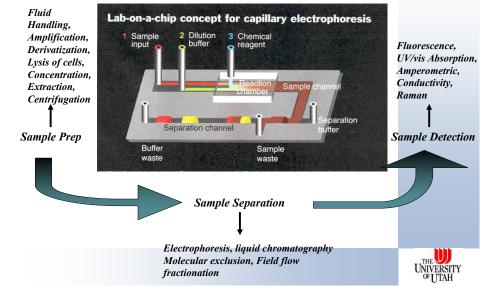

Microfluidics

Bruce K. Gale Fundamentals of Micromachining

Microfluidic System Concept (MicroFlumes)


Concept

UNIVERSITY OF UTAH

UNIVERSITY OF UTAH

- One system to provide all of the possible required analyses for a given type problem
- All processing steps are performed on the chip
- No user interaction required except for initialization
- Portable bedside systems possible

Lab-on-a-Chip (Body Fluid In; Answer Out)

Goals:

- Fast
- Portable
- Robust
- Easy to use
- Flexible
- Inexpensive
- Modular?

Components

- Separation
- Mixing
- Reaction
- Sample injection
- Sample preparation
- Detection
- Pumping
- Transport (channels)

- Reservoirs
- Flow control
- Control
- Intelligence and Memory
- Power
- Display
- Other analysis
- Sample collection?

Don't forget packaging!!

UNIVERSITY OF UTAH

Considerations in Microscale Biomedical Analysis Systems

- Biocompatibility
 - Defined for each application and system
 - Cells, proteins, DNA, tissues all have different requirements
 - Typically low protein absorption, no leaching, "non-reactive"
- Harsh chemicals and environment
- Small sample handling
- Interfacing with macroscale world
- Pumps, valves, flow control
 High pressures, flow rates, and volumes possible
- Sample injection
- Multimodal: Fluids, Electrical, Optical, etc.
- Interfaces with existing systems (standards)

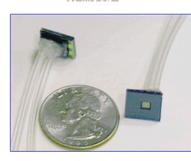
Microfluidic Scaling

- All flow is laminar (no turbulent mixing)
- Surface tension becomes significant
- No inertia effects
- Apparent viscosity increases

Fluid Control Components

- Pumps, valves, channels
 - Pumps and valves of similar design
 - No perfect pumps or valves
- Generally require mechanical actuation

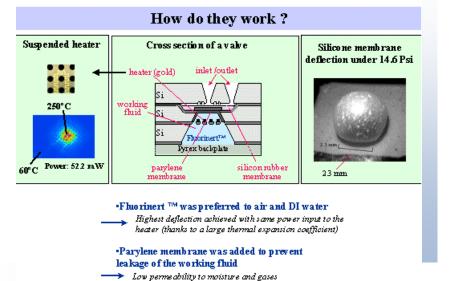
• Valve types


- A: restriction perpendicular to flow
- B: restriction parallel to flow
- C: combination of A and B
- D: phase change (freezing)

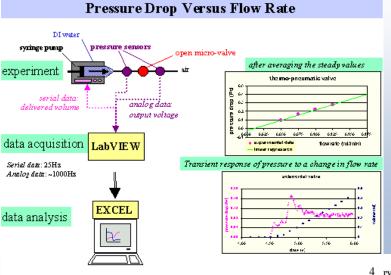
UNIVERSITY OF UTAH

Microvalve

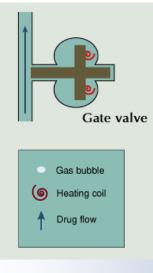
Thermo-Pneumatic Micro-Valve Characterization Journe Deval



•How do they work ?

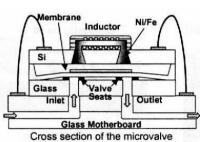

•What do we need to know about them ?

