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CONSPECTUS:Metal�organic and covalent�organic frameworks (MOFs/COFs) have
been extensively studied for fundamental interests and their promising applications, taking
advantage of their unique structural properties, i.e., high porosity and large surface-to-
volume ratio. However, their electronic and magnetic properties have been somewhat
overlooked because of their relatively poor performance as conductive and/or magnetic
materials. Recent experimental breakthroughs in synthesizing two-dimensional (2D)� -
conjugated MOFs/COFs with high conductivity and robust magnetism through doping
have generated renewed and increasing interest in their electronic properties. Meanwhile,
comprehensive theoretical studies of the underlying physical principles have led to
discovery of many exotic quantum states, such as topological insulating states, which were
only observed in inorganic systems. Especially, the diversity and high tunability of MOFs/
COFs have provided a playground to explore novel quantum physics and quantum
chemistry as well as promising applications.
The band theory has empowered us to understand the most fundamental electronic properties of inorganic crystalline materials,
which can also be used to better understand MOFs/COFs. The� rst obvious di� erence between the two is that instead of atomic
orbitals residing at lattice sites of inorganic crystals, molecular orbitals of organic ligands are predominant in MOFs/COFs. The
second key di� erence is that usually all atomic orbitals in an inorganic crystal are subject to one common group of lattice symmetry,
while atomic orbitals of metal ion and molecular orbitals of di� erent organic ligands in MOFs/COFs belong to di� erent subgroups
of lattice symmetries. Both these di� erences will impact the band structure of MOFs/COFs, in particular making it more complex.
Consequently, which subset of bands are of most importance depends strongly on the location of Fermi level, i.e., electron counting
and charge doping. Furthermore, there are usually two types of characteristic electrons coupled in MOFs, i.e., strongly correlated
localizedd andf electrons and di� usivesandp electrons, which interplay with lattice, orbital, and spin degrees of freedom, leading to
more exotic topological and magnetic band structures.
In this Account, we present an up-to-date review of recent theoretical developments to better understand the exotic band structures
of MOFs/COFs. Starting from three fundamental 2D lattice models, i.e., honeycomb, Kagome, and Lieb lattices, exotic Dirac and
� at bands as well as the intriguing topological quantum states they host, e.g., quantum spin Hall and quantum anomalous Hall states,
are outlined. In addition to the single-lattice models, we further elaborate on combined lattice model Hamiltonians, which give rise
to overlapping bands hosting novel quantum states, such as nodal-line Dirac semimetal and unconventional superconducting states.
Also,� rst-principles predictions of candidate MOFs/COFs that host these exotic bands and hence quantum phases are reviewed,
which greatly extends the pool of materials beyond inorganic crystals for hosting exotic band structures.
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theoretical report of Lieb lattice realization in COFs and its
Stoner ferromagnetism.

� INTRODUCTION
Electronic band structure essentially describes the relationship
between electron energy and wavevector, i.e., momentum, called
the dispersion relation. For a free electron in vacuum, its wave
function takes the form of a plane wave� (r�,t) = Aei(kr��� t), which
naturally leads to a parabolic dispersionE(k) � k2. For an
electron in crystals, its wave function is modulated by the
periodic crystal potential into the Bloch wave function� (r�,t) =
� (r�,t) u(r�), whereu is a periodic function of crystal lattice. In
materials with a weak crystal� eld of level splitting, such as in
metals, electrons are nearly free with a continuous energy
spectrum (band); while in those with a strong crystal� eld, such
as in semiconductors and insulators, electrons become localized,
having a gapped energy spectrum with certain range of
forbidden energies (band gap). Di� erent from free electrons
with a constant rest mass (m0), electrons in crystals behave like
quasi-particles, whose low-energy excitations depend on
electron�ion and electron�electron interactions, manifesting
in di� erent band dispersions and e� ective masses (m*). In
general, the band dispersion in almost all crystals keeps the
“normal” parabolic function, i.e.,E(k) � k2, albeit with a di� erent
coe� cient, i.e., e� ective mass (Figure 1a).

