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CONSPECTUSMetal organic and covalermdrganic frameworks (MOFs/COFs) have | «
been extensively studied for fundamental interests and their promising applications, taki
advantage of their unique structural properties, i.e., high porosity and large surface-tg
volume ratio. However, their electronic and magnetic properties have been somew
overlooked because of their relatively poor performance as conductive and/or magne
materials. Recent experimental breakthroughs in synthesizing two-dimension
conjugated MOFs/COFs with high conductivity and robust magnetism through i
have generated renewed and increasing interest in their electronic properties. Meanwy
comprehensive theoretical studies of the underlying physical principles have led
discovery of many exotic quantum states, such as topological insulating states, which we
only observed in inorganic systems. Especially, the diversity and high tunability of "'OO
COFs have provided a playground to explore novel quantum physics and quantups/
chemistry as well as promising applications.
The band theory has empowered us to understand the most fundamental electronic properties of inorganic crystalline materie
which can also be used to better understand MOFs/COFgsTbbevious dierence between the two is that instead of atomic
orbitals residing at lattice sites of inorganic crystals, molecular orbitals of organic ligands are predominant in MOFs/COFs. Th
second key dérence is that usually all atomic orbitals in an inorganic crystal are subject to one common group of lattice symmetry
while atomic orbitals of metal ion and molecular orbitalsoémti organic ligands in MOFs/COFs belong terelint subgroups
of lattice symmetries. Both theseminces will impact the band structure of MOFs/COFs, in particular making it more complex.
Consequently, which subset of bands are of most importance depends strongly on the location of Fermi level, i.e., electron count
and charge doping. Furthermore, there are usually two types of characteristic electrons coupled in MOFs, i.e., strongly correla
localizedl andf electrons and disivesandp electrons, which interplay with lattice, orbital, and spin degrees of freedom, leading to
more exotic topological and magnetic band structures.
In this Account, we present an up-to-date review of recent theoretical developments to better understand the exotic band structu
of MOFs/COFs. Starting from three fundamental 2D lattice models, i.e., honeycomb, Kagome, and Lieb lattices, exotic Dirac ar
at bands as well as the intriguing topological quantum states they host, e.g., quantum spin Hall and quantum anomalous Hall sta
are outlined. In addition to the single-lattice models, we further elaborate on combined lattice model Hamiltonians, which give ris
to overlapping bands hosting novel quantum states, such as nodal-line Dirac semimetal and unconventional superconducting st:
Also, rst-principles predictions of candidate MOFs/COFs that host these exotic bands and hence quantum phases are reviewe
which greatly extends the pool of materials beyond inorganic crystals for hosting exotic band structures.
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theoretical report of Lieb lattice realization in COFs anc
Stoner ferromagnetism

INTRODUCTION

Electronic band structure essentially describes the relations
between electron energy and wavevector, i.e., momentum, ce
the dispersion relation. For a free electron in vacuum, its wa
function takes the form of a plane wavg) = A€ 9 which
naturally leads to a parabolic disper&{@h k. For an
electron in crystals, its wave function is modulated by tF
periodic crystal potential into the Bloch wave func{int) =

(r,t) u(r), whereu is a periodic function of crystal lattice. In
materials with a weak cr f level splittin h as in
mzl:gls{il Selegtroans eaa:e Cn)éﬂ? geee vsitﬁpattcogﬁt;ﬂ%ugsenelﬁg”re 2.Localized eigenstate of tat band in real space of a (a)

RN . gome lattice and (b) Lieb lattice. The blue and red colors indicate the

;g?ﬁggmig%igi)ét\ggl;g mgjggfg 2;232%;222?2%(:'2%" ggaitive and negative phase of the nodes of wave function at lattice sites.
having a gapped energy spectrum with certain range of. ) ) )
forbidden energies (band gap).eBént from free electrons (Figure b), while the nondispersivat bands host electrons
with a constant rest massy), electrons in crystals behave like With an innite massKigure t). The completely quenched

quasi-particles, whose low-energy excitations depend glgctron kinetic energy inat band renders naturally a strongly
electron ion and electrorelectron interactions, manifesting INtéractive and correlated quantum system, because any small

in di erent band dispersions angaive massesit). In nite interaction energy is still much larger ‘thewd kinetic
general, the band dispersion in almost all crystals keeps §¥'9Y- _ _