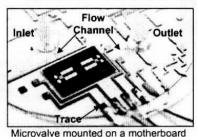
Microvalve


Microvalve

2

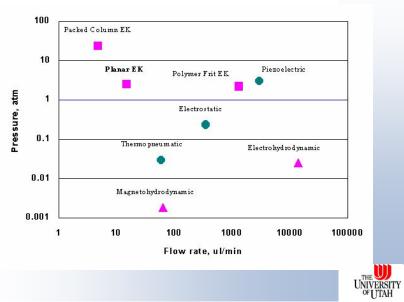
4 гү ч ПАН


Bubble Gate Valve

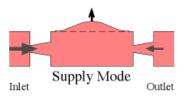


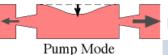
- Basic Operation
 - Current travels down platinum wires, heating the coil .
 - The coils boil water to produce bubbles
 - Bubbles push on the cross's arms and force it away from the main channel
 - Bubbles generated on the other side of the arms closes the gate valve
- Envision growing a bubble in the channel

Magnetic Valve



- Example of a typical mechanical valve
- Can be attached to glass motherboard
- Modular



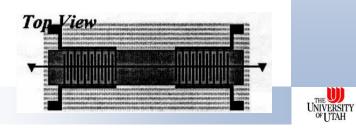

Pumps

Pump Types

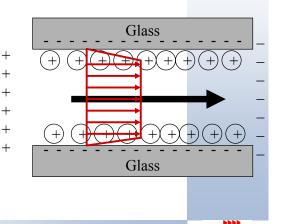
- Valved
 - Piezoelectric
 - Thermo pneumatic
 - Electrostatic

• Valveless

- Electro hydrodynamic (EHD)
- Diffuser
- Electroosmotic
- (electrokinetic)
- Bubble



Microfluidic Scaling: Pumping


- Mechanical (blister pouch)
 - L³
 - No fluid contact
 - Generic
 - Innovation in the blister pouch solves valving
 - Difficult to further miniaturize
 - Difficult to multiplex

- Acoustic
 - L²
 - No fluidic contact
 - R & D
 - Generic
 - Doesn't solve valving yet
 - ZnO technology still difficult to reproduce
 - Easy to further miniaturize

Electroosmotic Pumping

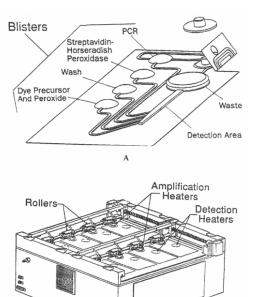
- Requires materials with surface charge
 - Preferably permanent
- Glasses and many polymers have permanent negative surface charge
- Positive charges assemble on surface
- Applied charges pull assembled charges
- Charges at surfaces drag bulk material

UNIVERSITY OF UTAH

Microfluidic Scaling: Pumping

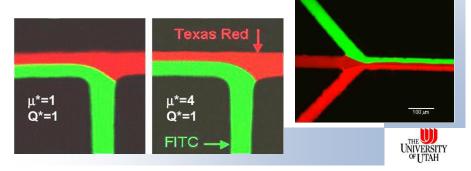
- Electroosmotic
 - I²
 - Fluid contact
 - Development
 - Not generic
 - May solve valving
 - Mixing difficult to implement
 - Many parameters influence propulsion force
 - High voltage source is not convenient
 - Better for high-throughput screening and smaller samples

• Centrifugal

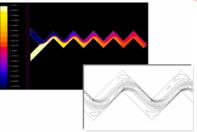

- I³
- No fluid contact
- Established
- Generic
- Solves valving elegantly
- Widest dynamic range
- Simple and inexpensive CD player for drive
- Mixing easy to implement
- Most functions demonstrated
- Cell work possible
- Sample preparation easier
 - Better for diagnostics

Mechanical Actuators for Pumping

- Actuation mechanisms:
 - <u>electrostatic</u> = electrostatic attraction of charged plates
 - <u>thermal</u> = expansion of solids or fluids; phase change
 - <u>shape memory alloy</u> = considerable change in length (TiNi)
 - <u>pneumatic/hydraulic</u> = fluid pressure
 - <u>piezoelectric</u> = electrically induced strain
 - magnetic
 - chemical (including hydrogels)
 - biological