It is noted that considering the special relativity e� ect, the
dispersion relation of a free electron in vacuum becomes linear,
E(k) � k (Figure 1b), i.e., the solution of the Dirac equation
instead of the Schro�dinger equation. Surprisingly, an analog of
such “exotic” linear band dispersion (Dirac band) was
discovered in 2005 in graphene,5 a two-dimensional (2D)
crystal with a honeycomb lattice, although the theoretical
calculation of its Dirac band was already conducted early in
1947.6 Also, it has been theoretically shown that even a
completely nondispersive� at band,7 i.e.,E(k) � k0 (Figure 1c),
may arise in certain lattices with special symmetry, such as 2D
Kagome and Lieb lattices.8�11 The topological� at band is
formed by phase cancellation of Bloch wave functions, i.e.,
destructive quantum interference7 leading to compact localized
states characterized with canceling outward lattice hopping, as
illustrated inFigure 2, which is distinctively di� erent from the
trivial � at band, formed by localized dangling bond without
hopping.12 Such exotic band structures endow electrons with
unusual properties, especially novel quantum states. The linear-
dispersive Dirac bands have massless electrons like a photon

(Figure 1b), while the nondispersive� at bands host electrons
with an in� nite mass (Figure 1c). The completely quenched
electron kinetic energy in a� at band renders naturally a strongly
interactive and correlated quantum system, because any small
� nite interaction energy is still much larger than“zero” kinetic
energy.

Furthermore, both Dirac and� at bands have inherently a so-
called nontrivial band topology.13The mathematical concept of
topology is used to classify di� erent manifolds that cannot be
“continuously deformed” into each other. Similarly, band
topology is introduced to classify di� erent band structures that
cannot be“adiabatically connected” with each other.14One may
imagine when atoms were brought together to form solids,
atomic levels would spread to form bands. In general, an
insulating solid is a normal insulator of trivial band topology if it
can be adiabatically connected (without gap closure or band
inversion) to the“atomic limit”; otherwise, it is a topological
insulator (TI) characterized with a spin�orbit coupling (SOC)
gap.14 If the degeneracy of the band crossing point, e.g., the
Dirac point, is protected by some crystalline symmetries in the
presence of SOC, then the solid is a topological semimetal. The
band topology can be identi� ed by calculating its topological
invariant, and a nonzero invariant means that as the phase of
electron Bloch wave function (Berry phase)15 evolves in the
parameter space of momenta, it changes integer times of� . This
translates into a quantized and spin selective Hall conductivity,
in analogy to the quantum Hall e� ect where the external
magnetic� eld imposes a topological phase evolution of the wave
function of 2D free electron gas, where the mathematical
concept of topology was� rst used in the context of physics
condensed matter.16 For this reason, topological materials, i.e.,
materials with nontrivial band topology like Dirac and� at bands,
hold promising applications in quantum information and
computing as well as spintronics devices.

The discovery of graphene has fostered an ever-growing� eld
of 2D materials, including 2D topological and quantum
materials.17,18 In this Account, we will focus on reviewing
recent studies of 2D organic topological and quantum materials,
in particular MOFs/COFs featured with topological Dirac and
� at bands, which are sometimes called Dirac and� at-band
materials.19�21 The readers are referred to some recent review
articles on related topics, in particular inorganic quantum
materials, for more information.22,23 The Dirac and� at bands
generally arise in 2D lattices having special lattice and orbital
symmetries that warrant some desirable phase cancellation of
Bloch wave functions. The Dirac band in graphene is derived

Figure 1.Illustrations of band structures. (a) Usual parabolic bands
with a � nite electron e� ective mass. Exotic bands: (b) linear Dirac
bands with a zero e� ective mass and (c)� at band with an in� nite
e� ective mass.

Figure 2.Localized eigenstate of the� at band in real space of a (a)
Kagome lattice and (b) Lieb lattice. The blue and red colors indicate the
positive and negative phase of the nodes of wave function at lattice sites.
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from inversion symmetry between two sub trigonal lattices and
C3 rotational symmetry; the� at band usually forms in a
geometrically frustrated lattice, such as Kagome (corner-shared
triangle) and Lieb (edge-centered square) lattices,8,9 where
complete phase cancellation of lattice wave functions is
warranted. There is a very large family of 2D MOFs/COFs,
and many of them may satisfy such symmetry requirements,
especially considering the extraordinary diversity of coordina-
tion chemistry that will provide countless combinations of metal
ions and organic linkers, to o� er a rich variety of lattice, orbital,
and spin symmetries.24,25 This makes MOFs/COFs an ideal
material platform to realize the exotic Dirac and� at bands.