“normall parabolic function, i.E(K) k? albeit with a dierent Furthermore, both Dirac anat bands have inherently a so-
coe cient, i.e., ective mass-(gure 4). called nontrivial band topoldg§he mathematical concept of

topology is used to classifyedent manifolds that cannot be
“continuously deform&dnto each other. Similarly, band
topology is introduced to classifyedent band structures that
E (a) E (b) E  (c) cannot béadiabatically connectedth each othef.One may
imagine when atoms were brought together to form solids,
atomic levels would spread to form bands. In general, an
insulating solid is a normal insulator of trivial band topology if it
can be adiabatically connected (without gap closure or band
inversion) to théatomic limit; otherwise, it is a topological
insulator (TI) characterized with a spirbit coupling (SOC)
K X K gap:* If the degeneracy of the band crossing point, e.g., the
Parabolic Linear Flat Dirac point, is protected by some crystalline symmetries in the
Figure 1.lllustrations of band structures. (a) Usual parabolic band resence of SOC, then .the S.O“d 1S atOpo!OQ'c.:al Sem'me.tal' The
with a nite electron eective mass. Exotic bands: (b) linear Dirac . and' topology can be lde_etd b.y calculating its topological
bands with a zero ective mass and (cht band with an imite invariant, and a nonzero invariant means that as the phase of
e ective mass. electron Bloch wave function (Berry phasejolves in the
parameter space of momenta, it changes integer tinldsof
translates into a quantized and spin selective Hall conductivity,
It is noted that considering the special relativigtethe in analogy to the quantum Halleet where the external
dispersion relation of a free electron in vacuum becomes lineaggneticeld imposes a topological phase evolution of the wave
E(K) Kk (Figure b), i.e., the solution of the Dirac equation function of 2D free electron gas, where the mathematical
instead of the Schtimger equation. Surprisingly, an analog ofconcept of topology wasst used in the context of physics
such “exoti¢ linear band dispersion (Dirac band) was condensed matt&tFor this reason, topological materials, i.e.,
discovered in 2005 in grapheree,two-dimensional (2D) materials with nontrivial band topology like Diracatrimhnds,
crystal with a honeycomb lattice, although the theoreticalold promising applications in quantum information and
calculation of its Dirac band was already conducted early gomputing as well as spintronics devices.
1947° Also, it has been theoretically shown that even a The discovery of graphene has fostered an ever-geding
completely nondispersiva band,i.e.E(k) k° (Figure t), of 2D materials, including 2D topological and quantum
may arise in certain lattices with special symmetry, such as 2Rterial$’*® In this Account, we will focus on reviewing
Kagome and Lieb latti¢es! The topological at band is recent studies of 2D organic topological and quantum materials,
formed by phase cancellation of Bloch wave functions, i.m particular MOFs/COFs featured with topological Dirac and
destructive quantum interferéreading to compact localized at bands, which are sometimes called Dirac asizhand
states characterized with canceling outward lattice hopping naaterials? ' The readers are referred to some recent review
illustrated irFigure 2which is distinctively dirent from the  articles on related topics, in particular inorganic quantum
trivial at band, formed by localized dangling bond withoumaterials, for more information® The Dirac and at bands
hopping'? Such exotic band structures endow electrons witgenerally arise in 2D lattices having special lattice and orbital
unusual properties, especially novel quantum states. The linsgmmetries that warrant some desirable phase cancellation of
dispersive Dirac bands have massless electrons like a phd@&tmcth wave functions. The Dirac band in graphene is derived

Normal Exotic

E~k? E~k E~kK°

m*/m, m*—0 m*— oo
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Figure 3lllustrations of a honeycomb lattice consisting of (a) single orbitgl,ddp¢bitals, and (g)4 p,, p,) orbitals on each lattice site. (b) The

Dirac bands without (black) and with (red) SOC of (a) witld and =0.2/ 3. The inset in (b) shows thest Brillouin zone of a honeycomb

lattice. (c) Representative MOF hosting Dirac BdaiEour bands without (black) and with (red) SOC of (d) witd,pp =0, and = 0.1pp .

