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We obtain important energy parameters for understanding growth kinetics of a faceted Pb mesa. Specif-
ically, extensive calculations of diffusion barriers are performed for a Pb adatom: (i) on a flat Pb(111) or
Pb(001) surface; (ii) crossing a single A- or B-step edge on Pb(111) surface; (iii) crossing a facet–facet
edge between Pb(111) facet and Pb(001) facet, or between Pb(111) facet and Pbð11�1Þ facet; (iv) crossing
a facet–step joint between Pb(001) facet and A-step, or between Pbð11�1Þ facet and B-step, using a mod-
ified embedded atom method. We investigate two different diffusion modes: direct hopping of an ada-
tom, and exchange mechanism between an adatom and substrate atom(s). Direct hopping diffusion is
more favorable over exchange mechanism for an adatom on a flat (111) or (001) surface. Diffusion cross-
ing A-step edge favors direct hopping, while diffusion crossing B-step edge favors exchange mechanism.
For facet–facet or facet–step diffusion, the exchange mechanism is always favorable over direct hopping.
The diffusion barriers obtained here have been used to reasonably explain the intriguing kinetic growth
of a Pb mesa in recent experiments. In addition, we also discuss low-index planes of Pb½�110� crystallo-
graphic zone related to the choices of sidewalls in the formation of a Pb mesa by calculating correspond-
ing surface free energies.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

The key kinetic energy parameters controlling epitaxial growth
of multilayer films or islands are the diffusion barriers, including
the flat-surface diffusion barrier and the step-edge barrier. The
flat-surface diffusion barrier is defined as the energy difference be-
tween energy minimum and saddle point on the minimum energy
path (MEP) of diffusion when an adatom diffuses on an infinite flat
surface. It is sometimes called terrace diffusion barrier because a
terrace with a big enough surface area can often approximate to
an infinite flat surface. The step-edge barrier, also called the Ehr-
lich–Schwoebel (ES) barrier [1,2], represents the extra energy bar-
rier for an adatom descending over a step edge on a surface. The
flat-surface diffusion barrier controls the intralayer mass transport
(i.e., within one atomic layer), while the ES barrier controls the
interlayer mass transport (i.e., from one atomic layer to another).
Furthermore, if a growing three-dimensional (3D) island is faceted
with sharp edges (in contrast to ‘‘continuous” 3D mound), it has
been shown that two forms of adatom diffusion processes may be-
come dominant in controlling the faceted island growth. These are
ll rights reserved.
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diffusing over a facet–facet edge [3] or through a facet–step joint
[4,5].

In order to obtain diffusion barriers, in principle, the density
functional theory (DFT) first-principles method can be used, espe-
cially when the size of system to be studied is small enough. How-
ever, an experimentally observed Pb mesa often involves more
than thousands of atoms [6–14], while it is well-known that the
first-principles method is largely limited to where the number of
atoms of the system to be calculated is less than �500 atoms. From
our recent DFT calculations [15], long range interactions have to be
considered due to the ‘‘liquid-like” behavior of Pb surface. Then,
the calculations for barriers, even for the flat-surface diffusion bar-
rier, require the larger supercells. Therefore, it is very difficult to
use the DFT method to calculate various other key barriers. This
is especially for the step edge, facet–facet edge, or facet–step joint
barriers, because one must use a huge supercell (more than �1000
atoms) to prevent spurious interactions between adjacent replicas.
In this work, we only assume the Pb mesas of interest to be large
enough so that the quantum size effect (QSE) is not important,
i.e., in the classical growth regime. The second nearest-neighbor
modified embedded atom method (2NN MEAM) [16–18], an
empirical extension of the modified embedded atom method
(MEAM) [19–22], has proved a feasible and effective method in cal-
culating various structures of metals [16–18]. Therefore, we choose
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the 2NN MEAM to calculate various possible diffusion paths, and
then obtain corresponding diffusion barriers.

