MEMS Metrology

Dr Bruce K Gale Fundamentals of Micromachining

What is a Measurement

- A measurement is an act of assigning a specific value to a physical variable
- The physical variable becomes the measured variable
- Measurements provide a basis for judgements about
 - Process information
 - Quality assurance
 - Process control

Metrology

- What is metrology?
 - It is the science of weights and measures
 - Refers primarily to the measurements of length, wetight, time, etc.
- Mensuration- A branch of applied geometry
 - It measure the area and volume of solids from lengths and angles
- It also includes other engineering measurements for the establishment of a flat, plane reference surface

UNIVERSITY OF UTAH

UNIVERSITY OF LITAH

- What do we want to measure?
- Length or distance
- Mass
- Temperature
- Elemental composition
- Viscosity
- Diplacements or distortions
- Time

- Measurable Parameters
 - Pressure
 - Forces
 - Stress
 - Strain
 - Friction
 - Resistance
 - Roughness
 - Depth
 - Intensity
 - etc.

Measurement Systems and Tools

- Measurement systems are important tools for the quantification of the physical variable
- Measurement systems extend the abilities of the human senses, while they can detect and recognize different degrees of physical variables
- For scientific and engineering measurement, the selection of equipment, techniques and interpretation of the measured data are important

Importance of Metrology

- In human relationships, things must be counted and measured
- Metrology is an absolute necessity for human development
 - This necessity increased greatly with the advent of the industrial age
- As society develops further, metrology must also be refined further

THE UNIVERSITY OF UTAH

Components of a Measuring

How Important are Measurements?

- Measurement is the language of science
- It helps us communicate about size, quantity, position, condition, time, etc.
- Simple measurement errors can cost a company a contract, work, jobs, and lots of money
- Three areas to which the basic principles of measurement can be applied
 - Communication of the measurement
 - Act and application of the measurement
 - Codification of the measurement

Human Interaction in Measurements

- Almost always require the use of vision
 - Other senses not always good at "measurement"
- Measurements usually require tools
 - They rely on the visual process
- What happens if object is too small to perceive?
 - At what size do things become to small to measure?
 - Handling and/or perception problems
 - Limits of vision/ perception without aid or assistance

What is Microsystem Metrology

- Measurement of physical dimensions of microsystems or structures that are at the dimension scale below our ability to perceive without the help of measurements systems or instruments
- Microsystems: IC, MEMS
- Microstructures: Line widths, film thickness, surface struture and roughness, step heights, particle size, atomic composition, defect inspections, etc
- Nanosystem metrology is emerging now!

Where Metrology at the Micro Level is Used

- Precision engineering and measurements
- Micron and nano manufacturing
- Research and development
- Calibration of instruments and standards

MEMS Measurement

- Statistics and probability
- Statistical process control
- Optical microscopy
- Scanning electron microscopy (SEM)
- Atomic force microscopy (AFM)
- Scanning tunneling microscopy (STM)
- Near- field microscopy
- Laser/ White light interferometry
- Video Microscopy
- Surface Profiler
- Roughness Tester
- Ellipsometry

Statistics and Probability

- Statistical terms and definitions
- Infinite statistics
- Finite statistics
- Standard deviations
- Probability density functions
- Confidence intervals
- Uncertainty analysis
- Error sources

- Bias and precision errors
- Error propagation
- Regression analysis
- Least squares methods
- Linear polynomials
- Student's t-Test
- Single and multiple measurement errors
- Zero and higher order uncertainties
- Correlation coefficient

UNIVERSITY OF UTAH

UNIVERSITY OF UTAH

Statistical Process Control

- Concept of variation
- Importance of SPC in production processes
- Controlled and uncontrolled variation
- Common and special causes
- Control charts
- Statistical inference
- Running records

- Population parameters
- Control limits
- Subgroup average and range
- Three sigma limits - Six now!

Optical Microscopy

- Light propagation and Snell's law
- Mirrors, prisms, lenses and beam splitters
- Image formation, interference and diffraction
- Simple and compound microscopes
- Mirror and thin lens equations
- Resolving power and resolution
- Aberrations and corrections
- Depth of field and focus
- Measurement on the optical microscopic scale

Numerical Aperture

MEMS Optical Microscopy Problems

Oil Immersion and Numerical Aperture

Scanning Electron Microscopy

- Used for observation, analysis, and measurement
- Can produce images over a wide range of magnifications
 - High magnification and great depth of field
 - High resolution (down to 2.5 nm)
- Can provide morphological, compositional, and physical information
- 3D appearance of image
- Greater degree of freedom

Near Field Scanning Optical Microscopy

- Used to get below the limits of "far-field diffraction"
- High resolution down to 50 nm

