Fundamentals of Micromachining

Sensors and Actuators

- "Sensor" (Latin sentire meaning "to perceive")
- "Transducer" (Latin transducere meaning "to lead across")
- A sensor performs a transducing action and the transducers must necessarily sense some physical or chemical signals
- Types of signals: chemical, electrical, magnetic, mechanical, radiant, thermal

UNIVERSITY OF LITAH

• Others- glass (non-crystalline solids) and carbon

Basic Materials Science for MEMS

- Basic material interactions
- Silicon as a material
- Crystallography
- Crystal defects and impurities
- Wafer manufacture
- Stress and strain
- Review of class projects

Materials Overview

- Metals
 - Characterized by metallic bonds
- Polymers
 - Long chain molecules of repeating units
- Ceramics
 - Inorganic compounds with ionic and covalent bonding

Basic Atomic Interactions

- Ionic
 - Electrostatic bonding
- Covalent
 - Electron sharing
- Metallic
 - Electron fluid or gas
- Hydrogen
 - Ionic interactions between covalently bonded atoms
- Van Der Waals
 - Shifting interactions between atoms

- Organized, repeating
 3-D pattern of
 molecules or atoms
- Closely packed structure

THE UNIVERSITY

Material Properties

• Material failure

- Yield stress
- Ductile and brittle failure
- Plastic deformation
- Ultimate stress and strength
- Some fail in shear, compression, tension
- Fatigue- failure under cyclic conditions though well below yield stress
- Creep- time dependent extension
 - Stress relaxation
- Toughness
 - Energy absorption to failure

- Material properties
 - Consistent numbers not always available
 - Variation in runs, machines, locations
 - Structures generally a laminate composite
 - Properties may be function of fabrication process or postprocessing
 - Measurement of key properties such as stress, Young's modulus, strength, and Poisson's ratio

Surface Properties

- Surfaces are uniquely reactive
- Surfaces are different from the bulk
- Surfaces are readily contaminated
- Surface material/ structure is mobile
 - Can change depending on environment
- Surface structures or properties
 - Roughness
 - Chemistry or molecules
 - Inhomogenous surfaces
 - Crystalline or disordered
 - Hydrophobicity (wettability)
 - Contact angle

Surface Measurements

- Contact angle
- ESCA Electron Spectroscopy for Chemical Analysis
 Element identification and bonding state (XPS)
- Auger Electron Spectroscopy
- SIMS(Secondary Ion Mass Spectrometry)
 Element ID, Low concentrations, Proteins
- FTIR- ATR (Fourier Transform Infra Red) – Chemistry and Structure Orientation
- STM- Scanning Tunneling Microscopy
- SEM (Scanning Electron Microscopy)
- AFM (Atomic Force Microscopy)

Why Silicon?

- Available technology (IC circuits)
- Inexpensive
- Compatible with existing semiconductor technology (easy integration)
- Suitable for hybrid structures
- Types: amorphous, polycrystalline, crystalline

Silicon Wafer Characteristics

- Orientation (cleavage or fracture)
- Si cleaves between (111) planes, III-V separate on (110)
- Roughness
- Flatness
- Orientation of primary and secondary flat
- Type n or p
- Surface misorientation
- Si resistance
- Thickness
- Backside damage is induced if required
- Rounded wafer edge (significantly reduces edge chipping, wafer breakage, photoresist build up)

Stress and Strain

- Stresses are forces applied over areas
- Strain is a dimensional change due to an applied stress
- Axial stress and strain $\sigma = \frac{F}{A}$ $\varepsilon = \frac{\Delta L}{L_{0}}$
- Tension +, compression -
- Hooke's law- stress and strain proportional
- Young's modulus- $E = \frac{\sigma}{\varepsilon}$
- Shear stress and strain $\tau = \frac{F}{A}$ $G = \frac{\tau}{\gamma}$
- Shear modulus- G, γ is an angle
- Poisson's ratio- lateral distension for axial load

$$r = \frac{transverse}{longitudinal} = -\frac{\varepsilon_t}{\varepsilon_a}$$

Stress and Strain Relationships

Miller Indices in Crystals

- For a plane with:
 - x-axis intercept x_o
 - y-axis intercept y_o
 - z-axis intercept z_o
 - the Miller indices (hkl) for this plane are given by finding the inverses of x_o, y_o, & z_o and reducing them to the smallest set of integers h: k: I having the same ratio (x_o)⁻¹: (y_o)⁻¹: (z_o)⁻¹.

Conventions:

- (hkl): single plane or set of all parallel planes.
- (\bar{h} kl): for a plane that intercepts the x axis on the negative side of the origin.
- {hkl}: for all planes of equivalent symmetry, such as {100} for (100), (010), (001), (100), (010), and (001) in cubic symmetry.
- [hkl]: for the direction perpendicular to the (hkl) plane.
- <hkl>: for a full set of equivalent directions.