Kodak System

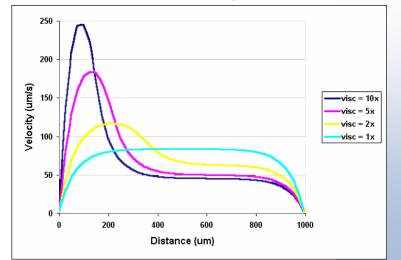
- Blister pouch used for pumping
- Commercially available
- Disposable pouch used with complex base system


THE UNIVERSITY OF UTAH

Microscale Mixing

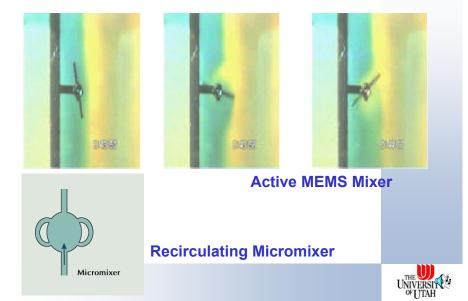
- Laminar flows make mixing very difficult
- Occurs almost exclusively through diffusion
- Goal then is to maximize surface areas for diffusion
 High surface to volume
- Good mixing critical for many bioassays
- Recirculation mixes quickly

Mixing Methods

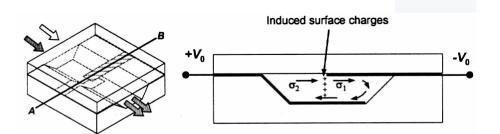

- Recirculation
- Chaotic advection
 - Flow disturbances
- Multiple flows at small dimensions

De Hittorde Heit I Denes la Heitorde He

Bubble pump mixer

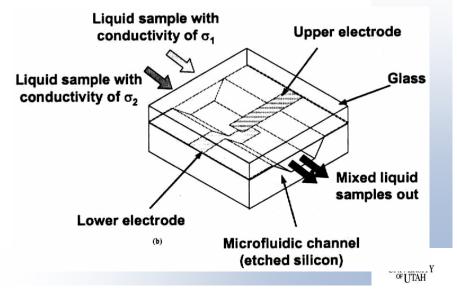


Fluid Viscosity Effects

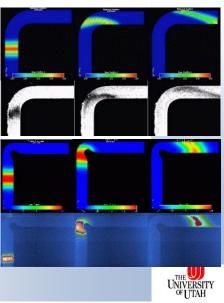


Varying viscosities severely impact flow profile

Micromixers

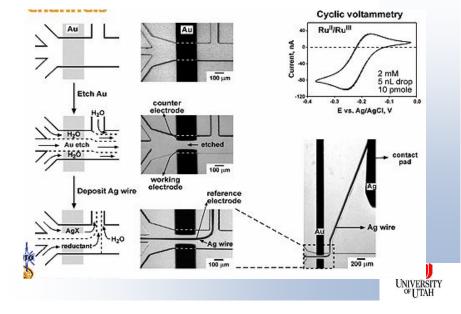

Electrohydrodynamic Convection

- Surface charges are induced at the interface
- External electric fields make the induced charges move
- Moving charges produce the shear force
- Liquids are moving along with the induced charges and being mixed



Electrohydrodynamic Mixing

Channel Considerations


- Channel cross section
 - Hemispherical
 - Rectangular
 - Triangular
 - Trapezoidal
 - Round
- Geometry critical to reducing broadening of injected samples

Flow Measurement

- Turbine?
- Hot wire anemometer
- Ultrasonic
- Optically
- Others?