(f) Representative MOF hosting four bar{dy Enantiomorphic Kagome bands without (black) and with (red) SOC of (cviths = 2pp ,

sp =2pp,pp =0,and =0.2p . (i) Representative COF hosting enantiomorphic Kagome bands. The dashed rhombus indicates the unit cell in

(@), (c), (f), and (i).

from inversion symmetry between two sub trigonal lattices asthtes. Furthermore, originast-principles calculations that
C; rotational symmetry; theat band usually forms in a
geometrically frustrated lattice, such as Kagome (corner-shahnegte predicted the selected MOFs/COFs hosting the Dirac
triangle) and Lieb (edge-centered square) |&tlicgbere
complete phase cancellation of lattice wave functions amd/or at bands will be reviewed with the features of their
warranted. There is a very large family of 2D MOFs/COFs,
and many of them may satisfy such symmetry requiremengsiantum states analyzed. Lastly, we discuss the experimental
especially considering the extraordinary diversity of coordina-
tion chemistry that will provide countless combinations of metahallenges in synthesizing large-sample size of crystalline
ions and organic linkers, taeoa rich variety of lattice, orbital,
and spin symmetrig¥> This makes MOFs/COFs an ideal MOFs/COFs and further characting their topological
material platform to realize the exotic Dirac ahdands.

In the following, we will start with introducing a generic tightproperties.
binding (TB) model in three basic 2D lattices, i.e., honeycomb,
Kagome, and Lieb lattices, with single/multiple orbital hopping,
to demonstrate the formation mechanisms of Diracaand TIGHT-BINDING MODEL
bands as well as their associated intriguing quantum states, e.g.,
quantum spin Hall (QSH)j and quantum anomalous Hall The Hamiltonian of a generic TB model with single-osstal (
(QAH)? states, andat-band ferromagnetism induced by high
density of state and enhanced correlatiect @hen the at p,) or multiorbital [{,, p) or (s p., B)] hopping in a lattice can
band is partiallylled® We also discuss bijethe combined
honeycomb and Kagome lattice model and resulting quantume expressed as
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C . . Ste"s + e+ d)
H= iGesS it jer JAicj ¢ H(k) =
i i i t

(eéik1+ Sik 4 éik3) .

(3)
+ tgci+ i o ik X i .
S ¢ i €, . B . .
- - hd 1ol wherek, is de ned ag,, = k-g with three NN hopping vectors
MG e & = (S %x S %y) 2 =Yy, andag = (%x S %y) labeled in
i 1) Figure &, which is also adopted in the following discussions. As
_ ) ) o originally developed for graphene, this simple model gives rise to
where; is the on-site energy of therbital at théth siteg = two Dirac bands, as showrFigure B. Further inclusion of

(g g )andg = (g G ) are electron creation and sQOC opens a nontrivial gap at the Dirac pé#iis), changing
annihilation operators of therbital at théth site, respectively.  the system from a topological semimetal into aTHe two

