Dry Etching

Dr. Bruce K. Gale Fundamentals of Micromachining BIOEN 6421 EL EN 5221 and 6221 ME EN 5960 and 6960

Etching Issues - Selectivity

THE UNIVERSITY OF UTAH

UNIVERSITY OF UTAH

- Selectivity is the ratio of the etch rate of the target material being etched to the etch rate of other materials
- Chemical etches are generally more selective than plasma etches
- Selectivity to masking material and to etchstop is important

Etching Issues - Anisotropy

Isotropic etchants etch at the same rate in every direction mask An-isotropic
 Isotropic

Dry Etching Overview

- What is dry etching?
 - Material removal reactions occur in the gas phase.
- Types of dry etching
 - Non-plasma based dry etching
 - Plasma based dry etching
- Why dry etching?
- Development of dry etching
- Plasma parameters/influences

Dry Etching Advantages

- · Eliminates handling of dangerous acids and solvents
- Uses small amounts of chemicals
- Isotropic or anisotropic etch profiles
- Directional etching without using the crystal orientation of Si
- Faithfully transfer lithographically defined photoresist patterns into underlying layers
- High resolution and cleanliness
- Less undercutting
- No unintentional prolongation of etching
- Better process control
- Ease of automation (e.g., cassette loading)

Non-plasma Based Dry Etching

UNIVERSITY OF UTAH

UNIVERSITY

- Isotropic etching of Si
- Typically fluorine-containing gases (fluorides or interhalogens) that readily etch Si
- High selectivity to masking layers
- No need for plasma processing equipment
- Highly controllable via temperature and partial pressure of reactants

Dry Etching

• Disadvantages:

- Some gases are quite toxic and corrosive
- Re-deposition of non-volatile compounds
- Need for specialized (expensive) equipment
- Types:
 - Non-plasma based = uses spontaneous reaction of appropriate reactive gas mixture
 - Plasma based = uses radio frequency (RF) power to drive chemical reaction

Xenon Difluoride (XeF₂) Etching

- Isotropic etching of Si
- High selectivity for Al, SiO₂, Si₃N₄, PR, PSG
- $2XeF_2 + Si \rightarrow 2Xe + SiF_4$
- Typical etch rates of 1 to 3 $\mu m/min$
- Heat is generated during exothermic reaction
- XeF₂ reacts with water (or vapor) to form HF

Interhalogen (BrF₃ & ClF₃) Etching

- Nearly isotropic profile
- Gases react with Si to form SiF₄
- Surface roughness: ~40 to 150 nm
- Masks: SiO₂, Si₃N₄, PR, Al, Cu, Au, and Ni

Plasma Based Dry Etching

- RF power is used to drive chemical reactions
- Plasma takes place of elevated temperatures or very reactive chemicals
- Types:
 - Physical etching
 - Chemical etching
 - Reactive ion etching (RIE)
 - Deep reactive ion etching (DRIE)

Plasma

- <u>Plasma</u> = partially ionized gas consisting of equal numbers of "+" (ions) and "-" (electrons) charges and a different number of neutral (un-ionized) molecules
- An ion-electron pair is continuously created by ionization and destroyed by recombination
- Typical kinetic energy (KE) of an electron in plasma is 2-8 eV
- KE = $\frac{1}{2}$ mV² = $\frac{3}{2}$ kT
 - -m = particle mass
 - V = particle mean velocity
 - k = Boltzmann constant
 T = temperature (K)
- 2 eV electron has
 - T ≈ 15,000 K
 - $V \approx 6 \times 107 \text{ cm/s}$
 - = 1,342,16176 mph

UNIVERSITY OF UTAH

UNIVERSITY OF UTAH

Plasma Formation

- Chamber is evacuated
- Chamber is filled with gas(es)
- RF energy is applied to a pair of electrodes
- Applied energy accelerates electrons increasing kinetic energy
- Electrons collide with neutral gas molecules, forming ions and more electrons
- Steady state is reached (plasma); ionization = recombination