In Section 2, we will briefly describe the formalism of the 2NN
MEAM. Section 3 will give the details of extensive calculations of
diffusion barriers for a Pb adatom (i) on a flat Pb(111) or
Pb(001) surface; (ii) crossing a single A- or B-step edge on the
Pb(111) surface; (iii) crossing a facet–facet edge between
Pb(111) facet and Pb(001) facet, or between Pb(111) facet and
Pbð11�1Þ facet; (iv) crossing a facet–step joint between Pb(001) fa-
cet and A-step, or between Pbð11�1Þ facet and B-step. In these cal-
culations, different diffusion modes are considered: direct hopping
of an adatom, and exchange mechanism between an adatom and
substrate surface atom(s). In addition, before calculating various
diffusion barriers associated with different facets, we will first dis-
cuss low-index planes of Pb½�110� crystallographic zone related to
possible choices of sidewalls in the formation of a Pb mesa, and cal-
culate corresponding surface free energies. In Section 4, we make a
summary.

2. Theoretical method

The description of the 2NN MEAM has been published [16–18],
and in this section, we briefly review this method.

For a unary system, the total energy is approximated as

E ¼
X

i

Ei; ð1Þ

where

Ei ¼ FðniÞ þ
1
2

X
jð6¼iÞ

/ðrijÞ ð2Þ

is the energy contribution from atom i, and the summation is over
all atoms of the system. FðniÞ is the embedding function, ni is the
effective coordination number [22] at atom i, and /ðrijÞ is the
core–core pair interaction between atoms i and j separated by a dis-
tance rij.

In the initial embedded atom method (EAM) [23], the embed-
ding function is the energy to embed an atom into the background
electron sea. The embedding function in the EAM has no analytical
form, and generally is obtained by a cubic spline interpolation from
experimental data. In the MEAM, FðniÞ is expressed in the analyti-
cal form

FðniÞ ¼ aEc
ni

Z1
ln

ni

Z1
; ð3Þ

where a is an adjustable parameter, Ec is the cohesive energy, and
Z1 is the number of nearest neighbors in the perfect bulk crystal.
For an fcc structure, Z1 ¼ 12. In this formulation, FðniÞ has no longer
the physical meaning in the initial EAM, but the name, the embed-
ded-atom, is still retained. Because Eq. (3) is based on the bond-or-
der conservation principle [20,22], FðniÞ can be called the bond-it
order function [22].

The expression of the effective coordination number ni is not
unique [20,22]. In the present work, we use the form

ni ¼
2n0;i

1þ e�Ci
; ð4Þ

where

Ci ¼
X3

h¼1

th
nh;i

n0;i

� �2

ð5Þ

in which th are adjustable parameters, the spherical effective coor-
dination number at atom i is

n0;i ¼
X
jð6¼iÞ

m0;jðrijÞ ð6Þ
and the angular effective coordination numbers at atom i are

n1;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
u

X
jð6¼iÞ

rij;u

rij
m1;jðrijÞ

" #2
vuut ; ð7Þ

n2;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
u;v

X
jð6¼iÞ

rij;urij;v

r2
ij

m2;jðrijÞ
" #2

� 1
3

X
jð6¼iÞ

m2;jðrijÞ
" #2

vuut ð8Þ

and

n3;i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
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X
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vuut ;

ð9Þ

where the index u; v, or w denotes the three Cartesian coordinate
components: x; y, and z, and any summation about u; v, or w is over
all the three components. In Eqs. (6)–(9), the partial effective coor-
dination number mh;jðrijÞ is the contribution to the effective coordi-
nation number ni from atom j, given by

mh;jðrijÞ ¼ exp �bh
rij

re
� 1

� �� �
; h ¼ 0;1;2; and 3; ð10Þ

where bh are adjustable parameters, and re is the first nearest-
neighbor distance in the perfect crystal structure.

The core–core pair interaction between atom i and j is ex-
pressed as

/ðrijÞ ¼ wðrijÞ þ
X
n¼1

� Z2

Z1
Sij

� �n

wðnnrijÞ; ð11Þ

where Z2 is the number of second nearest-neighbor atoms, n is the
ratio of the second nearest-neighbor distance over the first nearest-
neighbor distance in the perfect crystal, Sij is the many body screen-
ing function, and the function

wðrijÞ ¼
2
Z1
½EuðrijÞ � FðnrðrijÞÞ�: ð12Þ

In Eq. (12), the universal function

EuðrijÞ ¼ �Ecð1þ bþ db3Þe�b; ð13Þ

where d is an adjustable parameter, and

b ¼ j
rij

re
� 1

� �
; ð14Þ

with

j ¼

ffiffiffiffiffiffiffiffiffiffi
9BX

Ec

s
; ð15Þ

where B is the bulk modulus, and X is the atomic volume in the per-
fect crystal. nrðrijÞ in Eq. (12) is the reference effective coordination
number, and for fcc or bcc structure, it is written as

nrðrijÞ ¼ Z1m0;jðrijÞ þ Z2Sijm0;jðnrijÞ: ð16Þ

The summation in Eq. (11) is performed until the correct value
of energy is obtained for the perfect crystal structure. In Eqs. (11)
and (16), the many body screening function, Sij, is defined as