In the following, we will start with introducing a generic tight-
binding (TB) model in three basic 2D lattices, i.e., honeycomb,
Kagome, and Lieb lattices, with single/multiple orbital hopping,
to demonstrate the formation mechanisms of Dirac and� at
bands as well as their associated intriguing quantum states, e.g.,
quantum spin Hall (QSH)17 and quantum anomalous Hall
(QAH)26 states, and� at-band ferromagnetism induced by high
density of state and enhanced correlation e� ect when the� at
band is partially� lled.8 We also discuss brie� y the combined
honeycomb and Kagome lattice model and resulting quantum

states. Furthermore, original� rst-principles calculations that

have predicted the selected MOFs/COFs hosting the Dirac

and/or � at bands will be reviewed with the features of their

quantum states analyzed. Lastly, we discuss the experimental

challenges in synthesizing large-sample size of crystalline

MOFs/COFs and further characterizing their topological

properties.

� TIGHT-BINDING MODEL

The Hamiltonian of a generic TB model with single-orbital (sor

pz) or multiorbital [(px,py) or (s,px,py)] hopping in a lattice can

be expressed as

Figure 3.Illustrations of a honeycomb lattice consisting of (a) single orbital, (d) (px,py) orbitals, and (g) (s,px,py) orbitals on each lattice site. (b) The
Dirac bands without (black) and with (red) SOC of (a) with� = 0 and� = 0.2t/ �3. The inset in (b) shows the� rst Brillouin zone of a honeycomb
lattice. (c) Representative MOF hosting Dirac bands.1 (e) Four bands without (black) and with (red) SOC of (d) with� = 0,pp� = 0, and� = 0.1pp� .
(f) Representative MOF hosting four bands.2 (h) Enantiomorphic Kagome bands without (black) and with (red) SOC of (c) with� = 0,ss� = �2pp� ,
sp� = 2pp� , pp� = 0, and� = 0.2pp� . (i) Representative COF hosting enantiomorphic Kagome bands. The dashed rhombus indicates the unit cell in
(a), (c), (f), and (i).
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where� i	 is the on-site energy of the	 orbital at theith site.ci	
‚ =

(ci	 �
‚ ,ci	 �

‚ ) and ci	 = (ci	 � ,ci	 � ) are electron creation and
annihilation operators of the	 orbital at theith site, respectively.
�� i,j�� , �� i,j�� , and��� i,j��� denote the nearest-neighbor (NN),
second NN (2NN), and third NN (3NN) hopping with
hopping parameterst, t2, and t3, respectively, which are
expressed within the Slater�Koster scheme.27 The third term
is the 2NN intrinsic SOC with magnitude� . � z is the z-
component of Pauli matrix, andd�

ki is the vector from sitei to site
k. The last term is the exchange� eld with magnitudeM. For the
lattice model with (px,py)- or (s,px,py)-orbital hopping, the third
term will be replaced with the on-site SOC expressed as� L�·� �,
whereL�is the angular momentum operator and� �are the Pauli
matrices. By transforming the Hamiltonian (eq 1) into
momentum space, one obtains thek-space Hamiltonian

H k
H

H( ) 0

0

�
�

� = *
�L

�N
�M�M�M�M

�\

�^
�]�]�]�]. The TB model is equivalent to the

extended Hu�ckel model adopting periodic boundary condition,
with a proper transformation of lattice hopping parameters
between the two models. Later we will discuss the exact
expressions of� andH0 for each lattice type.

To characterize band topology, for system with inversion
symmetry without exchange� eld, the topological invariantZ2
number28 can be derived based on the parity at time-reversal
invariant momenta that classi� es topologically trivial (Z2 = 0) or
nontrivial (Z2 = 1) states.29 The nontrivial system represents a
2D TI exhibiting the QSH e� ect, characterized with two helical
edge states of quantized spin Hall conductivity. For system with
broken time reversal symmetry, where the exchange� eld
separates two spin channels with only one spin component at the
Fermi level, the Chern number is used to characterize the
topology, which is de� ned as30
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is the Berry curvature,

A k i n n( ) k k k= Š�
�

� �
is the Berry connection, and|nk� is a

normalized wave function of the respective band. The nontrivial
system of nonzero Chern number represents a Chern insulator
(CI) exhibiting the QAH e� ect, characterized with the Chern
numbers of chiral edge states with quantized charge and spin
Hall conductivity. For TIs, the Chern number may be calculated
for each spin component of bands (C� andC� ), and the spin
Chern number,C C C( )s

1
2

= Š� 	 , may be used loosely in
equivalence with theZ2 number.

