O H2 =4 p o T 242 =4 ﬁTl
7(/6%_1)( ) _[7)1 +4ﬁz )PP m
2
pT
( (52— /5)( Iln|> (3(™p)")

+15(33 —1)(m™ b)Y +42— 4/3§+3>m

ey

C. Validation of Multipole Expansions With FEA Solutions

To verify the validity of the expansions, the first nine nonzero
terms of the multipole expansions are compared to FEA sim-
ulations solved by Ansoft Maxwell version 14.0. A cross-sec-
tional contour plot showing the relative error between the mul-
tipole expansion and the FEA simulation for axially and diamet-
rically magnetized cylinders and rectangular-cross-section bars
are shown in Fig. 3. The average and maximum errors at a given
distance are shown in Fig. 4. These comparisons demonstrate
that the first nine terms of the multipole model are quite accurate
for distances greater than 1.5 minimum-bounding-sphere radii.

IV. OPTIMAL GEOMETRIC RELATIONS FOR DIPOLE
APPROXIMATION

A. Cylinders

In both the axially magnetized and diametrically magnetized
conditions, the cylindrical magnet has the same shape-depen-
dent factors in the multipole expansion, as shown by the second

1 dD, (2)) .

Axial Cylinder Magnet
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Fig. 3. Contour plot showing the 2% (outer) and 50% (inner) bands of error
between the multipole expansion and the FEA model for several geometries of
cylinder and rectangular magnets. Note that the error drops to below 2% after
1.5 radii of the minimum bounding sphere for each.

terms in (15) and (18), respectively. Using the far-field criterion
for an optimal approximation geometry, the optimal 3 is defined
by the equation 4 — 332 = 0. Therefore, the far-field optimal
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Fig. 4. The average error of the first nine terms of the multipole approximation
as compared to FEA simulation over a spherical surface as a function of distance
for several different geometries of cylinder and rectangular magnets. The dashed
line represents the maximum error and the error bands =1 standard deviation
about the average error.

3 for both the diametrically magnetized and axially magnetized
conditions is 3 = /4/3 & 1.15. This aspect ratio corresponds
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to a 3% compromise in magnet volume and, therefore, dipole
moment from the maximum given a minimum bounding sphere,
which occurs when 4 = /2.

B. Rectangular-Cross-Section Bar

The optimal dipole approximation for a rectangular-cross-
section bar can be obtained by determining which values of (31
and 2 set the B3 term in the multipole expansion defined in
(21) to zero. Inspection of (21) shows that 31 = (3, = 1 is the
only solution that sets every component of the B3 coefficient
to zero. Conveniently, this cubic geometry also corresponds to
the maximum dipole moment for a given minimum bounding
sphere.

C. Axially Magnetized Washer

As superposition holds for permanent magnet materials with
low recoil susceptibilities (i.e., an externally applied or self-gen-
erated field does not appreciable affect the magnetization of the
material), the optimal dipole shape for the washer shown in
Fig. 5 can be defined by a linear combination of two cylinders
of equal length. The larger diameter cylinder is taken to have
a magnetization of M and a diameter-to-length ratio of (J; and
the smaller is taken to have a magnetization of —M and a diam-
eter-to-length ratio of J5. The volumes that these two cylinders
overlap is equivalent to a hole in the larger cylinder. Following
the procedure outlined previously, the equation that defines the
optimal dipole approximation geometry for an axially magne-
tized washer is a linear combination of the B3 coefficients from
(15) of the two cylinders scaled by their volumes (V7 and V)

L\’ 4362 L\ 4383
Vil = [171/2 — 72—, (22)
2 8 2 8
There is a real solution when /2/3 < 81 < 1/4/3
V12 - 93
b= T iy (23)

Outside this range, the optimal dipole approximation is defined
by minimizing the square of the quadrupole coefficient and
is equivalent to having no hole or no magnet. Moreover, the
only real values of (3; and (o subject to (23) that minimize
the hexapole By coefficient are \/ 4/3 and 0, respectively.
That is, adding a hole to a nonoptimal configuration can make
the approximation better, but the best geometry for dipole
approximation has no hole. If a hole is desired, the optimal
washer length can be calculated by substituting the definitions
of 31 and (35 into (23) and solving for L, and is

3
L=4/7(D}+D3). (24)

D. Diametrically Magnetized Washer

For a diametrically magnetized washer, the optimal hole size
is defined by a linear combination of the B3 coefficients from
(18) of the two cylinders scaled by their volume

D\2332 -4 Dy\?2 382 — 4
(5 (5) 9

2
2 8 2 3 25)
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D,

Bi=D;/L  p2=Dy/L

Fig. 5. Definition of washer-shaped magnet geometry.

which exists when (2v/2/3) < 31 < 1/4/3 and is equal to

By = \/é (\/(4 — 302 (932 +4) + 4 — 3/3%) . (26)

Using this equation to define the relationship between /31 and 3,
the magnitude of the hexapole term in (18) can be minimized
<D1)4 50E-2082+8 (D2>4 5% —2082+8
2] PATEATE gy 22) 2RTERTR
2 64 2 64