Silicon as a mechanical material for MEMS fabrication

- classic reference in the field:
 - K.E. Petersen "Silicon as a Mechanical Material", *Proceedings* of the IEEE, Vol. 70, No.5, May 1982.
 - http://robotics.eecs.berkeley.edu/~tahhan/MEMS/petersen/mems_ petersen.htm
 - tenants:
 - silicon is abundant, inexpensive, and can be produced in extremely high purity and perfection;
 - silicon processing based on very thin deposited films which are highly amenable to miniaturization;
 - definition and reproduction of the devices, shapes, and patterns, are performed using photographic techniques that have already proved capable of high precision;
 - silicon microelectronic (and therefore also mems) devices are batch-fabricated.

Silicon crystal structure valence 4 structure each atom bonds to four neighbors in a tetragonal configuration crystal lattice is face centered cubic (FCC), with two atom basis [at (0,0,0) and (1/4, 1/4, 1/4)]: Zincblende two "interpenetrating" FCC lattices lattice constant "a": cube side length silicon (rm temp): 5.43 Å • nearest neighbor distance $d_n = \frac{\sqrt{3}}{4}a$ atomic density: · 4 atoms inside cube · 6 atoms "half" inside at face centers 8 atoms 1/8 inside at corners total of 8 atoms per cube: atomic density 8 / a³ $\rho_{Si} = 5 \times 10^{22} \text{ atoms/cm}^3$

(111) planes

Impurities in Silicon

- Oxygen: (column VI)
 - common unintentional impurity from silica crucibles
 - 10¹⁶ 10¹⁸ cm⁻³
 - usually clumps with silicon into large (~1 $\mu\text{m})$ SiO_2 complexes; sensitive to processing history
- Carbon: (column IV)
 - high solid solubility (4x10¹⁸)
 - · mainly substitutional, electrically inactive
- Gold:
 - deep donor or acceptor
 - · rapid diffuser
 - minority carrier lifetime "killer"

(111) orientation in silicon

point defects

- "zero" dimensional
- most common, lowest energy of formation
- dislocations or line defects
 - one dimensional
 - collection of continuous point defects
- area (planar) defects
 - two dimensional
 - gross change in crystal "orientation" across a surface

Bulk crystal growth

- melting points
 - silicon: 1420° C
 - quartz: 1732° C
- starting material: metallurgical-grade silicon
 - by mixing with carbon, SiO₂ reduced in arc furnace
 - T > 1780°C:
 - $\rm{SiC} + \rm{SiO}_2 \ \rightarrow \ \rm{Si} + \rm{SiO} + \rm{CO}$
 - common impurities
 - Al: 1600 ppm (1 ppm = 5 x 10¹⁶ cm⁻³)
 - B: 40 ppm
 - Fe: 2000 ppm
 - P: 30 ppm
 - used mostly as an additive in steel

Screw Dislocation (1-d defect)

Preparation of electronic-grade silicon

- gas phase purification used to produce high purity silicon
 - − ~ 600°C
 - crud + Si + HCl \rightarrow
 - SiCl₄ (silicon tetrachloride)
 - SiCl₃H (trichlorosilane)
 - SiCl₂H₂ (dichlorosilane)
 - · chlorides of impurities
 - trichlorosilane (liquid at rm temp), further purification via fractional distillation
- now reverse reaction
 - $2SiHCl_3 + 2H_2$ (heat) $\rightarrow 2Si + 6HCl$
 - after purification get
 - Al: below detection
 - B: < 1 ppb (1 ppb = 5 x 10¹³ cm⁻³)
 - Fe: 4 ppm
 - P: < 2 ppb
 - Sb: 1 ppb
 - Au: 0.1 ppb

Wafer preparation

- boule forming, orientation measurement ٠
 - old standard: "flat" perpendicular to <110> direction;
 - on large diameter "notch" used instead

inner diameter wafer saw

- wafer slicing
 - <100> typically within ± 0.5°
 - <111>, 2° 5° off axis

images from Mitsubishi Materials Silicon http://www.egg.or.jp/MSIL/english/msilhist0-e.htm

Czochralski crystal growth

- silicon expands upon freezing (just like water) - if solidify in a container will induce large stress
- CZ growth is "container-less" ٠

images from Mitsubishi Materials Silicon http://www.egg.or.jp/MSIL/english/ msilhist0-e.html

Wafer prep (cont.)

- lapping
 - grind both sides, flatness ~2-3 μm
 - ~20 μm per side removed
- edge profiling
- etching •
 - chemical etch to remove surface damaged layer
 - ~20 μm per side removed
- ٠ polishing
 - chemi-mechanical polish, SiO₂ / NaOH slurry
 - ~25 μm per polished side removed
 - gives wafers a "mirror" finish
- cleaning and inspection •

Diameter control during CZ growth

- critical factor is heat flow from liquid to solid
 - interface between liquid and solid is an isotherm
 - · temperature fluctuations cause problems!
 - already grown crystal is the heat sink
 - · balance latent heat of fusion, solidification rate, pull rate, diameter, temperature gradient, heat flow
 - diameter inversely proportional to pull rate (typically ~ mm/min)