ij , ij ,and ij denote the nearest-neighbor (NN), pirac bands have opposite spin Chern numbers. r¥he
second NN (2NN), and third NN (3NN) hopping with  organic TI (OTI) with Dirac bands in a honeycomb lattice was
hopping parametetts t,, and t; respectively, which are theoretically predicted by Wang etal., in the MOKGEBL,) 5
expressed within the Slat¢oster schenfé.The third term  and pR(C4H,),* The Bi ions are located at the honeycomb
is the 2NN intrinsic SOC with magnitude , is the z- lattice sitesigure &), which give rise to the Dirac bands and a
component of Pauli matrix, aids the vector fromsiteo site 5OC gap of 43 meV at the Dirac point. The nontrivial topology
k. T_he last termis the exchanglel with _magnltuqm. For the of Bi(CgHy,)s has been theoretically coned by the edge
lattice model withd,, p)- or (s p,, p)-orbital hopping, the third  states and nonzezgnumber. However, the topological gap in
term will be replaced with the on-site SOC expressed.as  Bj,(C4H,), is not intrinsic, because it is not aligned with the
whereL is the angular momentum operator aate the Pauli  Fermj |evel. Electron doping is needed to move the Fermi level
matrices. By transfamg the Hamiltoniane J into into the gap. This original work has since stimulated a number of
momentum Slj’ace’ one obtains khgpace Hamiltonian  sypsequent theoretiF(ig\I pzredgcitionsBZoaf3 OTls, suc\r}sgs replacing

_ 0 . . the metal ions with Pdn,” TI,>* Mn, Fe;?and V" We

H(k) = Mé i The TB model is equivalent to the note that there was a later theoretical study(@#Ph) ;s MOF
extended Hekel model adopting periodic boundary condition,showing an antiferromagnetic ground state and topological
with a proper transformation of lattice hopp|ng parametelﬁhaseg; the d| erence iIs ||ke|y due to drent fUnC.t|0na| used
between the two models. Later we will discuss the exatthe calculation. Recently, a COF formed by triangtileaes
expressions ofandH, for each lattice type. been_ expenm_ent%g% gynthe§%ud theoretically predicted to

To characterize band topology, for system with inversiope Dirac semimetal. .
symmetry without exchangsd, the topological invariaht Be_3|des t_he smgle-orblta_l honeycomb model, th_ere can be
numbef® can be derived based on the parity at time-reversgtultiple orbitals on each lattice site, such apfwpg-orbitals,
invariant momenta that classitopologically trivigd{= 0) or as illustrated iRigure 8. The matrix elementsindH, of the
nontrivial Z, = 1) state$? The nontrivial system represents a Hamiltonian are expressed as
2D TI exhibiting the QSH ect, characterized with two helical 0
edge states of quantized spin Hall conductivity. For system with  _ gg 1and
broken time reversal symmetry, where the exchalige )
separates two spin channels with only one spin component at the
Fermi level, the Chern number is used to characterize the
topology, which is deed a¥’

N

J3

i (3ep + pp) =, (PP S pp)Ee" S e

Vi (eik1+ é'k3)+ pp ko

1 & Ho=$
c= 2 Bz Kid X @) N (pp S Pp) %( pp+3 ppe’t+ €'o)
. (e'kl IS éka) +pp ke
whereF (K = —~A{f kS — A )k is the Berry curvature, (4)
1 2

AWK =S i<ﬂ<“ rp<> is the Berry connection, ang is a Assuming a vanishipg (usually much smaller tham ), this
k TB model gives four bands consisting of two Dirac bands

normalized wave function of the respective band. The nontrivedndwiched by twat bandsFigure ). The Dirac points at
system of nonzero Chern number represents a Chern insulakiiK ) and two band touching points awill be gapped by
(CI) exhibiting the QAH eect, characterized with the Chern SOC. All three gaps are topologically nontrivial, as characterized
numbers of chiral edge states with quantized charge and sbintheir band-resolved spin Chern numbers from top to bottom:
Hall conductivity. For Tls, the Chern number may be calculatet] 0, 0, 13° ** This TB model has been realized theoretically
for each spin component of ban@sgndC ), and the spin rst in MOFs of In(Cg¢H,); (Figure 82 and then
Chern numberG;= 2(C $ C), may be used loosely in TI2(§5H4)3,31:n whichbthe (I;Otli{/ bagds nt()a_arlthefFermillgaveI are
. . predominantly contribute andp, orbitals of metal ions.
equivalence with ti number. When the at band is partiallyled,r?it is subjected to a spin
polarization due to its strong Coulomb repulsion, and the
HONEYCOMB LATTICE fractional Chern insulator state could be achieved.
The model of single-orbital hopping in a honeycomb lattice is Another intriguing system with multiorbitals per site in a
shown inFigure a. Itsk-space Hamiltonian is honeycomb lattice is thg g, p)-orbital hopping model, as