Opportunities of Microfluidics

Direction of Flow **Diffusion** interaction **Detection stream** Reference stream Sample strea

Detection stream inlet

Sample inf

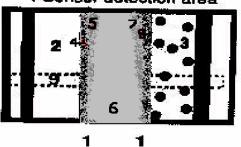
zones

Reference

solution inlet

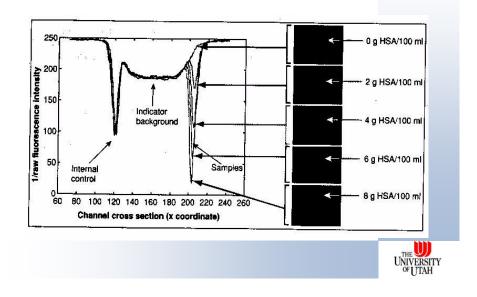
•Channel width is ~200um

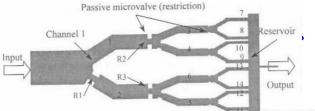
T Sensor


- •Flow is laminar
- •Combines separation and detection functions
- •Fluid interaction during the parallel flow
- •Large particles in blood do not diffuse
- •H⁺,Na⁺ and small molecules diffuse rapidly between streams
- •Interaction zones are formed due to inter diffusion
- •Indicator changes color or fluorescence intensity
- •The ratio of fluorescence gives the concentration of analyte

UNIVERSITY OF UTAH

T Sensor


Magnified cross section of T-Sensor detection area


- 1. Original blood flow boundaries
- 2. Reference stream
- 3. Particle-laden sample stream
- 4. Diffusion of detector substance into reference stream
- 5. Diffusion of reference analyte into detection stream
- 6. Detection stream
- 7. Diffusion of sample analyte into detection stream
- 8. Diffusion of detector substance into sample
- 9. Detector cross-section (linear detector array) or imaging CCD

T Sensor

Structurally Programmable Arrays

- Valving accomplished by channel size reduction
- Program hard wired into system
- Can also be done using hydrophobic sections

^{ir} Chong Ahn, Univ. Cincinnati

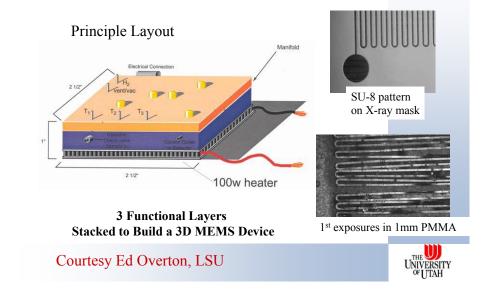
Packaged H-Filter

Separations

- Chromatography
- Wide variety of methods
- Issues
 - Resolution
 - Field strength
 - Analysis time
 - Contaminants

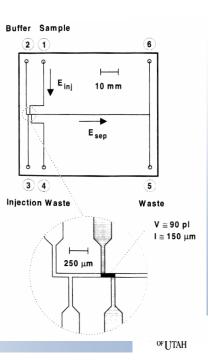
• Electrophoresis

- Field- flow fractionation
- Gas and liquid chromatography
- Blotting (Directions)
- Size exclusion
- Affinity



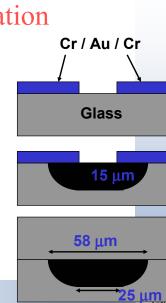
Motivation for On Chip

- Combination of chemical reactions, sample injection, and separation of reaction products in one system
- Speed up analysis times
- Reduce fluid handling
- Improve resolutions


- Reduce sample sizes
- Allow parallel processing
- Reduce costs
- Integrated signal detection and processing
- Smaller systems (portable)