� HONEYCOMB LATTICE
The model of single-orbital hopping in a honeycomb lattice is
shown inFigure 3a. Itsk-space Hamiltonian is
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wherekn is de� ned ask k an n= �· � with three NN hopping vectors

( )a x y1
3
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1
2

� = Š 
Š 
 ,a y2� = 
, and ( )a x y3
3

2
1
2

� = 
Š 
 , labeled in

Figure 3a, which is also adopted in the following discussions. As
originally developed for graphene, this simple model gives rise to
two Dirac bands, as shown inFigure 3b. Further inclusion of
SOC opens a nontrivial gap at the Dirac points,K(K�), changing
the system from a topological semimetal into a TI.17 The two
Dirac bands have opposite spin Chern numbers. The� rst
organic TI (OTI) with Dirac bands in a honeycomb lattice was
theoretically predicted by Wang et al., in the MOF of Bi2(C6H4)3
and Pb2(C6H4)3.

1 The Bi ions are located at the honeycomb
lattice sites (Figure 3c), which give rise to the Dirac bands and a
SOC gap of 43 meV at the Dirac point. The nontrivial topology
of Bi2(C6H4)3 has been theoretically con� rmed by the edge
states and nonzeroZ2 number. However, the topological gap in
Bi2(C6H4)3 is not intrinsic, because it is not aligned with the
Fermi level. Electron doping is needed to move the Fermi level
into the gap. This original work has since stimulated a number of
subsequent theoretical predictions of OTIs, such as replacing
the metal ions with Pd,1 In,2 Tl,31 Mn,32,33 Fe,33 and V.33 We
note that there was a later theoretical study of Pb2(C6H4)3 MOF
showing an antiferromagnetic ground state and topological
phases;34 the di� erence is likely due to di� erent functional used
in the calculation. Recently, a COF formed by triangulenes35has
been experimentally synthesized36and theoretically predicted to
be Dirac semimetal.37,38

Besides the single-orbital honeycomb model, there can be
multiple orbitals on each lattice site, such as two (px,py)-orbitals,
as illustrated inFigure 3d. The matrix elements� andH0 of the
Hamiltonian are expressed as

H
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(4)

Assuming a vanishingpp� (usually much smaller thanpp� ), this
TB model gives four bands consisting of two Dirac bands
sandwiched by two� at bands (Figure 3e). The Dirac points at
K(K�) and two band touching points at� will be gapped by
SOC. All three gaps are topologically nontrivial, as characterized
by their band-resolved spin Chern numbers from top to bottom:
1, 0, 0,�1.39�41 This TB model has been realized theoretically
� rst in MOFs of In2(C6H4)3 (Figure 3f)2 and then
Tl2(C6H4)3,

31 in which the four bands near the Fermi level are
predominantly contributed bypx andpy orbitals of metal ions.
When the� at band is partially� lled, it is subjected to a spin
polarization due to its strong Coulomb repulsion, and the
fractional Chern insulator state could be achieved.2

Another intriguing system with multiorbitals per site in a
honeycomb lattice is the (s, px, py)-orbital hopping model, as
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illustrated inFigure 3g. The corresponding� and H0 are
expressed as
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By simply settingpp� = 0, one obtains the enantiomorphic
Yin�Yang Kagome bands,42 as shown inFigure 3h. With SOC,
the band-resolved spin Chern numbers from top to bottom are
1, 0,�1, 1, 0,�1. It is worth noting that the spin Chern numbers
of the two sets of Kagome bands are opposite of each other
(named as Yin�Yang Kagome bands)42 and especially the two

� at bands separated by the Fermi level have opposite signs,
which spawns various intriguing excited-state quantum
phenomena, such as the excited quantum Hall e� ect and giant
circular dichroism.42,43 The COF formed by graphene nano-
� akes (Figure 3i) may host such a band structure based on the (s,
px,py)-orbital honeycomb model. The molecular orbitals (MOs)