419 https://dx.doi.org/10.1021/acs.accounts.0c00652
Acc. Chem. Re2021, 54, 416 426


pubs.acs.org/accounts?ref=pdf
https://dx.doi.org/10.1021/acs.accounts.0c00652?ref=pdf

Accounts of Chemical Research pubs.acs.org/accounts

Figure 4lllustrations of lattice models consisting of single orbital in (a) Kagome, (d) coloring-triangle (CT), and (g) diatomic Kagome lattices. (b)
Kagome bands without (black) and with (red) SOC of (a) wihand = 0.3. (c) Representative MOF hosting Kagome lattice ba)dsagome

bands without (black) and with (red) SOC of (b) with0,t,= 0, and = 0.3. (f) Representative MOF hosting Kagome bands of a CT*(dtice.
Enantiomorphic Kagome bands without (black) and with (red) SOC of (cyWith=0,t;=0.3,and =6t/ 3. (i) Representative MOF hosting
enantiomorphic Kagome bafttiBhe rst Brillouin Zone of a Kagome lattice is the same as that of a honeycomb lattice, as represented by the inset of
Figure b. The dashed rhombus indicates the unit cell in (a), (c), (d), (f), (g), and (i).

illustrated inFigure §. The corresponding and H, are
expressed as

0 0
= 5 O {and
O
(e + dot da) é% spe™s e's) S% speS 2ekx  dks)
Ho = sp(e't S ) %(3 pp+ pp(e"i+ €9+ pp'e ?( B e S e’
ke & pdke 4 s ﬁ & k& ik 1 ik ik ik
fop (¢ 5 2+ &) Lo(pps p(e™S ey Z(ppr 3 pie™s e pe

®)

By simply settingp = 0, one obtains the enantiomorphic

Yin Yang Kagome barfdsis shown iffigure &. With SOC at bands separateq by the .Fer'mi IeveI.have opposite signs,
' ' which spawns various intriguing excited-state quantum

the band-resolved spin Chern numbers from top to bottom aﬁhenomena such as the excited quantum eefland giant
1,0, 1,1,0, 1.Itisworth noting that the spin Chern numbers cjrcylar dichroisif*® The COF formed by graphene nano-

of the two sets of Kagome bands are opposite of each otheikes Figure § may host such a band structure based og the (
(hamed as YinYang Kagome bandfsind especially the two p,, py)-orbital honeycomb model. The molecular orbitals (MOs)
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Figure 5Band structure evolution in Lieb lattices. (a) Lieb lattice structure with one corner and two edge-cetyer, states denote NN

hopping, 2NN hopping, dimerization term, and on-site eneeggnde, respectively. {p Band structures of the Lieb lattice with their
corresponding parameters indicated with each plot. (g) COF with a strained Lish-@@E&®y(BCSB) whose corner and edge-center sites are

made of Py (orange rectangle) and BCSB (blue) ligand, respectively. (h) Same as (g) for MPc-MOF, with Pc and benzene molecules make up t
corner and edge-center sites, respectively.

of the organic ligand near the Fermi level have the same shap€&he realization of Kagome bands in MOFs/COFs has been
and symmetry as the atogig,, andp, orbitals, which serve extensively studied since 2013. The pioneering work is the
e ectively as thésuper-atomicorbital basis to form the theoretical prediction of QSHeet in Ni(CeS),° which

enantiomorphic Yin-Yang Kagome bands. consists of three Niions being located at Kagome sites, as shown
in Figure 4c). Itis noted that based on a bottom-up tiqsid
KAGOME AND RELATED LATTICES interfacial reaction approach, a monolayers(€4%), has
The single-orbital hopping in a Kagome lattice is shown iR€€N synthesized in the Same&@d’lé(ce%)z was shown to
Figure 4. Itsk-space Hamiltonian is have onggt band above two Dirac bands near the Ferm level;
its nontrivial topology were demonstrated with topological edge