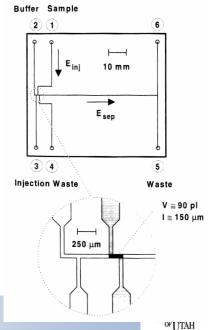
Micro Gas Chromatograph

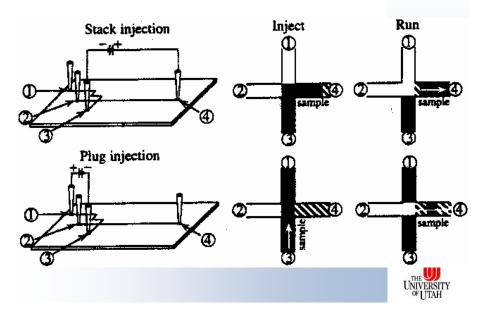
Electrophoresis


- Used to separate charged particles on basis of size and charge
- Electric fields are applied across gels which slow "large" particles moving through gel
- High resolution separations possible

UNIVERSITY OF UTAH

Fabrication

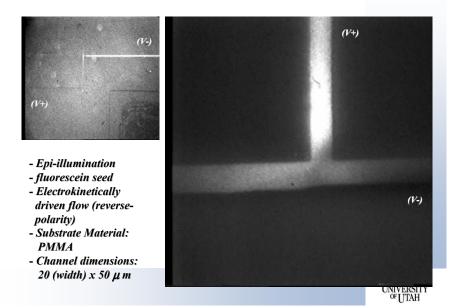

- Fabricated on 4 inch square glass plates
- Cr/Au/Cr mask was used to etch glass plates
- HF/HNO₃ etchant used to etch channels
- 2 mm access holes drilled in second plate
- Air squeezed out and then bonded at 440 C for 2 h


OFITAH

Channel Layout

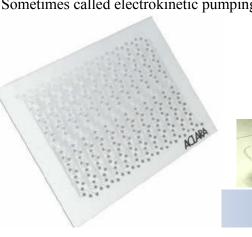
- Thick lines are 240 μm across
- Double T injector used
- Injection volume ~ 100 pL
- Injection to Detection distance is ~ 5 cm

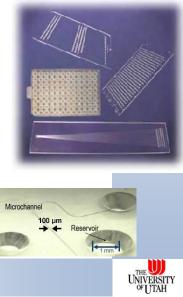
Sample Handling in T Injector


Typical Operation and Detection

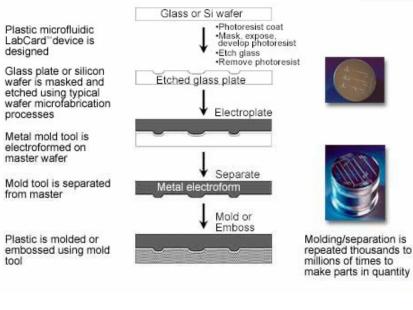
- Operation
 - 10 μL to sample reservoir
 - Sample moved using 1 kV into injection area
 - Separation performed by applying 6 kV across electrophoresis channel

- Detection
 - Laser-induced fluorescence
 - 488 nm argon ion laser
 - Emission collected by PMT
 - Observes a 11 pL volume
 - Bandpass filtered signal
 - Problems w/ scattering off curved glass surfaces and bonding process
 - Detection limit 30 pM

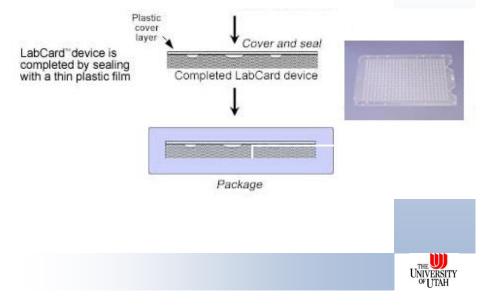

Nanofluidics in PMMA Microdevices



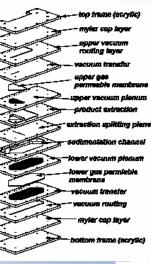
Microfluidic Chips


Electroosmotic flow for pumping

Sometimes called electrokinetic pumping

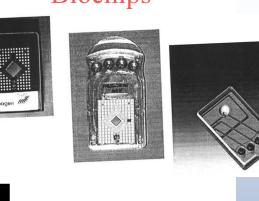


Microfluidic Chip Fabrication



Microfluidic Chip Fabrication

Microfluidic Chip Fabrication


- Laminate structures allow greater complexity
- Can be made using laser ablation or PDMS soft lithography

