Two-dimensional (2D) materials have attracted much attention because they exhibit various intrinsic properties, which are, however, usually not interchangeable. Here we propose a generic approach to convert 2D semiconductors to 2D topological insulators (TIs) via atomic adsorption. The approach is underlined by an orbital design principle that involves introducing an extrinsic s-orbital state of the adsorbate into the intrinsic sp-bands of a 2D semiconductor, so as to induce s–p band inversion for a TI phase, as demonstrated by tight-binding model analyses. Based on first-principles calculations, we successfully apply this approach to convert CuS, CuSe and CuTe into TIs by adsorbing one adatom per unit cell of Na, Na0.5K0.5 and K as well as Rb and Cs. Moreover, if the chalcogens in the 2D semiconductor have a decreasing ability of accepting electrons, the adsorbates should have an increasing ability of donating electrons. Our findings open a new door to discovering TIs by predictive material design beyond finding preexisting TIs.

Recently, two-dimensional (2D) materials have attracted much attention for both fundamental interest and their potential applications.1–4 So far, a suite of different classes of 2D materials have been discovered, ranging, e.g., from inorganic Dirac semimetals,5,6 semiconductors,7,8 topological insulators (TIs),9–12 superconductors13 and ferromagnets,14 to their organic counterparts.15–18 Although some efforts have been made to tune the intrinsic properties of 2D materials, such as by strain19 and alloying,20 usually different classes of 2D materials are not interchangeable. Here we propose a generic approach to convert 2D semiconductors, which are amply abundant, to 2D TIs, which are relatively less available, via surface adsorption and strain engineering.

Because of a very large surface area, 2D materials are extremely sensitive to surface modification,21,22 while their ultrathinness makes them very sensitive to strain.23–24 This offers them a unique advantage over their 3D counterparts, as the intrinsic properties of the whole 2D materials can in principle be modified through adsorption and/or strain engineering so that one class of 2D materials may be converted into another class. Below we demonstrate this possibility by converting 2D semiconductors into TIs predominantly by surface adsorption where one alkali atom is introduced into each unit cell of the 2D semiconductor to completely change its intrinsic band structure and band topology, which is apparently impossible for 3D materials.

We will first illustrate our approach, which is underlined by an orbital design principle, using a tight-binding (TB) model25 that represents a typical 2D sp-band semiconductor in a trigonal lattice. Their top of the valence band and bottom of the conduction band mainly consist of p- and s-states, respectively. An extrinsic s-state of alkali metals with appropriate energy is brought in to induce s–p band inversion to form a TI phase; a generic phase diagram is constructed in the parameter space of energy levels and spin–orbit coupling (SOC). Then, using first-principles calculations, we demonstrate this approach for real materials by converting the semiconducting monolayer CuS and CuTe into a TI via adsorbing Na and K respectively with an appropriate s-level energy, and CuSe into a TI via adsorbing a mixture of Na and K with a tuned s-level energy or by adsorbing either Na or K on a strained CuSe via a tuned p-level valence-band edge. Also, adsorption of Rb and Cs can work similarly.

We prescribe this concept of orbital design principle in a three-site (alkali metal adsorbate, cation and anion in a compound semiconductor) and four-band (s$_f$ from the adsorbate, s$_2$, p$_x$ and p$_y$ from the 2D semiconductor) TB model.
Expanding to the first-order of \(k \) around the \(\Gamma \) point, the spinless Hamiltonian reduces to

\[
H = \begin{pmatrix}
\epsilon_{s_1} + 6t_{s_1s_1} & 3t_{s_1s_2} & -\sqrt{3} \frac{\lambda}{4} t_{s_1p_{\sigma}} (ik_x + k_y) & -\sqrt{3} \frac{\lambda}{4} t_{s_1p_{\sigma}} (ik_x - k_y) \\
\epsilon_{s_2} + 6t_{s_2s_2} & -\sqrt{3} \frac{\lambda}{4} t_{s_2p_{\sigma}} (ik_x + k_y) & \epsilon_p + 3(t_{ppp} + t_{ppx}) + \lambda & -\sqrt{3} \frac{\lambda}{4} t_{s_2p_{\sigma}} (ik_x - k_y) \\
\epsilon_{s_1} + 6t_{s_1s_1} & -\sqrt{3} \frac{\lambda}{4} t_{s_2p_{\sigma}} (ik_x + k_y) & \epsilon_p + 3(t_{ppp} + t_{ppx}) + \lambda & 0 \\
\epsilon_{s_2} + 6t_{s_2s_2} & -\sqrt{3} \frac{\lambda}{4} t_{s_2p_{\sigma}} (ik_x - k_y) & 0 & \epsilon_p + 3(t_{ppp} + t_{ppx}) - \lambda
\end{pmatrix}.
\]