Sij ¼
Y
k 6¼i;j

Sijk: ð17Þ

Here, the screening factor Sijk is the contribution to Sij from atom k,
and expressed as a cutoff function

Sijk ¼ fc
C � Cmin

Cmax � Cmin

� �
; ð18Þ

where Cmax and Cmin are adjustable parameters, and



Fig. 1. A schematic faceted fcc mesa with the [111] direction as a symmetry axis.
The six sidewalls of the mesa are ð11�1Þ; ð010Þ; ð�111Þ; ð001Þ; ð1�11Þ, and (100) in
succession. The threefold symmetry of the crystalline planes and orientations are
indicated.

2286 Y. Han et al. / Surface Science 602 (2008) 2284–2294
C ¼ 2ðWik þWkjÞ � ðWik �WkjÞ2 � 1

1� ðWik �WkjÞ2
ð19Þ

with Wik ¼ rik
rij

� �2
, and Wkj ¼

rkj

rij

� �2
.

The cutoff function satisfies

fcðxÞ ¼
1; x P 1;
½1� ð1� xÞ4�2; 0 < x < 1;
0; x 6 0:

8><
>: ð20Þ

All parameters in the above equations can be obtained from the
appropriate experimental measurements or first-principles calcu-
lations. In the present work, our studied system is the Pb mesa,
which has an fcc structure. We use the following parameter set
[18]: the cohesive energy Ec ¼ 2:04 eV, the lattice constant
a ¼ 4:95 Å, the first nearest-neighbor distance re ¼ a=

ffiffiffi
2
p
¼

3:50 Å, the bulk modulus B ¼ 0:488� 1011 N=m2, a ¼
1:01; d ¼ 0:00; b0 ¼ 5:42; b1 ¼ 2:20; b2 ¼ 6:00; b3 ¼ 2:20; t1 ¼ 3:10;
t2 ¼ 3:91; t3 ¼ 1:25; Cmax ¼ 2:08, and Cmin ¼ 0:81. Although these
potential parameters are obtained by fitting the thermodynamic
equilibrium properties, they have been used to calculate not just
thermodynamic quantities (e.g., surface energies, and surface
relaxations) but also the kinetic quantities (e.g., bulk vacancy
migration energy barrier) for Pb, in good agreement with experi-
mental values [18]. In this work, we use these parameters to calcu-
late various surface diffusion barriers, and show that these
parameters are still reasonable.

3. Computational details, results and discussion

3.1. Low-index planes of Pb½�110� zone and their surface free energies

To calculate various diffusion barriers in the growth of a mesa, it
is necessary to first study its crystalline facets. In experiments, the
growth of Pb on Si(111) [6–14,24–33] or Ge(111) [32,34] has been
demonstrated to be via Stranski–Krastanow (SK) mode [35,36], in
which 3D Pb islands (or mesas) are formed on a Pb wetting layer.
At the temperature around �200–300 K, a Pb mesa can adopt the
equilibrium hexagonal pyramidal shape with a flat top. The flat-
top surface has been shown to be (111) atomic plane [6,37] be-
cause of its lowest surface free energy.

Based on our calculations of surface free energies, as discussed
below, the six sidewalls of a faceted Pb mesa are deduced to be
ð11�1Þ, (010), ð�111Þ, (001), ð1�11Þ and (100). This deduction is in
Fig. 2. The low-index planes of fcc ½�110� crystalline zone. The included angle between e
plane family, e.g., (221) and ð22�1Þ with respect to ð110Þ; ð�1�12Þ and (112) with respect
agreement with the experimental observation of Pb(111) mesas
grown on Ru(001) substrate [38], but for the case of Pb mesa
growth on Si(111) substrate, it still needs to be further confirmed
by experimental measurements [39]. Fig. 1 shows the threefold
symmetry of the crystal planes and orientations in a faceted fcc
mesa with the [111] direction as a symmetry axis. Therefore, con-
sideration of only one of three crystalline zones, ½�110�; ½0�11� and
½10�1�, is needed, and we choose the ½�110� zone in the discussion be-
low. Fig. 2 shows the low-index planes of this fcc ½�110� crystalline
zone.