Figure 4.Illustrations of lattice models consisting of single orbital in (a) Kagome, (d) coloring-triangle (CT), and (g) diatomic Kagome lattices. (b)
Kagome bands without (black) and with (red) SOC of (a) with� = 0 and� = 0.3t. (c) Representative MOF hosting Kagome lattice bands.3 (e) Kagome
bands without (black) and with (red) SOC of (b) with� = 0,t2 = 0, and� = 0.3t. (f) Representative MOF hosting Kagome bands of a CT lattice.44(h)
Enantiomorphic Kagome bands without (black) and with (red) SOC of (c) with� = 0,t2 = 0,t3 = 0.3t, and� = 6t/ �3. (i) Representative MOF hosting
enantiomorphic Kagome bands.45The� rst Brillouin Zone of a Kagome lattice is the same as that of a honeycomb lattice, as represented by the inset of
Figure 1b. The dashed rhombus indicates the unit cell in (a), (c), (d), (f), (g), and (i).

Accounts of Chemical Research pubs.acs.org/accounts Article

https://dx.doi.org/10.1021/acs.accounts.0c00652
Acc. Chem. Res.2021, 54, 416�426

420

https://pubs.acs.org/doi/10.1021/acs.accounts.0c00652?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00652?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00652?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.accounts.0c00652?fig=fig4&ref=pdf
pubs.acs.org/accounts?ref=pdf
https://dx.doi.org/10.1021/acs.accounts.0c00652?ref=pdf


of the organic ligand near the Fermi level have the same shape
and symmetry as the atomics, px, and,py orbitals, which serve
e� ectively as the“super-atomic” orbital basis to form the
enantiomorphic Yin-Yang Kagome bands.

� KAGOME AND RELATED LATTICES
The single-orbital hopping in a Kagome lattice is shown in
Figure 4a. Itsk-space Hamiltonian is

H k

t k t k

t k t k
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(6)

which yields three bands with one� at band located either below
or above two Dirac bands depending on the sign (positive vs
negative) of lattice hopping (Figure 4b). Similarly, after
considering SOC e� ect, the Dirac points atK(K�) and band
touching point at� will be gapped, leading to TI states. For both
spins, the� at band and bottom Dirac band have a nonzero spin
Chern number of opposite sign and the middle Dirac band has a
zero spin Chern number.

The realization of Kagome bands in MOFs/COFs has been
extensively studied since 2013. The pioneering work is the
theoretical prediction of QSH e� ect in Ni3(C6S6)2,

3 which
consists of three Ni ions being located at Kagome sites, as shown
in Figure 4(c). It is noted that based on a bottom-up gas�liquid
interfacial reaction approach, a monolayer of Ni3(C6S6)2 has
been synthesized in the same year.46 Ni3(C6S6)2 was shown to
have one� at band above two Dirac bands near the Fermi level;
its nontrivial topology were demonstrated with topological edge
states and quantized spin Hall conductivity.3 Based on the same
design principle demonstrated in Ni3(C6S6)2, several other
MOFs47�49 have been subsequently proposed to possess the
topological Kagome bands, which greatly enriches the materials
platform for experimental con� rmation. An experiment work has
indicated the existence of� at band in a ferromagnetic MOF
Kagome lattice of Cu(1,3-bdc) and suggested possible
topological magnon state.50

Interestingly, another lattice, called coloring-triangle (CT)
lattice (Figure 4d), has been shown to have the identical
Kagome bands as that of a Kagome lattice, as the two lattice
Hamiltonians can converted into each other via a unitary
transformation.51 Thek-space Hamiltonian of the CT lattice is

Figure 5.Band structure evolution in Lieb lattices. (a) Lieb lattice structure with one corner and two edge-center states.t, t2, 
 , and� Edenote NN
hopping, 2NN hopping, dimerization term, and on-site energy di� erence, respectively. (b�f) Band structures of the Lieb lattice with their
corresponding parameters indicated with each plot. (g) COF with a strained Lieb lattice,sp2-COF Py(BCSB)2, whose corner and edge-center sites are
made of Py (orange rectangle) and BCSB (blue) ligand, respectively. (h) Same as (g) for MPc-MOF, with Pc and benzene molecules make up the
corner and edge-center sites, respectively.
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The NN hopping of intratriangle and intertriangle in the CT
lattice are indicated byt andt2[seeFigure 4(d)]. By introducing
a 2D periodic potential to physically maket2 vanishing, the CT
lattice can host perfect Kagome bands, as shown inFigure 4(e).
The MOF of Cu2(C8N2H4)3 [Figure 3(f)] with a geometry of
CT lattice has been shown to be a QAH insulator.44 Its
electronic band structure and topological properties can be well
explained by the physics of Kagome bands of the CT lattice.

