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ABSTRACT 

The higher-order topological insulator (HOTI) states, such as two-dimension (2D) HOTI featured 

with topologically protected corner modes at the intersection of two gapped crystalline boundaries, 

have attracted much recent interest. However, physical mechanism underlying the formation of 

HOTI states is not fully understood, which has hindered our fundamental understanding and 

discovery of HOTI materials. Here we propose a mechanistic approach to induce higher-order 

topological phases via structural buckling of 2D topological crystalline insulators (TCIs). While 

in-plane mirror symmetry is broken by structural buckling, which destroys the TCI state, the 

combination of mirror and rotation symmetry preserves in the buckled system, which gives rise to 

the HOTI state. We demonstrate that this approach is generally applicable to various 2D lattices 

with different symmetries and buckling patterns, opening a horizon of possible materials to realize 

2D HOTIs. The HOTIs so generated are also shown to be robust against buckling height 

fluctuation and in-plane displacement. A concrete example is given for the buckled 𝛽 -Sb 

monolayer from first-principles calculations. Our finding not only enriches our fundamental 

understanding of higher-order topology, but also opens a new route to discovering HOTI 

materials. 

 

Keywords: higher-order topological insulators, structural buckling, rotation-reflection symmetry, 

buckled honeycomb antimony monolayer  

 

INTRODUCTION 

The discovery of topological insulators (TIs) [1,2] has inspired extensive exploration of other 

novel topological states, such as the TCIs [3,4], and more recently HOTIs [5-18]. In general, the 

characteristic properties of these topological states are well understood. The TIs and TCIs have a 

gapped d-dimensional bulk and topologically protected gapless states on its d-1 dimensional 

boundaries, while the HOTIs (n-th order TIs with 1 < 𝑛 ≤ 𝑑) have a similar gapped bulk, but the 
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gapless states emerge not at d-1 but at lower d-n dimensions. For example, a second-order HOTI 

in 2D hosts topological states located at its 0D corners between distinct gapped 1D edges. 

Moreover, the physical mechanism underlying the formation of TIs and TCIs is also well 

understood, which involves generally a band inversion process. Accordingly, abundant TI/TCI 

materials have been discovered and/or proposed based on this mechanism, through band 

inversions induced by, e.g., lattice/orbital symmetry [19-21], quantum-well structure [22], strain 

[23], and surface adsorption/growth [24,25], etc. On the contrary, the physical mechanism 

underlying the formation of HOTIs is less clear. This knowledge gap has not only lessened our 

fundamental understanding of HOTI states, but also inevitably hindered our ability to discover 

HOTI materials. So far, only very few candidate materials have been theoretically proposed to 

host 2D HOTI states, including phosphorene [26], graph(di)yne [27–29] and twisted bilayer 

graphene or boron nitride at special angles [30, 31]. 

In this work, we reveal a generic physical mechanism of transforming a 2D TCI state into a 

HOTI state via structural buckling. It has been previously shown that structural buckling provides 

a key degree of freedom to tailor materials’ properties [32], such as thermal conductivity [33], 

magnetic response [34], and spin-orbit interaction [35]. Structural buckling can also facilitate the 

well-known band inversion mechanism to induce topological transition of TI states [24, 36, 37]. 

But our finding here is mechanistically different. In general, structural buckling, which breaks the 

in-plane mirror symmetry (𝑀𝑧), would destroy the 𝑀𝑧-protected TCI states in 2D planar lattices. 

However, we realize that topological gapless states of TCIs are gapped out differently between 

adjacent edges of different orientations subject to the remaining combination of mirror and 

rotation symmetry (𝑆𝑛 =  𝑀𝑧𝐶𝑛). Consequently, a HOTI with topological corner states will 

emerge ubiquitously. Moreover, we found that even an approximate 𝑆𝑛 symmetry suffices for the 

existence of HOTI: the 0D topological corner states are robust against buckling height fluctuation 

and symmetry breaking perturbations. We further demonstrate that this newly discovered 

structural buckling approach is generally applicable to various lattices with different symmetry 

and buckling patterns, which greatly extends possible material choices to realize HOTIs. Finally, 

we calculate from first-principles the HOTI state in the buckled β-Sb honeycomb monolayer as a 

concrete material example.  