27
which minimizes when 3; = (3> = 2 V2 /3 or, equivalently,
the no-magnet geometry (i.e., the hole is the same size as the
magnet). If (27) is normalized by the remaining dipole moment
(|IM||{V1 —V3)), the resulting formula minimizes at the no-hole
geometry; that is, the optimal geometry for a diametrically mag-
netized cylindrical magnet has no hole. If a hole is desired for a
diametrically magnetized magnet, the optimal length is

L \/g (Df‘%—D%D%—i—D%)‘

: 2
4 D? + D3 (28)

V. ERROR CHARACTERIZATION OF OPTIMAL DIPOLE
GEOMETRIES

The average percent error over the surface of a sphere asso-
ciated with the dipole approximation can be quantified by aver-
aging (10) over the surface of a sphere (and multiplying by 100).
The average error as a function of distance from the center of
the magnet is given for axially magnetized cylinders, diametri-
cally magnetized cylinders, and rectangular-cross-section rods
in Fig. 6.

The crossover between the § = 1 and # = \/m error
curves, shown in the diametrically magnetized cylindrical
magnet error plot, indicate that a geometry other than the
far-field optimal will minimize the dipole approximation error
for distances close to the surface of the magnet. Numerical
analysis of diametrically magnetized cylinder magnets indi-
cates that 5 = 1.10 minimizes the dipole approximation error
for distances between 1 and 4 minimum-bounding-sphere
radii; however, the optimal near-field geometry provides only
a marginal reduction in error when compared to the far-field
optimal geometry at those distances.
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Fig. 6. The average errors associated with different geometries of cylindrical
and rectangular permanent magnets are plotted as a function of distance from
the center of the magnet. Distances are normalized by the radius of the minimum
bounding sphere.
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Fig. 7. The error associated with the optimal dipole geometries. The cube-
shaped magnet has the least dipole approximation error, followed by the dia-
metrically magnetized cylinder.

A comparison of the average error associated with the op-
timal geometries for the cylindrical and rectangular-cross-sec-
tion bar magnets is shown in Fig. 7. The average error associ-
ated with the different optimal geometries is very close, with
the cubic magnet having the least and the axially magnetized
magnet having the most. Figs. 8 and 9 show the variation of
error as a function of angle at a given distance. To determine
the error at a given position, it is only necessary to multiply the
average error given in Fig. 7 by the value in the error variation
plot that corresponds to the angular position.
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Fig. 9. Variation in dipole approximation error as a function of angle for an
optimal diametrically magnetized cylindrical magnet and cube magnet. Each
contour line represents a step in 0.1 times the average error at a given radius.
The magnetization axis corresponds to § = 0 and the I direction corresponds
to# = 7/2 and ¢ = 0. See Figs. 1 and 2.

The diametrically magnetized cylinder has both the highest
average error and the largest error range, which appears in con-
flict with the observations in the work by Fountain ef al. [21],
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which shows diametrically magnetized magnets are preferable
to the axially magnetized magnets. However, upon closer in-
spection, the least squares fit of the dipole approximation in the
work by Fountain et al. is based on field measurements taken
only along the magnetization axis of the magnet. At those lo-
cations, Figs. 7-9 predict a lower error for diametrically mag-
netized magnets than axially magnetized magnets, since the av-
erage error is approximately the same and the error multiplier
for § = 0 is 0.91 versus 1.6, respectively. Because Fountain
et al. took their data along the magnetization axis, the dipole
fit not only was better for the diametrically magnetized mag-
nets, but also was more accurate in determining the dipole mo-
ment of the magnet. This also explains why Fountain ef al. cal-
culated different dipole moments based on their measured data
for the axially magnetized magnet and the diametrically mag-
netized magnet despite both magnets having the same volume
and material.

VI. CONCLUSION

The multipole expansion provides an accurate method for de-
termining the field generated by a permanent magnet for po-
sitions away from the surface of the magnet. This expansion
also provides a direct way to determine the optimal dipole ap-
proximation geometric parameters for various shapes of mag-
nets. This optimal geometry for cylinders (both axially and di-
ametrically magnetized) is a diameter-to-length ratio of \/m
and, for rectangular-cross-section bars, it is a cube. By choosing
these ratios, the error associated with the dipole model is re-
duced compared to nonoptimal geometries, as shown by the
trend depicted in Fig. 6. The accuracy of the approximation in-
creases faster with distance for optimal geometries than it does
for nonoptimal geometries. Given a minimum bounding sphere,
there is no reduction in dipole moment magnitude from the max-
imum in rectangular bars to achieve an optimal dipole approxi-
mation and the reduction required in cylinders is less than 3%.
Of the geometries studied for a given distance from the magnet,
the cubic magnet has the least average dipole approximation
error followed closely by the diametric and axial magnets. The
axially magnetized cylindrical magnet has the smallest range in
error at a given distance from the center of the magnet.
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