Another type of Kagome lattice is the diatomic Kagome lattice
consisting of two atoms sitting on each Kagome lattice site, as
shown inFigure 4g. The corresponding� andH0 are
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respectively, where ( )d d
a a
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. Here, d is the displacement of the two

dumbbell atoms away from the Kagome site, as indicated in
Figure 4g. For simplicity, one can neglectt2, which will not a� ect
the band structure qualitatively in a wide range of parameter
space.42The TB band structure is shown inFigure 4h, consisting
of a pair of enantiomorphic Kagome bands. With SOC, the two
� at bands have the opposite sign of spin Chern numbers,
originating from the same physics as described above by the TB
model of (s, px, py)-orbital hopping in a honeycomb lattice.

To realize the Yin�Yang Kagome bands in a diatomic
Kagome lattice, the longer-distance cross hopping between two
sub-Kagome lattices needs to be larger than the shorter-distance
interatomic hopping. This intriguing lattice hopping condition
makes the suitable diatomic-Kagome lattice materials rather
limited. It is noted that in a Kagome lattice with a dual of frontier
� -orbitals per lattice site, the Yin-Yang Kagome bands have been
disclosed in an anilato-based MOF Al2(C6O4Cl2)3 [Figure
4(i)]. 45 The topological property of Al2(C6O4Cl2)3 has been
theoretically demonstrated by the presence of topological edge
states and nonzeroZ2 number. The anilato-based MOFs not
only signi� cantly expands the pool of materials hosting
enantiomorphic Yin-Yang Kagome bands, but also provides a
new platform to study� -orbital originated quantum chemistry
and physics.

� LIEB LATTICE
In addition to the Kagome lattice, another 2D lattice that hosts
both Dirac and� at bands is the Lieb lattice, i.e., the edge-

centered square lattice (Figure 5a). The band topology of the
two lattices is closely related because they are both line-graph
lattices and interconvertible via strain.52Although with di� erent
lattice symmetries, the two can be viewed sharing the same
structural con� guration, i.e., one corner site and two edge-center
sites. Di� erent from the Kagome lattice that has been realized in
many real material systems, materials that host Lieb band
structure are quite rare, mainly because the� at band can only
survive in an ideal Lieb lattice with the same on-site energies for
the corner and edge-center sites of di� erent bonding environ-
ment and negligible 2NN lattice hopping. This can be
understood by inspecting closely itsk-space Hamiltonian,
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(9)

where x1	 � = 
and y2	 � = 
, respectively. It generally should have
two di� erent on-site energies (� Eand� C = � E+ � E) for the edge-
center and corner site, respectively, and two di� erent lattice
hoppings (the NN hoopingt between the corner and edge-
center sites vs the 2NN hoppingt2 between the edge-center
sites), according to itsD4h symmetry. Ideal Lieb band structure
with one perfect� at band crossing the middle of Dirac bands
(Figure 5b) arises only if� E = � C andt2 = 0, which is unlikely, if
not impossible, to be the case in real materials. Nonzero� E
leads to an energy gap opening at theM point either below or
above the� at band, depending on the sign of� E(Figure 5c for
negative� E), and nonzerot2 induces band dispersion in the
middle� at band (Figure 5e). When a dimerization interaction:t
� t ± 
 is present, two gaps open below and above the� at band
(Figure 5d). Both� Eand
 represent certain degrees of electron
inhomogeneity in the system. Because of the nonvanishing� E,

 , andt2, real materials can only ful� ll a nonideal Lieb lattice,
whose band structure is always distorted or disguised (Figure
5f). For this reason, a Lieb band structure and hence a Lieb
lattice can be easily overlooked.

The� rst Lieb lattice material has been recently demonstrated
in an sp2 carbon-conjugated COF (sp2-COF),4,53 which was
experimentally discovered to host stable ferromagnetism upon
hole doping.54 The molecular structure is shown inFigure 5g,
which can be viewed as an assembly of pyrene (Py) and 1,4-
bis(cyanostyryl)benzene (BCSB) ligands that occupy the corner
(blue ellipse) and edge-center sites (red ellipse), respectively, of
a Lieb lattice which is slightly strained along the diagonal
direction. The Lieb nature of thesp2-COF lattice, Py(BCSB)2, is
revealed by analyzing the molecular orbitals of the two building
units, i.e., Py and BCSB, and the corresponding orbital-resolved
bands. It is found that the electronic band structure is strongly
modi� ed by the apparent nonvanishing� Edue to the di� erent
on-site energies of the MOs of Py and BCSB ligands, and an
extra dimerization term,
 , arising from the structural distortion
of the Py(BCSB)2. Consequently, the usual highly dispersive
Dirac band becomes highly localized driven by the strong
electron inhomogeneity, i.e., large� E and
 .4,53 Such strong
electron localization further induces spin polarization upon hole
doping as observed experimentally,54 which can be further
enhanced by eliminating interlayer interaction and/or increas-
ing the doping concentration.4,53