where \(\epsilon_{s_1}, \epsilon_{s_2} \) and \(\epsilon_p \) are the on-site energies; \(t_{s_1s_1}, t_{s_1s_2}, t_{s_2s_1}, t_{s_2s_2}, t_{ppp}, t_{ppx} \) are nearest-neighbor (NN) hopping parameters; \(\lambda \) is SOC strength; \(k_x \) and \(k_y \) are momenta along \(x \) and \(y \) directions, respectively. The whole TB Hamiltonian is available in Note 1 in the ESL.\(^\dagger\)

At the \(\Gamma \) point, the four eigenvalues are \(E_{s_1} = \epsilon_{s_1} + 6t_{s_1s_1}, \quad E_{s_2} = \epsilon_{s_2} + 6t_{s_2s_2}, \quad E_p = \epsilon_p + 3(t_{ppp} + t_{ppx}) \pm \lambda \), respectively. \(E_{s_1} \) and \(E_{s_2} \) are independent of SOC, while \(E_p \) is split by SOC with \(\Delta E_{p,SO} = 2\lambda \). As shown in Fig. 1(a), when the intrinsic \(s_1 \) band with an appropriate energy is brought into the proximity of intrinsic \(s_2 \) \(p \)-bands of a 2D semiconductor, an \(s_1 \)-\(p \) band inversion can occur, resulting in a topological phase transition to form the TI phase. Depending on whether \(s_1 \) band inverts with the upper or lower \(p_3/p_5 \) band, there can be two types of TI phases as indicated by TI(A) and TI(B) in the right panel of Fig. 1(a).

To reveal how the orbital design principle works, we construct phase diagrams [Fig. 1(b)–(d) and Fig. S2–S4\(^\dagger\)] of the electronic structure with the parameters \(\Delta \epsilon = \epsilon_{s_1} - \epsilon_p \) (on-site energy difference between the adsorbate and the anion of the semiconductor), \(E_g \) (band gap of the semiconductor without SOC) and \(\lambda \), based on the above TB model. With an increasing \(\Delta \epsilon \) at given \(\lambda \) and \(E_g \) [Fig. 1(b) and (c)], the phase evolves from a metal, TI(B), TI(A), to a normal insulator (NI). The typical band structure of each phase is shown in Fig. S1.\(^\dagger\) The \(s_1 \)-\(p \) band inversion may or may not exist in the absence of SOC. When SOC is included, the degenerate \(p_3/p_5 \) valence bands split. As illustrated in Fig. 1(d), this may result in a TI phase with an appropriate \(\Delta \epsilon \), which can be either a TI(A) or TI(B) phase. The condition for the occurrence of the TI (A) or TI(B) phase is determined by the relative magnitude of band split-\(\Delta \epsilon \) and \(\lambda \). The condition for the occurrence of the TI (A) or TI(B) phase is determined by the relative magnitude of band split-\(\Delta \epsilon \) and SOC gap \(\Delta E_{p,SO} \).\(^3,25\) The TI phase can only occur for \(\Delta E_{s_1,p} < \Delta E_{p,SO} \), otherwise only NI exists. Furthermore, for \(\Delta E_{s_1,p} < \Delta E_{p,SO} \), only TI(A) occurs for \(\Delta E_{s_1,p} > 0 \), where the SOC induces an \(s_1 \)-\(p \) band inversion similar to the case of a small-gap quantum well;\(^9\) for \(\Delta E_{s_1,p} < 0 \), where the \(s_1 \)-\(p \) bands are already inverted and the SOC simply opens a gap similar to graphene,\(^9\) and depending on whether \(|\Delta E_{s_1,p}| \) is smaller or bigger than \(\Delta E_{p,SO} \), either TI(A) or TI(B) occurs. Apparently, besides \(\Delta \epsilon \), the smaller the \(E_g \) [Fig. 1(b) and S3\(^\dagger\)] or bigger the \(\lambda \) [Fig. 1(c) and S2\(^\dagger\)] is, the larger the range of the TI phase will be.
Given the understanding of the orbital design principle based on the TB model, it is natural to ask whether it can be realized in real materials. Recently, experimental fabrication of monolayer CuSe,‡‡,26,27 which possesses the p/p-dominated valence bands, has drawn our attention. The monolayer honeycomb monochalcogenide MX (M = Cu, Ag; X = S, Se, Te) family can all be viewed effectively as “hole-doped” sp-band 2D semiconductors, with one electron depleted per unit cell as shown in Fig. S5.† It is expected that adsorption of one alkali atom per unit cell, which introduces one electron from the s-orbital (s1-state), will move the Fermi level up to the top of the valence band and result in a semiconductor. Furthermore, if the energy of the s1-state of alkali atoms is right relative to the top of the conduction s2 band. So, based on the above TB model, we construct a phase diagram for the adsorbate in the parameter space of εs1 of alkali atoms prefer to be adsorbed at the center of the hexagon as shown in Fig. 2(b). The “p-type” semiconductors CuS and CuTe [Fig. 2(c) and (d)] have been successfully converted into TIs [Fig. 2(e)–(h)] via Na and K adsorption, respectively. Without considering SOC, the two degenerate p and p′ bands are exactly at the Fermi level. And the s1 band of the adsorbate is below the p and p′ bands of the host semiconductor near the Γ point, leading to “pre-existing” band inversion. When SOC is included, the degenerate p and p′ bands split with ΔEpSOC, resulting in TI(B) and TI(A) phases for CuS-Na and CuTe-K, respectively. The ability of accepting electrons decreases from S to Te while the ability of donating electrons increases from Na to K, in good agreement with the prediction based on the orbital design principle.