UNIVERSITY OF UTAH

SEM Components

- Electron gun assembly
 - Stable source of primary electrons
- Electromagnetic lenses and apertures
 - Focus electron beam
- Vacuum system
 - Allows passage of electrons without interference
- Electron collector, display, and recorder
- Specimen stage
 - Goniometer stage

SEM Operation

- Small area irradiated by electrons
- E-beam can be static or swept
- Secondary and backscattered electrons detected

SEM Operation

- Current in the focused e-beam determines magnitude of emitted signals
- Size of focused beam determines the resolution

UNIVERSITY OF UTAH

Transmission Electron Microscopy (TEM)

- Only for thin materials
- Usually used to study crystals
- Gives good information on nanometer structure

UNIVERSITY OF UTAH

Atomic Force Microscopy

AFM Image of Silicon

• Silicon (111) plane- ridges 0.38 nm high

Scanning Tunneling Microscopy

control voltages for piezotube • Sharp tip • Tunneling current or voltage tunneling current distance control measured amelifier and scanning unit • Current increases rapidly on data processing approach to and display tunneling voltage surface • Atomic resolution Institut für Allgemeine Physik TV Wien UNIVERSITY OF LITAH

Roughness Step Tester (RST)

- Surface characterization
- Interference microscope
- Optical measurement of surface

Surface Texture

- Definition

 Repetitive or random deviation from nominal surface that forms the 3-D topography of the surface
- Roughness
 - Closely spaced irregularities
- Waviness
 - Wider spaced irregularities (tool marks)
- Form
 - Does not contribute to surface texture

Surface Profiler

- Large tip scans across surface
- Excellent for measuring height of objects
- Sidewalls are not accurate
- Variation dependent on tip diameter
- Vertical accuracy in angstroms

UNIVERSITY OF UTAH

Ellipsometry

- Light is rotated as it passes through medium
- If dielectric constant is known, can be used to measure film thickness

Interferometry

- Reflected light waves interfere with each other
- Used to measure thickness of thin films or deflections
- Interference occurs at different locations based on wavelength

THE UNIVERSITY OF UTAH

Film		Film		
Thickness		Thicknes	s	
(µm)	Color and Comments	(µm)	Color and Comments	
0.05	Tan	0.63	Violet red	
0.07	Brown	0.68	"Bluish" (Not blue but	
0.10	Dark violet to red violet		borderline between violet	
0.12	Royal blue		and blue green. It appears	
0.15	Light blue to metallic blue		more like a mixture	
0.17	Metallic to very light		between violet red and blue	
	yellow green		green and looks grayish)	
0.20	Light gold or yellow-	0.72	Blue green to green (quite	'l'ht
	slightly metallic		broad)	
0.22	Gold with slight yellow	0.77	"Yellowish"	
	orange	0.80	Orange trather broad for	
0.25	Orange to melon		orange)	
0.27	Red violet	0.82	Salmon	(nan
0.30	Blue to violet blue	0.85	Dull, light red violet	Chan
0.31	Blue	0.86	Violet	
0.32	Blue to blue green	0.87	Blue violet	
0.34	Light green	0.89	Blue	
0.35	Green to yellow green	0.92	Blue green	
0.36	Yellow green	0.95	Dull yellow green	
0.37	Green yellow	0.97	Yellow to "yellowish"	
0.39	Yellow	0.99	Orange	
0.41	Light orange	1.00	Carnation pink	
0.42	Carnation pink	1.02	Violet red	
0.44	Violet red	1.05	Red violet	
0.46	Red violet	1.06	Violet	
0.47	Violet	1.07	Blue violet	
0.48	Blue violet	1.10	Green	
0.49	Blue	1.11	Yellow green	
0.50	Blue green	1.12	Green	
0.52	Green (broad)	1.18	Violet	
0.54	Yellow green	1.19	Red violet	
0.56	Green yellow	1.21	Violet red	
0.57	Yellow to "yellowish" (not	1.24	Carnation pink to salmon	
	yellow but is in the position	1.25	Orange	
	where yellow is to be	1.28	"Yellowish"	
	expected. At times it	1.32	Sky blue to green blue	
	appears to be light creamy	1.40	Violat	
0.59	gray or metallic)	1.43	Violet Blue ministrat	
0.58	night based when	1.40	Dine violet	
0.60	Carentian nink	1.50	Dull vellen grant	
0.00	Carnation prink	1.24	Dull venow green	

Thin Films Change Colors

UNIVERSITY OF UTAH

UNIVERSITY OF UTAH

CCD Cameras (Video Imaging)

- Charge Coupled Devices (CCD)
 - Metal insulator semiconductor devices (MIS)
 - Incident light generates charge on gate
 - Induced voltage causes charge separation
- CCD cameras are arrays of MIS devices
 - Can be 10 microns square
 - Charge collected and moved sequentially to edge of device
 - Dyes can be applied to transistor to detect colors