The topological properties of Py(BCSB)2 related to its� at
band has been studied,53which however requires a large amount
of doping to shift to the Fermi level. Soon afterward, another
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family of Lieb lattice materials that host intrinsic topological
properties have been demonstrated in phthalocyanine-based
MOFs, MPc-MOFs.55 The crystal structure of MPc-MOFs has
the desired Lieb lattice geometry, where the corner- and edge-
center sites are occupied by the MPc ligand and the benzene
ring, respectively (Figure 5h). The conjugated� electrons of Pc
and benzene ligands contribute to the electronic Lieb lattice,
while metal ions in the center of MPc provide the spin degree of
freedom responsible for their interesting magnetic properties.
Due to a large� Ebetween Pc and benzene ligands and a strong
hybridization (2NN hopping,t2) between neighboring benzene
ligands, the Lieb band structure of MPc-MOFs is also strongly
distorted (Figure 4f). Nevertheless, their topological properties
that related to theM-point band degeneracy are conserved, and
the Fermi level is located right in the gap between the bottom
Dirac and middle� at band, rendering MPc-MOFs an intrinsic
topological insulator. Through element substitution and/or
strain engineering that tunes� E to close the gap, topological
phase transition among various topological states, e.g., QSH and
QAH states, has also been demonstrated.55

� COMBINED HONEYCOMB AND KAGOME LATTICE
Because of the same unit cell shared by honeycomb and Kagome
lattices, and the latter is the line graph of the former, the two can
be combined in one lattice (Figure 6a), named combined
honeycomb�Kagome (CHK) lattice for convenience. In
principle, all the combinations of honeycomb systems inFigure
3 and Kagome systems inFigure 4could be realized in real
material systems. Indeed, such a CHK lattice exists in many
MOFs and COFs, where the two sublattices are occupied by
di� erent organic ligands and/or metal ions, respectively.20

When the interaction between the two sublattices is weak, either

of the two can be selectively populated around the Fermi level
depending on the electron� lling. This has been widely observed
in various MOFs/COFs, as we demonstrated in the previous
sections. There are more complex scenarios when there is a
strong coupling between the two sublattices electronically and/
or magnetically.

To reveal the exotic bands associated with CHK lattices, one
can construct a single-orbital CHK lattice Hamiltonian:

H k
H H
H H( ) h hk

hk k
� = *

�L

�N
�M�M�M�M

�\

�^
�]�]�]�], whereHh, Hk, and Hhk denote the

honeycomb, Kagome sublattice Hamiltonian, and their
interaction, respectively. For negligible intersublattice inter-
action (Hhk = 0),H(k�) is simply block-diagonalized intoHh (eq
3) andHk (eq 6), leading to two subsets of honeycomb Dirac
bands and Kagome bands, respectively. Depending on the on-
site energy di� erences betweenHh andHk, the two subsets of
bands may overlap with each other, as shown inFigure 6b.
Interestingly, their band crossing points will form a nodal ring
around the� point, and remain robust for relatively weakHhk.
This nodal-ring semimetal state has been found in a carbon
nitride COF, C9N4, as shown inFigure 6(c).56 Its nodal ring is
located right at the Fermi level, and the two subsets of Dirac and
Kagome bands are attributed to MOs formed by N and C atoms
on the sub honeycomb and Kagome lattices, respectively. The
topological nodal ring is protected by the C2 rotational
symmetry together with the negligible SOC of C and N atoms.