Therefore, the key is to identify the right alkali element with an appropriate s1-state energy for a given 2D semiconductor, such as CuSe with the known valence p-band position and SOC strength. Because of the level repulsion, the relative position of final s1 and p bands is also affected by the bottom of the conduction s2 band. So, based on the above TB model, we construct a phase diagram for the εs1 of the adsorbate in the parameter space of εs2 and εp of the semiconductor, as shown in Fig. 2(a). It is found that the εs1 of the adsorbate decreases when the εs1 (εp) of the cation (anion) in the compound semiconductor decreases (increases). Note that a decreased εs1/εs2 and εp means an increasing ability of donating and accepting electrons, respectively. That is, with the ability of donating (accepting) electrons for the cation (anion) increasing (decreasing) in the semiconductor, the adsorbate to be chosen should have an increasing ability of donating electrons. Taking CuS, CuSe and CuTe as examples, which have the same cation but different anions, the ability of accepting electrons decreases from S, Se to Te, so the adsorbate should have an increasing ability of donating electrons.

To confirm the above hypothesis, first-principles calculations (see Note 2 in the ESI† for details) have been performed for CuS, CuSe and CuTe with different alkali adsorbates. Alkali atoms prefer to be adsorbed at the center of the hexagon as shown in Fig. S5.† The “p-type” semiconductors CuS and CuTe [Fig. 2(c) and (d)] have been successfully converted into TIs [Fig. 2(e)–(h)] via Na and K adsorption, respectively. Without considering SOC, the two degenerate p and p′ bands are exactly at the Fermi level. And the s1 band of the adsorbate is below the p and p′ bands of the host semiconductor near the Γ point, leading to “pre-existing” band inversion. When SOC is included, the degenerate p and p′ bands split with ΔEpSOC, resulting in TI(B) and TI(A) phases for CuS-Na and CuTe-K, respectively. The ability of accepting electrons decreases from S to Te while the ability of donating electrons increases from Na to K, in good agreement with the prediction based on the orbital design principle.

Next, we further investigate the band structures of CuSe-Na [Fig. 3(a) and (b)] and CuSe-K [Fig. 3(c) and (d)], which are a Ni and metal respectively. Because the ability of donating electrons for Se is between that for S and Te, the εs1 of Na (K) is too big (small) to convert CuSe into a TI. Thus, according to the phase diagram [Fig. 2(a)], the appropriate εs1 is between that of Na and K, indicating that adsorbing a mixture of Na and K with a tuned s1-level energy may convert CuSe into a TI. This is indeed confirmed by calculations of CuSe via adsorbing mixtures of Na and K with different ratios as shown in Fig. 3(e)–(g). With the decrease of the Na/K ratio, the s1 band moves downward at the Γ point and the band structure evolves from CuSe-Na to CuSeK with the band inversion occurring at CuSe-Na0.5K0.5. When SOC is included, CuSe-Na0.5K0.5 is found to be a TI possessing a non-trivial gap of 41 meV as shown in Fig. 3(h).