In calculating the surface free energy for a flat surface, we use
the supercell technique, in which the supercell slab is chosen to
be thick enough so that the QSE can be neglected. All atoms in
the supercell are relaxed. The surface free energy is given by

c ¼ E� ð�NEcÞ
2A

; ð21Þ

where E is the calculated total energy of the supercell, N is the total
number of atoms, Ec is the cohesive energy, and A is the area of the
top and bottom surface. We first discuss Pb(111) surface, as shown
in Fig. 3. Beyond six Pb(111) monolayers thick, the surface free en-
ergy from the 2NN MEAM quickly converges to a constant value of
22.57 meV/Å2. Thus, in the 2NN MEAM calculations of this work, we
always choose the thickness of a slab to be more than six Pb(111)
ach plane and (111) plane are labelled. Note that the mirror symmetry of a crystal
to (001), etc.



Fig. 3. The Pb(111) surface free energies of 1–25 ML Pb slabs from the 2NN MEAM
calculations.

Fig. 4. The calculated and experimental [38] surface free energies corresponding to
the planes shown in Fig. 2 and Table 1. h is the included angle between each plane
and the (111) plane.
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monolayers, representing the classical limit without the influence of
QSE.

The calculated (at 0 K) and experimental (at 323 K) [38] surface
free energies of low-index planes of Pb½�110� crystalline zone are
listed in Table 1, where the results of first-principles calculations
are from previous work [40–42]. Apparently, the (111) facet has
the lowest surface free energy from all calculations and experi-
ments, supporting the observed flat top of Pb mesa to adopt a
(111) top facet. Overall, for all the facets of different orientations,
the surface free energies from the 2NN MEAM (at 0 K) are �4–
5 meV/Å2 higher than the experimental values at 323 K. Fig. 4
shows the plots of surface free energy, c, vs. the included angle,
h, between a certain plane and the (111) plane. The surface free
energies from the 2NN MEAM are in good overall agreement with
experiments [38] for the c–h plot, as shown in Fig. 4.

For analyzing the sidewalls of a faceted Pb mesa, we make a ver-
tical cross section (Fig. 2) of the mesa along the [111] orientation.
From Fig. 2, the ð�1�12Þ plane is perpendicular to the (111) plane,
and therefore the possible left sidewalls can be ð�1�12Þ;
ð11�1Þ; ð22�1Þ; ð33�1Þ; ð110Þ; ð331Þ; ð221Þ; . . ., and the possible right
sidewalls can be ð�1�12Þ; ð�1�13Þ; ð�1�14Þ; ð�1�15Þ; ð115Þ; ð114Þ;
ð113Þ; ð112Þ; . . . Apparently, the most possible left sidewall should
be the ð11�1Þ plane due to its lowest surface free energy. Now, let us
look at the right sidewall. From Table 1 and Fig. 4, the surface free
energy of the (001) facet is lowest in the possible right sidewalls,
so the most possible right sidewall should adopt a (001) plane. A
vertical facet with the ð�1�12Þ plane does not have the lowest surface
free energy for either the left side or the right side, and hence it
should not be a sidewall, as observed in scanning tunneling
microscopy (STM) images [6,7,11,38]. Fig. 1 schematically shows
the threefold symmetry of most possible mesa sidewalls and crys-
talline orientations, according to the above surface free energy
criterion.