If the subhoneycomb lattice has a (px, py) orbital basis,Hh
takes the form ofeq 4and then the CHK lattice will host either
two subsets of four and three bands or seven overlapping bands
with a nodal ring, as shown inFigure 6d, depending on the on-
site energy di� erence betweenHh andHk. A more complicated
scenario occurs whenHk and Hh represent two di� erent

Figure 6.Band structure of the combined honeycomb and Kagome (CHK) lattice. (a) Ball-and-stick model of CHK lattice (blue and orange spheres
show honeycomb and Kagome lattice, respectively). (b) Band structure resulting from the overlapping single-orbitalHh andHk sub-bands, forming a
nodal ring at the Fermi level with� h = 1.985|t| and� k = �|t|. (c) Representative COF, C9N4, where molecular orbitals formed by N and C atoms
construct the honeycomb and Kagome lattices, respectively.56 (d) Band structure with nonmagneticpx,y-orbital honeycomb lattice and single-orbital
Kagome lattice with� h = 3.75t, � k = 0,pp� = 2.5t, andpp� = 0. (e) Same as (d) with strong exchange splitting in the Kagome bands with M = 5t. The
arrows indicate the spin-up and -down channels. (f) Representative MOF, Cu3(HAB)2, in which HAB molecules and Cu ions form the honeycomb and
Kagome lattices, respectively. The dashed rhombus indicates the unit cell in (c) and (f). The orange and blue bands are the sub-bands of the
honeycomb and Kagome lattices, respectively.
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characteristic electrons, e.g., localizeddand itinerant� electrons.
One example of a band structure withd-electronHk and � -
electronHh is shown inFigure 6e, where spin-up and -down
Kagome bands split, with the spin-degenerate (px, py) honey-
comb bands located in between. Such coexistence of localized
spins and conducting electrons is known in many strongly
correlated systems, e.g., Kondo and heavy Fermion system,57,58

which yields a range of intriguing quantum phenomena, such as
unconventional superconductivity and giant magnetoresistance
(GMR).59,60

One prototypical material candidate that hosts the afore-
mentioned hybrid system between localized and di� use
electrons in two sublattices is demonstrated in an experimentally
synthesized MOF,61 Cu-hexaiminobenzene [Cu3(HAB)2],
where HAB ligands and Cu ions form the honeycomb and
Kagome lattices, respectively, as shown inFigure 5f. Cu2+ ions
with d9 electronic and spin-1/2 con� guration prefer anti-
ferromagnetic (AFM) coupling, while the� electrons of HAB in
a� at band located around the Fermi level favor a ferromagnetic
(FM) state. As such, bothd and� electrons are frustrated and,
remarkably, coupled through a Hund’s type FM coupling,
leading to an intriguing competition between local spins and
conjugated electrons. This competition may be tuned through
either charge doping and/or Coulomb repulsion, which yields a
complex quantum phase diagram that spans over quantum spin
liquid, Fermi liquid and� at-band ferromagnetic states. These
exotic states might be either directly observed through scanning
tunneling microscopy measurement or indirectly revealed by
GMR measurement via the existence of magnetic polarons.61

� SUMMARY AND PERSPECTIVES
Beyond the three basic 2D lattices that we have discussed,
various exotic topological bands have also been shown in
MOFs/COFs with other lattice symmetries, e.g., 2D square and
triangle, and 3D molecular crystals.62�65 Experimental e� orts
have been inspired to verify the theoretical predictions using
di� erent approaches.66,67 Although some promising MOFs/
COFs have been synthesized and analyzed experimen-
tally,46,50,54,68 the de� nite and unambiguous evidence of
topological character, such as nontrivial topological edge state
and quantized edge conductivity, has yet to be con� rmed, likely
due to small crystalline sample size, low sample quality, and/or
negative substrate in� uence.66,67 On the other hand, if
con� rmed, MOFs and COFs have some distinct advantages
over inorganic counterparts, e.g., long spin coherence time and
high tunability in both structural symmetry and charge doping,
which may reveal new physical phenomena and facilitate their
applications in organic electronics and spintronics.69,70E� orts in
growing large-area and high-quality MOFs/COFs, including on
weakly interacting substrate, are widely ongoing. Also, other
lines of active experimental e� orts have been devoted to
investigating strongly correlated quantum states in MOFs/
COFs, such as superconductivity,71,72 frustrated quantum spin
liquid,73and two-level quantum information systems,74,75where
notable progress has been made. We note that the study of exotic
band structures and intriguing quantum states in MOFs/COFs
is still at its infancy and much more remains to be explored. We
envision a rapid growth of this emerging� eld in the near future
with ample excitement awaiting ahead.
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