 

RESULTS 

HOTI in a buckled square lattice 

To illustrate the structural buckling induced higher-order topology, we first take the 

mirror-protected TCI state in a square lattice as an example. Figure 1 shows the electronic 

structures of the planar square lattice and the buckled square lattices with buckling height 

ℎ = 0.2𝑎 (where 𝑎 is the bond length), respectively. The orbital-resolved band structures of both 

systems exhibit signatures of a band inversion between 𝑝𝑧 and 𝑝𝑥,𝑦 orbitals around the Γ point 

(see Fig. 1b and 1f), implying their nontrivial electronic topology. To identify the TCI state in the 

planar square lattice, we calculated the mirror Chern number 𝐶𝑚 = 2, which guarantees the 

existence of topological edge states, as displayed in Fig. 1c-1e. It is noted that the bulk band 

structures of the planar and buckled structures are similar to each other except for slight band 

splitting, as shown in Fig.1b and 1f. However, the edge state changes dramatically after the 

structural buckling. As shown in Fig. 1g, the topological edge states are clearly gapped, indicating 

that the TCI state is destroyed due to the structural buckling induced mirror symmetry breaking. 
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By further studying the energy spectrum of the finite square disk for the buckled lattice, we find 

that there are eight states (marked as red dots) around the Fermi level within the edge-gap region 

(light-red area) of the buckled system as shown in Fig. 1h. Remarkably, from spatial intensity 

distribution |𝜓(𝐫)|2, we further find that these midgap states are localized on four corners of the 

sample (see Fig. 1i), which is distinct from the topologically protected extended edge states along 

the whole perimeter of TCIs (see Fig. 2e). This implies that the buckled system turns out be a 

HOTI. Due to the time-reversal symmetry, corner modes always appear in pairs (Kramers pair) [8]. 

Therefore, there are total 8 corner modes in the disk of the buckled square lattice, which is 

different from previously studied spinless HOTIs [27-29]. 

 

k.p analysis 

To further verify the nontrivial higher-order topological nature, we perform a 𝑘. 𝑝 analysis and 

derive an edge theory for the buckled square lattice (see Supplemental Material). We first derive 

the effective Hamiltonian for the planar square lattice as 

𝐻 = (𝑚0 − 𝑚1𝑘2)𝜎𝑧𝜏0 + 𝑣1(𝑘𝑥
2 − 𝑘𝑦

2)𝜎𝑥𝜏𝑧 − 𝑣2𝑘𝑥𝑘𝑦𝜎𝑦𝜏0, 

where 𝑚0, 𝑚1, 𝑣1  and 𝑣2  are parameters. 𝜏𝑧 = ±1 denote two mirror sectors and 𝜎𝑧 = ±1 

denote basis states. As the structural buckling breaks the mirror symmetry 𝑀𝑧, an extra term 

which mix two mirror sectors is added into the above Hamiltonian, 

𝐻𝑏 = 𝑣𝑏𝜎𝑦(𝑘𝑥𝜏𝑥 + 𝑘𝑦𝜏𝑦). 

We then derive the effective Hamiltonian of the 1D edge states with valleys at ±k0 along the 

edge 

𝐻𝑒𝑑𝑔𝑒 = 𝑣(𝑘 ± 𝑘0)𝑠𝑧 ± 𝑚𝑏𝑠𝑦, 

where 𝑣 is the velocity of the edge states, 𝑠𝑥,𝑦,𝑧 is Pauli matrix, and 𝑘 is the momentum in the 

1D Brillouin zone of the edge. The last term is the structural buckling induced mass term which 

gaps out the topological Dirac edge states. The 1D massive Dirac edge spectrum admits a Z2 

classification depending on the sign of the mass term. As the structural buckling breaks 𝑀𝑧 but 

preserves 𝑆4 = 𝑀𝑧𝐶4  symmetry, the mass term changes sign alternatively between adjacent 

edges following the 𝑆4 symmetry in the buckled square lattice. Consequently, 0D corner states 

arise as the topological domain-wall state between two edges belonging to distinct topological 

classes according to the Jackiw-Rebbi mechanism [38]. Furthermore, the mass term is odd under 

the vertical diagonal mirror symmetry 𝑀𝑑  or 𝑀�̅� , which guarantees the emergence of 

topological corner states at the intersection of two edges related by the diagonal mirror symmetry. 