Poisson's ratio

· consider a bar under longitudinal tension or compression

· under tension

- length increases: Young's modulus
- ALSO: cross sectional area decreases
- this constitutes a transverse strain $\delta \text{W/W}$
- Poisson's ratio v = transverse strain / longitudinal strain
 - dimensionless (since both strains are dimensionless)

$$v = \left(\frac{\delta W}{W}\right) / \left(\frac{\delta L}{L}\right)$$

$$\frac{\partial \mathbf{W}}{\mathbf{W}} = \frac{\mathbf{v}}{\mathbf{E}} \cdot (\text{longitudinal stress})$$

Wafer specifications

wafer diam.	thickness	thickness variation	bow	warp
150 mm	675 μ m			
±	±	50 μ m	60 μ m	
0.5mm	25 μ m			
200 mm				
±				
300 mm	775 μ m			
±	±	= 10 μ m		= 100 μm
0.2mm	25 μm			

- warp: distance between highest and lowest points relative to reference plane
- bow: concave or convex deformation

overall volume change

assume bar subjected to longitudinal tensile stress

$$V \propto (L + \delta L) \cdot (W - \delta W)^{2} = (L + \delta L) \cdot \left(W^{2} - 2W \cdot \delta W + \underbrace{[\delta W]^{2}}_{2nd \text{ order } = 0} \right)$$

$$\approx (L + \delta L) \cdot (W^{2} - 2W \cdot \delta W) = \underbrace{L \cdot W^{2}}_{\propto \text{ unstrained volume}} - 2W \cdot \delta W \cdot L + \delta L \cdot W^{2} - 2W \cdot \underbrace{\delta W \cdot \delta L}_{2nd \text{ order } \approx 0}$$

$$\approx \underbrace{L \cdot W^{2}}_{\approx \text{ unstrained volume}} - 2W \cdot \delta W \cdot L + \delta L \cdot W^{2} = L \cdot W^{2} + W^{2} \cdot \delta L \cdot \left(1 - 2 \cdot \frac{\delta W}{W} \cdot \frac{L}{\delta L} \right)$$

$$= L \cdot W^{2} + \underbrace{W^{2} \cdot \delta L \cdot (1 - 2 \cdot v)}_{<0 \text{ if } v > 0.5}$$
so if v < 0.5

- v > 0.5: total volume DECREASES under longitudinal tensile stress
- v < 0.5: volume INCREASES

Bending of a simple cantilever beam

for a uniformly distributed force
 W = (total force) / a

Young's modulus and Poisson's ratio of "common" materials

- units
 - 10⁶ pounds per square inch (psi) = mega-psi = 6.89x10⁹ Newton/m² = 6.89 gigaPascal
- is temperature dependent

material	Young's modulus (@ 300K) (GigaPascal)	Poisson's ratio
diamond	1000	0.067
silicon	200	0.21
SiO2	70	0.17
Al2O3 (sapphire)	500	0.23
Iron	200	
Aluminum	70	0.34

Thin film on thick substrate

- if film is stressed (stress σ), overall curvature results
 - E: Young's moduls; v: Poisson's ratio; t_{sub}: substrate thickness; t_{film}: film thickness; r: radius of curvature

$$\sigma \approx \frac{E}{1 - \nu} \cdot \frac{\left(t_{sub}\right)^2}{t_{film}} \cdot \frac{1}{6 \cdot r}$$

A. Sinha, H. Levinstein, and T. Smith, "Thermal Stresses and Cracking Resistance of Dielectric Films on Si Substrates," *Journal of Applied Physics*, vol. 49, pp. 2423-2426, 1978.
 G. Stoney, "The Tension of Metallic Films Deposited by Electrolysis," *Proceedings of the Royal Society*, vol. A82, pp. 172,

[2] G. Stoney, "The Tension of Metallic Films Deposited by Electrolysis," *Proceedings of the Royal Society*, vol. A82, pp. 172, 1909.

Dynamic response

· response of generic structure is approximately

$$\underbrace{m\frac{d^{2}x}{dt^{2}}}_{nass^{*}accel} + \underbrace{b\frac{dx}{dt}}_{force \propto velocity} + \underbrace{k \cdot x}_{Hooke's law} = F_{externa}$$

- transfer function (Laplace domain)

$$H(s) = \frac{l'm}{s^2 + \left(\frac{b}{m}\right) \cdot s + \frac{l}{m}}$$

- this is the same as an LRC circuit

$$H(s) = \frac{1/LC}{s^2 + \left(\frac{1}{RC}\right) \cdot s + \frac{1}{LC}} = \frac{\omega_o^2}{s^2 + \left(\frac{\omega_o}{Q}\right) \cdot s + \omega_o^2}$$

Deflection of a circular diaphragm

- much thinner than radius r
- for pinned around circumference, uniform force per unit area (i.e., uniform pressure P), no built in stress

$$\delta_{\text{center}} = \frac{3 \cdot \mathbf{P} \cdot \mathbf{r}^4 \cdot (1 - \nu^2)}{16 \cdot \mathbf{E} \cdot \mathbf{t}^3}$$