Biochips

Nanogen

System for Reading Chips

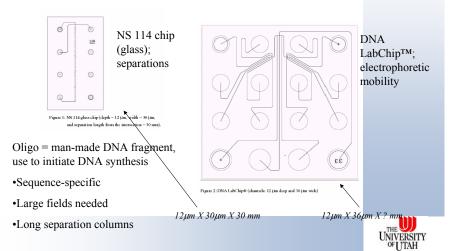
Waste Port

The P

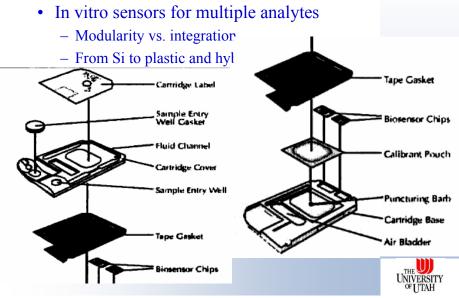
The NanoChipTH electronic chip contains platinum wires which are connected to a computer controller once the NanoChipTH is inserted into the NanoChipTH Molecular Biology Workstation.

The microchip is similar to that used in many computers and enables extremely precise control of each individual test site. NanoChip Meretalener

Barcod


Chamber #1 Buffer Port

Chamber #2


99-site test array. Each test site is electronically connected to the NanoChip™ system by a platinum wire.

Caliper Technologies LOC-Oligonucleotide Separation

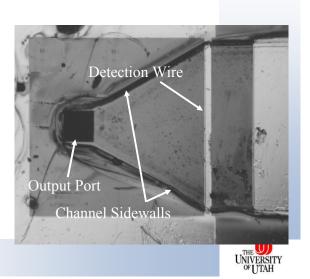
Cartridge Concept

Types of Detectors

- Optical
 - Fluorescence
 - Absorption (UV, etc)
 - Light scattering
 - Refractive index
 - Radiation

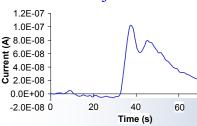
- Electrochemical
 - Amperometric
 - Potentiometric
 - Conductimetric
- Mechanical
- Thermal
 - Conductivity and Flame Ionization
- Chemical
- Magnetic

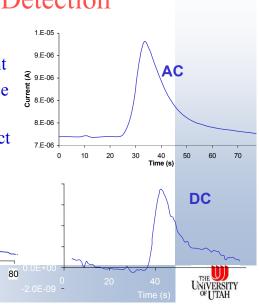
UNIVERSITY OF UTAH


Detector Issues

- Volume
- Complexity
- Sensitivity
- Selectivity
- Bulk
- Cost
- Applicability

THE UNIVERSITY OF UTAH


Fabrication Results


- Micrograph of detector wire across channel defined by polyimide
- Wire is 19 μm wide
- Location of wire eliminates all end effects

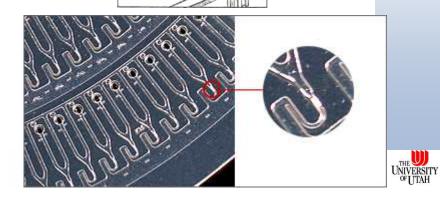
Peak Detection

- Typical measured responses shown at right
- Note high signal to noise ratio
- Sufficiently fast to detect double injection

LabCD: A Bioanalytic / µ-TAS Platform

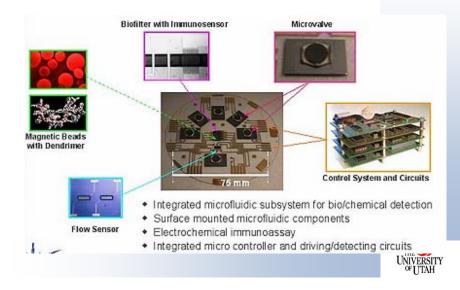
What are the necessary platform attributes to encompass:

- Drug discovery and development
- Life science research
- Clinical and molecular diagnostics
- Flexible fluid processing wide range of volumes, flow rates, pressures
- Flexibility in fluids
- ds wide range of viscosity, pH, ionic strength, aqueous, organic solvents, biological fluids
- Flexibility in assay homogenous, heterogeneous, cell based
- Detection options
 Colorimetry, fluorescence, luminescence
 - Integration World-interface + macrofluidics + microfluidics + temperature control + detection ...
- Automation and simplicity replace labor intensive processes


From Gamera Biosciences

LabCD Platform

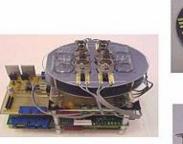
- Instrument
 - Control
 - Rotary drive
 - Detection
 - Actuation


- Disc
 - Fluidics layer
 - Electronics layer
 - Informatics layer

Pumping and Valving

	Disc geometry/properties		Fluid properties		Rotation		
	fluid channel position fluid channel diameter fluid channel length fluid "head" contact angle	r₀, r₁ d _H l H θ _C	density viscosity surface	P η Υ	velocity accel	α Θ	
	Pumping		"Capillary	" Valv	ing		\mathbf{Y}
$\Delta r = [r_1 - (r_0 - H)]$ $\overline{r} = [r_1 + (r_0 - H)]/2$	$U = \frac{d_{H}^{2} \rho \omega^{2} r \Delta r}{32 \eta l}$ $Q = AU$		$\omega_e \propto \left[\frac{\gamma \sin \theta}{\rho r}\right]$	$\left[\frac{\ln \theta_c}{\Delta r d_H}\right]^{1/2}$	2		U
C1 (0) 7 -							UNIVERSITY OF UTAH

Integrated Microfluidic System


Microfluidic Motherboard

Reservoir Level

Reservoirs on the Mother-Board

Mother-Boards UNIVERSITY OF LITAH

Detection

Level

Challenges for Total Integration of Microfluidic Chips

- Reagent storage and reconstitution
- Integrated microvalves and micropumps
- Packaging
 - Interconnects (optimize \rightarrow reduce \rightarrow eliminate)
 - Filling / bubbles / dead volume
 - Leakage
- Surface functionalization
- · Microflow measurement and characterization
- Control algorithms, data processing, and communications
- Integrated, ultrasensitive detection
- Heterogenous material integration
- Sensitivity limited by sample volume (front end amplifiers?)
- Low power
 - Harness energy from host or ambient
 - Low power pressure sources

- Domestic animal breeding is big business, and getting bigger...
 - IVF, transgenics, cloning

Costs are high

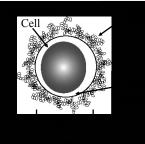
IVF - \$100s to a few \$1000s \$1-3 million to produce a transgenic cow

Procedures very "harsh" and laborious

Courtesy of David Beebe, University of Wisconsin

Embryo Physiology

Embryo size

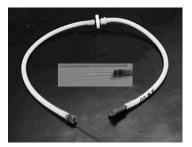

- ~ 100μm (Mice) to 150μm (Cattle)
- Doesn't significantly change over the culture period

Zona Pellucida

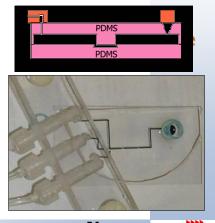
- 8-15 μm thick
- Passive glycoprotein matrix
- Acts as a porous fence around embryonic cells