Alternatively, an intuitive argument of the structural buckling induced nontrivial higher-order 

topology can be made by utilizing the vertical mirror symmetry, following the approach by 

Langbehn et al. [7] As the buckled square lattice is mirror symmetric under 𝑀𝑑 (see Fig. 1a), one 

can divide the wave functions in the intersection line (M-Γ-M) between the diagonal mirror plane 

and the 2D Brillouin zone into two separate sets with opposite 𝑀𝑑 eigenvalues (±𝑖). For each set, 

one can evaluate its Zak phase [39] through the cell-periodic Bloch function 𝑢±𝑖(𝑘): 

𝜑±𝑖 = 𝑖∮ ⟨ 𝑢± 𝑖(𝑘)|∂𝑘|𝑢± 𝑖(𝑘)⟩ 𝑑𝑘, 

which is essentially related to the mirror-grad winding number for the 1D effective Hamiltonian in 

the mirror-invariant line. As the Zak phase represents the electric polarization for the mirror 

subspace of the 1D system, the calculated Zak phase 𝜑±𝑖 = 𝜋 indicates the presence of end 

modes at corners between two edges connected by 𝑀𝑑, as shown in Fig. 1i. This implies the 

system is a second-order TI [40]. 
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As the chiral (sublattice) symmetry is preserved in the simplified model, the bulk band topology 

discussed above also suggests the coexistence of a fragile TCI phase [12], which would give rise 

to gapless edge states only along the smooth 𝑀𝑑-preserving edge. However, such a gapless edge 

state can be easily destroyed by breaking the sublattice symmetry such as via a staggered potential, 

which also breaks the 𝑆4 symmetry. In contrast, the topological corner states are much more 

robust against such perturbations (see Supplemental Material). 

 

Robustness against buckling height fluctuation 

Moreover, the robustness of topological corner states against buckling height fluctuation is 

checked. Instead of uniformly buckling with the same height, random buckling heights within 

[−ℎ/2, ℎ/2] is considered in the buckled square lattice (see Fig. 2a). In comparison with Fig. 1h, 

the energy levels of four pairs of corner states split slightly, as shown in Fig. 2b. However, 

different from the case with uniform buckling height, the wavefunctions of the corner states are 

asymmetric among four corners, i.e., each pair of corner states mainly localize on one corner (see 

insets of Fig. 2b). Therefore, these in-gap topological corner states are rather robust against 

random buckling height fluctuation. In addition, we also found that topological corner states are 

robust against weak in-plane random displacements (see Supplemental Material). This confirms 

that as long as the 𝑆4 symmetry is roughly overall preserved, the topological corner state is 

preserved, which greatly eases its experimental realization. 

 

HOTIs in other buckled lattices 

In addition to the case study discussed above, we also considered other lattices with different 

buckling forms. Notably, we consider another buckled square lattice with a FeSe-type tetrahedral 

buckling which consists of four atoms per unitcell (see left inset of Fig. 3a). As the 𝑆4 symmetry 

retains in the tetrahedral-buckled square lattice, this system is also a HOTI, which is characterized 

by the existence of eight corner modes around the Fermi level in the energy spectrum of its square 

nanodisk, as shown in Fig. 3a. This indicates that the physical mechanism of realizing HOTIs via 

structural buckling works also in square lattices with different buckling forms. In fact, it is 

expected to be generally applicable to other lattices with different symmetries. To confirm this, we 

have further investigated the buckled snub square, distorted Lieb, truncated square lattices with 𝑆4 

symmetry as well as the buckled trigonal, honeycomb, ruby, and snub hexagonal lattices with 𝑆6 

symmetry (see Supplemental Material for more details). According to the energy spectrum 

analysis, the square (hexagonal) nanodisks support eight (twelve) corner states around the Fermi 

level, as shown in Fig. 3b-3h. The spatial distribution of these states also clearly demonstrates that 

they are localized at corners of nanodisks (see insets of Fig. 3). Due to the 

finite-size-effect-induced weak coupling between adjacent corners, there exists slight energy 

splitting for these corner states around the Fermi level, which is exponentially suppressed with the 

increasing nanodisk size. Overall, the structural-buckling mechanism is general and can be 

applicable to various systems with different symmetries and buckling patterns. Given that various 

2D TCIs have been found previously, our proposed approach greatly extends the range of 

candidate materials for realizing HOTIs. 

 

Material example 

Finally, we take the 𝛽 -Sb monolayer as a concrete material manifestation. The 𝛽 -Sb 
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monolayer, which has been experimentally synthesized [41-44], crystallizes in a buckled 

honeycomb lattice with two Sb atoms per unit cell. The naturally buckled Sb honeycomb lattice 

was previously found to be a trivial insulator, but would become a mirror-protected TCI in its 

planar structure under an in-plane tensile strain [37]. Here we show that a variety of topological 

phases can be realized in the Sb monolayer by varying the degree of structural buckling. Based on 

first-principles calculations, we found a HOTI state in the natively buckled 𝛽-Sb monolayer. As 

shown in Fig. 4a, the buckled Sb honeycomb lattice is an insulator with an energy gap of ∼1.1 eV. 