Plasma Formation

- Plasma discharge is characterized by central glow or bulk region and dark or sheath regions near electrodes
- Bulk region = semi-neutral (nearly equal number of electrons and ions)
- Sheath regions = nearly all of the potential drop; accelerates "+" ions from bulk region which bombard the substrate
- Maintained at 1 Pa (75 mtorr) to 750 Pa (56 torr) with gas density of 27 x 10¹⁴ to 2 x 10¹⁷ molecules/cm³

Physical Etching (Sputter Etching)

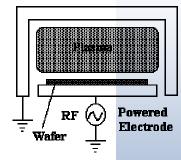
- · Based on physical bombardment with ions or atoms
- Plasma is used to energize a chemically inert projectile so that it moves at high velocity when it strikes the substrate
- Momentum is transferred during the collision
- Substrate atoms are dislodged if projectile energy exceeds bonding energy
- Very similar to ion implantation, but low-energy ions are used to avoid implantation damage
- Highly anisotropic
- Etch rates for most materials are comparable (ie, no masking)
- Argon is the most commonly used ion source
- May result in redeposition

т

UNIVERSITY OF UTAH

UNIVERSITY OF UTAH

PE: grounded wafer; symmetrical electrode.


Plasma Parameters

- Temperature
 - Etching rate
 - Spontaneous chemical reaction
 - Etching directivity
- Pressure
 - Ion density
 - Ion directivity

- Power
 - Ion density
 - Ion kinetic energy
- Other variables
 - Gas flow rate
 - Reactor materials
 - Reactor cleanliness
 - Loading
 - (microloading)
 - Mask materials

Two Basic Plasma Systems

RIE: powered wafer; grounded surface area much larger than powered electrode.

Plasma Etchers

SILICON OXID POLY SILICO

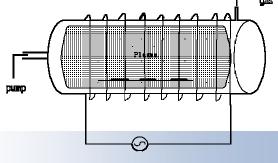
FUTURE TREN

OTHER LINKS

LASMA ETCHI WET ETCHING

NIVERSITY OF UTAH

Plasma Etching Steps 0 1. GENERATION OF ETCHANT SPECIES О Ο ଚ 6. DIFFUSION INTO BULK GAS Ο \bigcirc 2. DIFFUSION TO SURFACE 3. ADSORPTION 4. REACTION 5. DESORPTION FILM UNIVERSITY OF UTAH


Chemical (Plasma) Etching:

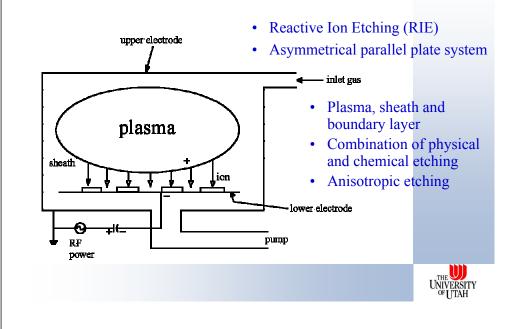
- Plasma is used to produce chemically reactive species (atoms, radicals, and ions) from inert molecular gas
- Six major steps:
 - Generation of reactive species (eg. free radicals)
 - Diffusion to surface
 - Adsorption on surface
 - Chemical reaction
 - Desorption of by-products
 - Diffusion into bulk gas
- Production of gaseous by-products is extremely important

Plasma Etching Systems

- Plasma Etching (PE)
- Barrel, barrel with downstream and symmetrical parallel plate system
- Pure chemical etching
- Isotropic etching

Reactive Ion Etching (RIE)

- RIE = process in which chemical etching is accompanied by ionic bombardment (ie ionassisted etching)
- · Bombardment opens areas for reactions
- Ionic bombardment:
 - No undercutting since side-walls are not exposed
 - Greatly increased etch rate
 - Structural degradation
 - Lower selectivity