Cumulus

- · On egg when removed from oviduct
- · Protects egg from polyspermy



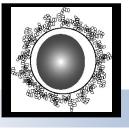
Embryo with Cumulus



Rationale for Embryo Micro Processing Systems

Current techniques are inefficient & labor intensive

Traditional


New

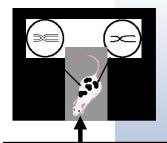
Microfluidic Removal Procedures

Zona Pellucida
Chemical process
Chimera formation

Cumulus Cells

- Mechanical process
- Most *in-vitro* procedures

UNIVERSITY OF UTAH

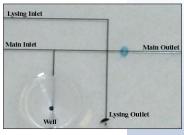

Zona Pellucida Removal A Chemical Process

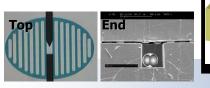
Chimera Formation

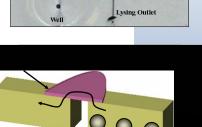
Tarkowski, Nature 1961 Remove zona Place embryonic cells in intimate contact Culture

Microfluidic Advantages

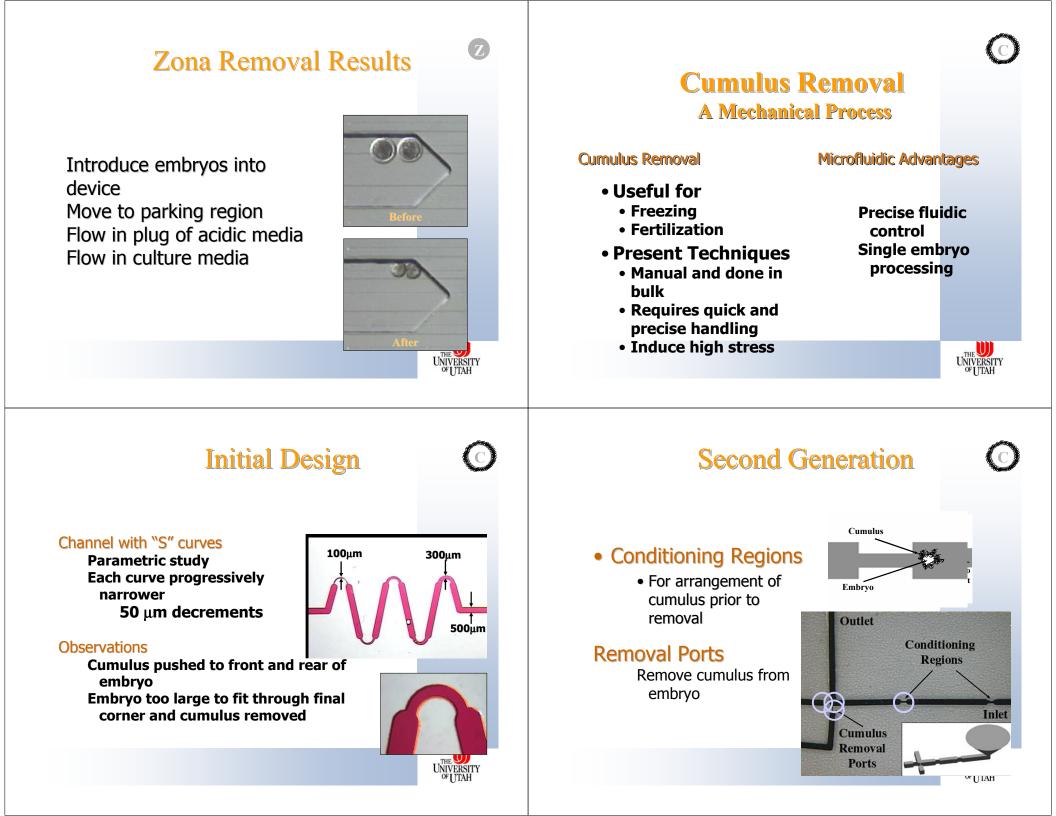
Quick media changes "t" junction Small numbers of embryos Ease of placement






ONIVERSITY OF UTAH

Zona Removal Device


Sample Loading And Unloading Easy embryo introduction and retrieval "t" junction Precise plug formation "Parking" region Allows for quick media changes

UNIVERSITY OF UTAH