As the effect of the spin-orbit coupling (SOC) on bulk band structures is weak, hereafter we 

perform the calculations of nanoribbons and nanodisks without SOC, unless otherwise specified. 

Interestingly, we found a flat edge state occur in the energy gap of nanoribbons (see Fig. 4b), 

implying a possible topological effect. To further identify its higher-order topology, we calculated 

a hexagonal-shaped nanodisk of the buckled Sb honeycomb lattice. Evidently, there are six (12 if 

spin is counted) states around the Fermi level and these states are localized at corners as shown in 

Fig. 4c, confirming the existence of topological corner states. Moreover, by scanning the evolution 

of band topology with the buckling height, we found a quantum spin Hall state in the intermediate 

region between the planar TCI phase and the natively buckled HOTI phase (See Supplemental 

Material). This indicates that the structural buckling significantly affects the band topology of the 

Sb monolayer. As differently buckled Sb monolayers can be epitaxially grown on various 

substrates [42-45] and/or controlled by external strains, one, therefore, expects to observe rich 

topological physics in Sb monolayers with tunable structural buckling. 

 

CONCLUSION 

In conclusion, we have revealed a generic physical mechanism of structural buckling 

underlying the transition from the mirror-protected TCI to HOTI state in 2D materials. The 

topological corner states of the HOTIs are robust against buckling height fluctuation and similar 

HOTIs are demonstrated in various buckled lattices with 𝑆4  or 𝑆6  symmetry. By taking 

advantage of the broad material categories of previously studied 2D TCIs, such as films of SnTe 

family compounds [46], our finding opens a new route towards discovering HOTIs with a wealth 

of possibilities, which is expected to draw immediate experimental attention. For example, new 

candidate materials of HOTIs with similar buckled structures are expected to be predicted by 

utilizing the high-throughput computation of 2D materials. The structural buckling mechanism 

may also work in 3D to stimulate the realization of 3D HOTIs. For example, by stacking these 2D 

HOTIs with interlayer coupling to form 3D HOTIs, or by applying strains to realize HOTIs via 

lateral lattice expansion accompanied with buckling reduction [47] and structural distortions in 3D 

materials [9]. Our discovery may also shed lights on the exploration of higher-order topology in 

other fields such as phononic, photonic, microwave and electrical circuit systems.  

 

Note added. After submission, we become aware of another work [15] studying the higher-order 

topological phase in buckled group-V honeycomb lattices. 

 

 

METHODS 

 

Tight-binding model 
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We consider a general tight-binding model for 2D lattices with three $p$ orbitals per site. The 

Hamiltonian is given by 

𝐻 = ∑ εμ𝐜𝑖𝜇
† ⋅  𝐜𝑖𝜇

𝑖,𝜇

 + ∑ 𝐜𝑖𝜇
† 𝐓𝑖,𝑗  𝐜𝑗𝜇

⟨ 𝑖,𝑗⟩,𝜇

+ 𝑖λ ∑(𝐜𝑖𝜇
† × 𝐜𝑖𝜈) ⋅ 𝐬𝜇𝜈

𝑖,𝜇𝜈

, 

where 𝐜𝑖𝜇
† = (𝑐𝑖𝑝𝑥

† , 𝑐𝑖𝑝𝑦

† , 𝑐𝑖𝑝𝑧

† )
𝜇

 and 𝐜𝑖𝜇 = (𝑐𝑖𝑝𝑥
, 𝑐𝑖𝑝𝑦

, 𝑐𝑖𝑝𝑧
)

𝜇

𝑇
 are electron creation and 

annihilation operators with spin 𝜇 (=↑, ↓) at the i-th site, respectively. 𝜀𝜇 = (𝜀𝑥 , 𝜀𝑦 , 𝜀𝑧)
𝜇

 are the 

on-site energies for the three p orbitals. λ  is the spin-orbit coupling (SOC) strength and 