S2t cosk; S 2 cok, states and quantized spin Hall conductigiaged on the same
design principle demonstrated in(GUS;),, several other
MOF$” “° have been subsequently proposed to possess the
N ot cosk, S 2 cok ©6) topological Kagome bands, Whiph greatly en'riches the materials
platform for experimental comation. An experiment work has

which yields three bands with oagband located either below indicated the existence @t band in a ferromagnetic MOF

or above two Dirac bands depending on the sign (positive ¥&gome lattice of Cu(1,3-bdc) and suggested possible
negative) of lattice hoppingrigure b). Similarly, after topological magnon state.

considering SOC ect, the Dirac points &K ) and band Interestingly, another lattice, called coloring-triangle (CT)
touching point at will be gapped, leading to Tl states. For bothlattice Eigure d), has been shown to have the identical
spins, theat band and bottom Dirac band have a nonzero spiKagome bands as that of a Kagome lattice, as the two lattice
Chern number of opposite sign and the middle Dirac band hagtmiltonians can converted into each other via a unitary
zero spin Chern number. transformatior: Thek-space Hamiltonian of the CT lattice is
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St(elaSkd®  Gy(ghsSids centered square lattidedure a). The band topology of the
+ diaSki3y o Sk two lattices is closely related because they are both line-graph
lattices and interconvertible via straiithough with dierent

H(g = BUE T+ €99 St(e"fis“:; lattice symmetries, the two can be viewed sharing the same
i e ) structural corguration, i.e., one corner site and two edge-center
(e S/ + S ) Sy(eldle sites. Dierent from the Kagome lattice that has been realized in
; + gheSki3) ) many real material systems, materials that host Lieb band

) ) ) ] _ ) structure are quite rare, mainly becauseati®and can only
The NN hopping of intratriangle and intertriangle in the CTgyrvive in an ideal Lieb lattice with the same on-site energies for
lattice are indicated bgndit,[seef-igure 4d)]. By introducing  the corner and edge-center sites @freint bonding environ-
a 2D periodic potential to physically ntakenishing, the CT  ment and negligible 2NN lattice hopping. This can be

lattice can host perfect Kagome bands, as shiéyorin {e). understood by inspecting closelig-&pace Hamiltonian,
The MOF of CW(CgN,H,); [Figure #)] with a geometry of . 3
CT lattice has been shown to be a QAH insufatiss. S2t cosk- ;) S2 co ;)

electronic band structure and topological properties can be WeIIH(k) -

. . . 2t . S4 : d
explained by the physics of Kagome bands of the CT lattice. cosk 1) F 2 co% o)k 2
Another type of Kagome lattice is the diatomic Kagome lattice 2t cosk: ,) S 4, coK 1 )k 2) €
consisting of two atoms sitting on each Kagome lattice site, as 9)

shown irFigure §. The correspondingandH, are where ; = xand , = y, respectively. It generally should have

00 two di erenton-site energiesénd .= ¢+ E)fortheedge-
center and corner site, respectively, and twoedt lattice
= o 0jand hoppings (the NN hoopingbetween the corner and edge-
0 center sites vs the 2NN hoppipdpetween the edge-center

sites), according to ids, symmetry. Ideal Lieb band structure
with one perfectat band crossing the middle of Dirac bands
(Figure B) arises only if: = ¢ andt, = 0, which is unlikely, if

jeSik2d t, cok, &% t, cos, 'g4

j &i i not impossible, to be the case in real materials. Norizero
Ho = ‘; coskg &% t 8% t; cos et leads t% an energy gap opening atipeint either below or
v k. ik 3 above theat band, depending on the sign B{ Figure & for
b cosk, &% t cok, 4t Sd2¢ negative E), and nongermz ir?duces ba%d d(ispgersion in the
(8) middle at band Figure &). When a dimerization interaction:
. . t+ is present, two gaps open below and abovat thend
respectively, wherd = c( a3§ az), d, = alz 88) , and (Figure 8). Both Eand represent certain degrees of electron
) oo > 2 oS 2 inhomogeneity in the system. Because of the nonvan&hing
d; = %) Here, d is the displacement of the two , andt,, real materials can only fu& nonideal Lieb lattice,