![Fig. 2](image_url)

(a) Phase diagram of appropriate εs in the parameter space of εs2 and εp. The color indicates the value of εs1. An increased on-site energy (εs1, εs2, and εp) means a decreasing ability of donating or accepting electrons. (b) Top and side views of monolayer MX−Y (M = Cu; X = S, Se, Te; Y = Na, K). (c)–(f) Projected band structures without SOC of CuS, CuTe, CuS-Na and CuTe-K, respectively. (g) and (h) Projected band structures with SOC of CuS-Na and CuTe-K, respectively. The width of colored lines represents the contribution from different orbitals. The components of the X-s (X = Na, K) states are multiplied by a factor of 4 for clarity. The numbers indicate the band gap.
Besides tuning the s_1 band via adsorbing different alkali elements, one can also slightly tune the p_x/p_y valence bands of the host semiconductor via strain so as to achieve a desired $\Delta E_{s_1,p}$. For example, CuSe-Na is a NI. By applying a compressive strain, the relative energy of the s_1 band to the p_x/p_y bands decreases near the Γ point (Fig. S6†). Then, the phase evolves from a NI, TI(A), TI(B) to a metal with the increasing strain (Fig. S6†). The specific band structure of TI(A) and TI(B) phases is shown in Fig. 4(a) and (b), respectively, for CuSe-Na with -2.6% and -4% compressive strain. To convert CuSe-Na into a TI, the range of compressive strain is about -2.3% to -4.5%.

Similarly, CuSe-K is a metal. By applying a tensile strain, the relative energy of the s_1 band to the p_x/p_y bands increases near the Γ point (Fig. S7†). The phase evolves from a metal, TI(B), TI(A) to a NI with the increasing strain (Fig. S7†). The specific band structure of TI(B) and TI(A) phases is shown in Fig. 4(c) and (d), respectively, for CuSe-K with 2% and 3.4% tensile strain. To convert CuSe-K into a TI, the range of tensile strain is about 1%–3.6%. To confirm that the s_1–p inverted bands display topological insulating states, taking CuSe-K with 3% tensile strain as an example, we calculated its nontrivial edge states as shown in Fig. S8.†

We have also tried out using Rb and Cs as adsorbates and found that CuSe-Cs, CuTe-Rb and CuTe-Cs are 2D TIs, as shown in Fig. S9† Furthermore, taking the alkali atom adsorbed CuX ($X = S, Se, Te$) monolayers as examples, we further checked their stability. The calculated phonon dispersion of these monolayers is shown in Fig. S10.† There is no imaginary frequency mode in the whole Brillouin zone, indicating that they are dynamically stable.

In conclusion, we propose a novel approach underlined by an orbital design principle, to rationally convert 2D sp-band

Fig. 3 (a)–(d) Projected band structures without and with SOC of CuSe-Na and CuSe-K, respectively. (e)–(g) Projected band structures without SOC of CuSe-Na$_{0.75}$K$_{0.25}$, CuSe-Na$_{0.5}$K$_{0.5}$ and CuSe-Na$_{0.25}$K$_{0.75}$, respectively. (h) Projected band structures with SOC of CuSe-Na$_{0.5}$K$_{0.5}$. The width of colored lines represents the contribution from different orbitals. The components of the X-s ($X = Na, K$) states are multiplied by a factor of 4 for clarity. The numbers indicate the band gap.

Fig. 4 (a) and (b) Projected band structures of CuSe-Na with -2.6% and -4% compressive strain, respectively. (c) and (d) Projected band structures of CuSe-K with 2% and 3.4% tensile strain, respectively. The width of colored lines represents the contribution from different orbitals. The components of the X-s ($X = Na, K$) states are multiplied by a factor of 4 for clarity. The numbers indicate the band gap.
semiconductors into TIs. We envision that this approach is generally applicable to a large number of 2D material data-bases. As prototypical examples, the feasibility of the approach is confirmed by first-principles calculations of monolayer CuX (X = S, Se, Te) via adsorbing alkali atoms. Depending on the desired relative position of the extrinsic s-band of alkali atoms to the intrinsic top of the p-valence band of the host, a mixture of alkali atoms and either tensile or compressive strains may be needed. Our findings not only enrich 2D TIs with new material classes but also revive the discovery of TIs by predictive material designs.

Conflicts of interest
There are no conflicts to declare.

Acknowledgements
This work was financially supported by the National Key Research and Development Projects of China (2016YFA0202300), Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000 and XDB07030100), the National Natural Science Foundation of China (No. 51872284 and 61888102), the International Partnership Program of Chinese Academy of Sciences (No. 112111KYSB20160061), and the CAS Pioneer Hundred Talents Program, Beijing Nova Program (No. Z181100006218023). This project was also supported by the CAS Key Laboratory of Vacuum Physics and the Beijing Key Laboratory for Nanomaterials and Nanodevices. G. S. and F. L. at Utah acknowledge the support from US-DOE (Grant No. DE-FG02-04ER46148).

References