𝐬 = (𝜎𝑥 , 𝜎𝑦 , 𝜎𝑧)  are the Pauli matrices. 𝐓𝑖,𝑗 =  [𝑡𝛼𝛽(𝐫𝑖𝑗)]
3×3

 is a 3 × 3  matrix containing 

Slater-Koster hopping integrals 𝑡𝛼𝛽(𝐫𝑖𝑗)  which depends on the orbital type (𝛼, 𝛽 =

𝑝𝑥 , 𝑝𝑦, 𝑝𝑧)and the intersite vector 𝐫𝑖𝑗 from site i to j. Previously, it was known that by considering 

a band inversion between 𝑝𝑥,𝑦 and 𝑝𝑧 orbitals, mirror-protected TCI states can be realized in 

various 2D planar lattices [48]. Here we illustrate that by structural buckling these TCIs can be 

intriguingly driven into HOTIs. 

 

DFT calculation 

The first-principles calculations are performed within the framework of density functional 

theory using the Vienna ab initio simulation package [49] with the Perdew-Burke-Ernzerhof-type 

generalized gradient approximation [50] in the projector augmented wave method. A default 

kinetic energy cutoff is adopted in all calculations. A 30 × 30 × 1, 10 × 1 × 1, and single 

Γ-centered k-mesh of the Brillouin zone sampling are used for the bulk, nanoribbon, and nanodisk 

calculations, respectively. The lattice constant for the buckled Sb honeycomb lattices is 4.21 Å, 

and the buckling height is 1.6 Å. Nanoribbons with ∼80 atoms per unitcell and nanodisks with 

∼400 atoms are calculated to show the edge states and corner states, respectively. 

 

SUPPLEMENTARY DATA 

Supplementary data are available at NSR online. 
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Figure 1. Comparison of electronic structures between planar and buckled square lattices. (a) 

Illustration of structural buckling. The color (red/green) marks atomic buckling direction 

(upwards/downwards). The buckling height is ℎ = 0.2𝑎 with 𝑎 being the bond length. Bulk 

band structures of (b) the planar and (f) buckled square lattices. For comparison, both band 

structures are calculated using two-atom unitcells. The parameters used here are 𝜀𝑥,𝑦 =

−1.88, 𝜀𝑧 = −0.88, 𝑉𝑝𝑝𝜎 = 0.5, 𝑉𝑝𝑝𝜋 = −0.15, and 𝜆 = 1.25 eV. Band structure of nanoribbons 

of (c) the planar and (g) buckled square lattices. Energy spectrum of square nanodisks of (d) the 

planar and (h) buckled square lattices. Spatial intensity distribution |ψ(r)|
2
 of topologically 

protected (e) edge states of the planar square lattice and (i) corner modes of the buckled square 

lattice. 
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Figure 2. (a) A buckled square lattice with buckling height fluctuation. The red (green) dots 

represent upwards (downwards) buckled atoms, the size of dots denote random buckling 

amplitudes within [0,0.1𝑎] with 𝑎 being the bond length. (b) Energy spectrum of a square disk 

of the buckled square lattice with random buckling heights. Insets show the spatial intensity 

distribution |ψ(r)|
2
 of in-gap corner states. 
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Figure 3. HOTIs in other lattices with structural buckling. Energy spectrum of finite nanodisks of 

(a) FeSe-type tetrahedral-buckled square lattice, (b) buckled snub square lattice, (c) distorted Lieb 

lattice, (d) truncated square lattice, (e) octahedral-buckled trigonal lattice, (f) buckled honeycomb 

lattice, (g) buckled snub hexagonal lattice (h) buckled ruby lattice. The parameters are presented 

in Supplementary Material. Left inset in each panel shows the top and side views of lattice 

structures where the color (green/red) marks atomic buckling direction (upwards/downwards). 

Right inset in each panel shows the spatial distribution |ψ(r)|
2 

of topologically protected corner 

modes. 

  

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/advance-article/doi/10.1093/nsr/nw

ab170/6367103 by U
niversity of U

tah user on 17 February 2022



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

 

 

 

Figure 4. HOTI in the buckled β-Sb honeycomb monolayer. (a) Bulk band structures of the 

buckled honeycomb lattice of Sb without (gray dashed line) and with SOC (red solid line). As the 

effect of SOC is weak according to the bulk bands, the calculations of nanoribbons and nanodisks 

are performed without SOC. (b) Band structure of a nanoribbon of the buckled Sb monolayer 

without SOC. (c) Energy spectrum of a hexagonal-shaped nanodisk with H-saturated edges for the 

buckled Sb monolayer. The inset shows the real-space charge distribution of corner states around 

the Fermi level. 
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