. oo whose band structure is always distorted or disdtiigenk (
dumbbell atoms away from the Kagome site, as indicateddfj "ror this reason, a Lieb band structure and hence a Lieb

Figure 4. For simplicity, one can negigethich will not aect lattice can be easily overlooked

the band structure qualitatively in a wide range of parameterrpe st | jep lattice material has been recently demonstrated
spacé?The TB band structure is showRigure 4, consisting in ansp carbon-conjugated COBR.COF)**% which was

of a pair of enantiomorphic Kagome bands. With SOC, the tWQ o rimentally discovered to host stable ferromagnetism upon
at bands have the opposite sign of spin Chern numbers, o doping? The molecular structure is showfigure §,
originating from the same physics as described above by the\ [ B can be viewed as an assembly of pyrene (Py) and 1,4-

model of & p,, p)-orbital hopping in a honeycomb lattice. g cyanostyryl)benzene (BCSB) ligands that occupy the corner
To realize the YinYang Kagome bands in a diatomic é{?lue ellipse) and edge-center sites (red ellipse), respectively, of
Kagome lattice, the longer-distance cross hopping between tQ o1, |attice which is slightly strained along the diagonal
sub-Kagome lattices needs to be larger than the shorter-dlstaa\ﬁ:gction_ The Lieb nature of $y@ COF lattice, Py(BCSB)s
interatomic hopping. This intriguing lattice hopping conditior}e, e 51eq by analyzing the molecular orbital,s of the two building

makes the suitable diatomic-Kagome lattice materials rathgyiq j o "Py and BCSB, and the corresponding orbital-resolved

limited. Itis noted that in a Kagome lattice with a dual of frontief,y g5 |t s found that the electronic band structure is strongly
-orbitals per lattice site, the Yin-Yang Kagome bands have b i ed by the apparent nonvanishifgue to the dierent

disclosed in an anilato-based MOKCAD,CL,)5 [Figure on-site energi -

STas . - gies of the MOs of Py and BCSB ligands, and an
4] ™ The topological property of,f¢0,Cl,)3 has been xtra dimerization term,arising from the structural distortion
theoretically demonstrated by the presence of topological e he Py(BCSB) Consequently, the usual highly dispersive

states and nonzerp number. The anilato-based MOFS not a0 pand becomes highly localized driven by the strong
only signicantly expands the pool of materials hosting,|actron inhomogeneity, i.e., largeand *5° Such strong

enantiomorphic Yin-Yang Kagome bands, but also provideg @ o |ocalization further induces spin polarization upon hole
new platform to study-orbital originated quantum chemistry doping as observed experimeritayhich can be further

and physics. enhanced by eliminating interlayer interaction and/or increas-
ing the doping concentratiot.

LIEB LATTICE The topological properties of Py(BCSB)ated to its at
In addition to the Kagome lattice, another 2D lattice that hostsand has been studiédyhich however requires a large amount
both Dirac and at bands is the Lieb lattice, i.e., the edge-of doping to shift to the Fermi level. Soon afterward, another
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Figure 6 Band structure of the combined honeycomb and Kagome (CHK) lattice. (a) Ball-and-stick model of CHK lattice (blue and orange spheres
show honeycomb and Kagome lattice, respectively). (b) Band structure resulting from the overlappingtirgidHgrbithibands, forming a

nodal ring at the Fermi level with= 1.988| and , = |t. (c) Representative CORNG, where molecular orbitals formed by N and C atoms
construct the honeycomb and Kagome lattices, respetfijeBand structure with nonmagnggigorbital honeycomb lattice and single-orbital