Furthermore, from Table 1 and Fig. 4, we also note that for the
left side, the (221) facet has the second lowest surface free energy,
Table 1
A comparison of the surface free energies of low-index planes of Pb½�110� crystalline zone

Method (111) (221) (331) (110)
ð11�1Þ ð22�1Þ ð33�1Þ

(a) 22.57 25.08 25.58 25.39
(b) 26.0 – – 30.8
(c) 17.2 – – 20.8
(d) 17 – – –
(e) 16.8 – – –
(f) 27.5 29.4 – 30.1

(a) 2NN MEAM (this work); (b) PPW, LDA-PZ, NLCC [40]; (c) PPW, LDA-PBE, NLCC [40];
[38]. The units are in meV/Å2.
and for the right side, the (112) facet has the second lowest surface
free energy. Therefore, a (221) facet as a left sidewall will be sec-
ondly favorable after the ð11�1Þ facet, and a (112) facet as a right
sidewall will be secondly favorable after the (001) facet. In the
experiments of depositing Pb on Ru(001) substrate [38], the small
(221) facet has been observed between the top facet (111) and the
sidewall facet ð11�1Þ, and the small (112) facet has been observed
between the top facet (111) and the sidewall facet (001). How-
ever, in the experiments of depositing Pb on Si(111) substrate,
up to now there have not yet been any reports about the sidewall
details. In this work, we assume that the six sidewalls of a faceted
Pb mesa grown on Si(111) substrate are
ð11�1Þ; ð010Þ; ð�111Þ; ð001Þ; ð1�11Þ, and (100) facets, respectively.

3.2. Diffusion of an adatom on a flat surface

The diffusion barrier is calculated as the energy difference be-
tween energy minimum and saddle point on MEP. To obtain the
MEP, the nudged elastic band (NEB) method [43], as well as the
climbing NEB method (a development of NEB method) [44], can
be often used when the studied system has a bad symmetric fea-
ture or a relatively high accuracy is required, but it needs to take
many enough images in the calculation, and therefore the NEB
method could be not efficient, especially for a relatively large sys-
tem. Another way to be frequently used is the constrained relaxa-
tion, in which one or two certain direction(s) (e.g., X- or/and Y-
axis) of the adatom is(are) appropriately fixed in terms of the sym-
metry of the studied surface structure, and other direction(s) of the
adatom is(are) allowed to relax. This constrained relaxation meth-
od can be more efficient than the NEB method if the symmetric fea-
ture of the studied system has already been largely clear. In this
work, we choose the constrained relaxation method, and all the
atoms in the supercell are relaxed except that the X- and Y-coordi-
nates of the adatom are fixed (i.e., these two coordinates of the
among the 2NN MEAM, first-principles calculations, and experiments

(001) ð�1�12Þ ð�1�13Þ ð�1�14Þ ð�1�15Þ
(112) (113) (114) (115)

25.59 25.61 26.09 26.42 26.50
29.9 – – – –
20.0 – – – –

– – – – –
– – – – –

29.2 29.8 30.3 – –

(d) UPPW, GGA-PW91 [41]; (e) UPPW, GGA-PW91 5d [42]; (f) experiment at 323 K
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adatom are constrained during the energy minimization). Also, in
our calculations of searching the MEP, we always take the output
from the current calculated state as the input of the next state to
be calculated, and simultaneously make an artificial push against
the adatom by a reasonably small displacement along the assumed
diffusion path to simulate the ‘‘realistic” diffusion process. In prin-
ciple, the more the calculated states along the path, the closer the
simulated results to the ‘‘realistic” diffusion path. However, consid-
ering the efficiency of simulation, we always limit ourselves to cal-
culate as few as possible states (but make sure the number of
calculated states is sufficient, esp. in the region near a saddle point)
along the path by firstly doing some necessary tests before the
calculation.

In the flat-surface diffusion barrier calculation, a too small
supercell will result in a noticeable interaction between adjacent
replicas. To avoid this spurious interaction, we always use a big en-
ough supercell with the periodic boundary conditions along X- and
Y-axes. Z-axis is perpendicular to the free top and bottom surfaces.
We only calculate the diffusion barriers on (111) and (001) sur-
faces because they are most favorable as the Pb mesa top or side-
walls, as discussed in Section 3.1.

For Pb(111) surface, Fig. 5 shows three assumed diffusion paths
of a Pb adatom by direct hopping, and the energies of nine succes-
sional states along each diffusion path are calculated. From the fcc
site P to its nearest fcc site Q, the energetically most favorable path
(i.e., the MEP) is P–M–Q, in which the adatom first hops over one
bridge site, and then goes through the hcp site M and again another
bridge site toward the fcc site Q. The saddle point is approximately
Fig. 5. Three assumed diffusion paths of a Pb adatom by direct hopping on flat
Pb(111) surface. The inset is a top view indicating the diffusion paths of the
adatom.