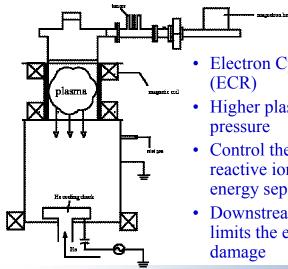

Disadvantages of RIE

UNIVERSITY OF UTAH

UNIVERSITY OF UTAH

- Conflict between etching rate and anisotropic profile
 - Etching rate (+) → Reactive species
 concentration (+) → Gas pressure (+) →
 Collision (+) → Anisotropic (-)
- Conflict between damage of high etching rate and anisotropic profile
 - KE (+) \rightarrow Etching rate (+) \rightarrow damage (+)

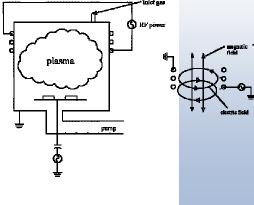
RIE System



Deep Reactive Ion Etching (DRIE)

- Uses electron cyclotron resonance (ECR) source to supplement RIE system
- Microwave power at 245 GHz is coupled into ECR
- Magnetic field is used to enhance transfer of microwave energy to resonating electrons
- DRIE uses lower energy ions → less damage and higher selectivity
- Plasma maintained at 0.5 to 3 mtorr

ECR Systems



- Higher plasma density at lower
- Control the density of the reactive ions and their kinetic energy separately
- Downstream of plasma further limits the exposure to reduce

ICP System (DRIE)

- Inductively Coupled Plasma (ICP)
- Simple system
- Almost same process result as that from the ECR system
- Two RF power generators to control ion energy and ion density separately

UNIVERSITY OF UTAH

Deep Reactive Ion Etch

BOSCH Patent

STS, Alcatel, Trion, Oxford Instruments ...

Uses high density plasma to alternatively etch silicon and deposit a etch-resistant polymer on side walls

Polymer

Polymer deposition

Silicon etch using SF₆ chemistry

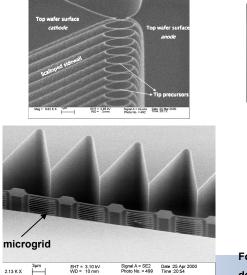
- Unconstrained geometry
- 90° side walls \odot High aspect ratio 1:30
 - Easily masked (PR, SiO2)
- Process recipe depends on \odot geometry



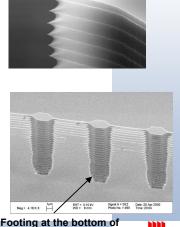
Deep Reactive Ion Etching

- high density ICP plasma
- high aspect ratio Si structures
- cost: \$500K
- vendors: STS, Alcatel, PlasmaTherm

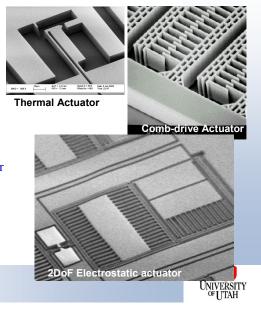
200 µm


Source: STS

Source: STS



Scalloping and Footing Issues of DRIE


WD= 10 mm Photo No.=499 Time=20:54 Milanovic et al, IEEE TED, Jan. 2001.

device layer

DRIE Structures

- Increased capacitance for actuation and sensing
- Low-stress structures
 - single-crystal Si only structural material
- Highly stiff in vertical direction
 - isolation of motion to wafer plane
 - flat, robust structures

Etch Chemistries

- Organic Films
 - Oxygen plasma is required
 - By-products: CO, CO₂, H₂O
 - Masks: Si, SiO₂, Al, or Ti
 - Addition of fluorine containing gases significantly increases etch rate but decreases selectivity (due to HF formation)

UNIVERSITY OF UTAH

Etch Chemistries

- Oxide and Nitride Films
 - Fluorine plasma is required (eg, CF₄)
 - Mask: PR
 - Addition of O₂
 - Increases etch rate
 - Adjusts PR : oxide and PR : nitride selectivity
- Silicon
 - Fluorine plasma (CF₄ or SF₆)
 - Chlorine plasma (Cl₂)
 - Mixed (fluorine and chlorine) plasma ($Cl_2 + SF_6$)