Kagome lattice with = 3.75, ,=0,pp =2.5, andpp =0. (e) Same as (d) with strong exchange splitting in the Kagome bands wifid = 5

arrows indicate the spin-up and -down channels. (f) Representative fM2B)g un which HAB molecules and Cu ions form the honeycomb and
Kagome lattices, respectively. The dashed rhombus indicates the unit cell in (c) and (f). The orange and blue bands are the sub-bands of t
honeycomb and Kagome lattices, respectively.

family of Lieb lattice materials that host intrinsic topologicadf the two can be selectively populated around the Fermi level
properties have been demonstrated in phthalocyanine-baskgbending on the electrdling. This has been widely observed
MOFs, MPc-MOF%. The crystal structure of MPc-MOFs has in various MOFs/COFs, as we demonstrated in the previous
the desired Lieb lattice geometry, where the corner- and edgections. There are more complex scenarios when there is a
center sites are occupied by the MPc ligand and the benzesteong coupling between the two sublattices electronically and/
ring, respectivelifigure ). The conjugatedelectrons of Pc  or magnetically.

and benzene ligands contribute to the electronic Lieb lattice,To reveal the exotic bands associated with CHK lattices, one
while metal ions in the center of MPc provide the spin degree oAn construct a single-orbi@HK lattice Hamiltonian:
freedom responsible for their interesting magnetic properties.

Due to a large E between Pc and benzene ligands and a stronig(K) = mhk Hy

hybridization (2NN hoppinty) between neighboring benzene . S .
; : ] : honeycomb, Kagome subtatiHamiltonian, and their
ligands, the Lieb band structure of MPC-MOFs is also stronql teraction, respectively. For negligible intersublattice inter-

distorted Figure f). Nevertheless, their topological propertles%ction Hre= 0), H(K) is simply block-diagonalized iHig(eq

H
h hki whereH,, H,, and H,, denote the

that related to thil-point band degeneracy are conserved, an andH, (eq §, leading to two subsets of honeycomb Dirac

the Fermi level is located right in the gap between the botto Lnds and Kacome bands. respectivelv. Depending on the on-
Dirac and middleat band, rendering MPc-MOFs an intrinsic i deg bet  1esp d||—|v t);\ i P Ibgt ¢
topological insulator. Through element substitution and/o Ite énergy derences be weeh, andH,, the two SUDSEts o

ands may overlap with each other, as shofigure 6.

strain engineering that tunels to close the gap, topological . . : ; ; .
phase transition among various topological states, e.g., QSH Emafes“”g'y’ thelr band crossing points will fc_)rm a nodal ring
QAH states, has also been demonsffated. arqund the point, an_d remain robust for relatively ylfq@k
This nodal-ring semimetal state has bS%en found in a carbon
nitride COF, GN,, as shown iRigure ¢c).”” Its nodal ring is
COMBINED HONEYCOMB AND KAGOME LATTICE located right at the Fermi level, and the two subsets of Dirac and
Because of the same unit cell shared by honeycomb and Kagdfagome bands are attributed to MOs formed by N and C atoms
lattices, and the latter is the line graph of the former, the two can the sub honeycomb and Kagome lattices, respectively. The
be combined in one lattic&igure @), named combined topological nodal ring is protected by the r@ational
honeycombKagome (CHK) lattice for convenience. In symmetry together with the negligible SOC of C and N atoms.
principle, all the combinations of honeycomb systé&msiia If the subhoneycomb lattice hapa) orbital basisH,
3 and Kagome systemsFigure 4could be realized in real takes the form @fg 4and then the CHK lattice will host either
material systems. Indeed, such a CHK lattice exists in matmyo subsets of four and three bands or seven overlapping bands
MOFs and COFs, where the two sublattices are occupied kth a nodal ring, as showrigure @, depending on the on-
di erent organic ligands and/or metal ions, respetlively.site energy derence betwedt, andH,. A more complicated
When the interaction between the two sublattices is weak, eitlsgenario occurs whét, and H, represent two dérent
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characteristic electrons, e.g., localemdlitinerant electrons. AUTHOR INFORMATION

One example of a band structure dithectronH, and -
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