Fig. 6. Two diffusion modes of a Pb adatom on a flat Pb(001) surface (top views). (a) Di
neighboring hollow site. (b) Exchange mechanism: the adatom T migrates towards a sub
the atom S leaves behind. Consequently, the atom S becomes a new adatom, and the pr
located at the bridge site, and �45 meV higher than the energy
minimum (on P or Q), as shown in Fig. 5. This barrier value of
�45 meV is in qualitative agreement with our recent DFT calcula-
tions [15]. We also tried to calculate the diffusion barriers of differ-
ent multi-atom exchange modes [45–47] for flat Pb(111) surface,
and found that these barriers are always much larger than
45 meV. This indicates that direct hopping mode is much more
favorable than exchange mechanism for the diffusion of a Pb ada-
tom on flat Pb(111) surface.

For some fcc metals, when an adatom diffuses on (001) surface,
a two-atom exchange mechanism [45] is often found to be favored
over direct hopping mode. For example, the two-atom exchange
mechanism has been observed experimentally by using the field
ion microscope technology for Ir/Ir(001) [48], Pt/Pt(001) [49]
and Ni/Pt(001) [50]. Theoretically, Al/Al(001) (first-principles)
[45], Pt/Pt(001) (EAM) [51], Au/Au(001) (EAM) [51], Au/Au(001)
(first-principles) [52], and Pd/Pd(001) (EAM) [51] also favor this
mechanism. However, some cases, e.g., experimentally Rh/
Rh(001) [53], Pd/Pt(001) [50] and theoretically Cu/Cu(001)
(EAM) [46] favor the direct hopping mode. For Pb/Pb(001), we also
calculate two diffusion modes, as shown in Fig. 6. The obtained dif-
fusion barrier for direct hopping is �321 meV, and the diffusion
barrier for the two-atom exchange mechanism is �404 meV. This
indicates that the direct hopping diffusion is favored over the ex-
change mechanism for the diffusion of a Pb adatom on flat
Pb(001) surface.
Fig. 7. A monolayer hexagonal adatom island (light color) formed on an fcc (111)
surface indicates two different step types, A- and B-steps, corresponding to their
different geometries.

rect hopping: the adatom T hops over a bridge site from one hollow site to another
strate surface atom S and pushes it out of its site, and then fills the vacant place that
evious adatom T becomes a substrate surface atom.



a b c d

e f

Fig. 8. Four possible diffusion modes of a Pb adatom crossing A-step edge on Pb(111) surface (top views): (a) direct hopping; (b) Exchange 1; (c) Exchange 2; (d) Exchange 3.
For details, see the text. (e) and (f) are energy curves corresponding to (a) and (b), respectively.

Y. Han et al. / Surface Science 602 (2008) 2284–2294 2289
3.3. Diffusion of an adatom crossing a single step edge

There are two types of steps, A- and B-steps [54], on the (111)
surface of an fcc structure, as shown in Fig. 7. A- and B-steps cor-
respond to different geometries, so we must separately calculate
the diffusion barrier of an adatom crossing a single A- or B-step
edge.

For crossing A-step edge, we calculate four possible diffusion
modes. Fig. 8a shows the most possible direct hopping mode, in
which the adatom T diffuses towards the A-step, and directly hops
over the step edge from step top to step bottom, as indicated by the
arrows. Fig. 8b shows the first possible exchange mode (labelled as
Exchange 1). When the adatom T arrives at the step-top fcc site, it
pushes the edge atom U out of its site, and then fills the place that
the atom U leaves behind. Consequently, the atom U becomes a
new adatom migrating towards the step-bottom fcc site F, as indi-
cated by the arrows. Fig. 8c shows the second possible exchange
mode (labelled as Exchange 2), which is similar to Exchange 1,
but the adatom T first arrives at the step-top hcp site, and then
pushes the edge atom U. Fig. 8d shows the third possible exchange
mode (labelled as Exchange 3), which is a three-atom exchange
mechanism. When the adatom T arrives at the step-top fcc site,
it pushes the edge atom U, and the atom U pushes the bottom atom
V. Consequently, the atom V becomes a new adatom migrating to-
wards the step-bottom fcc site F, as indicated by the arrow, while
the place of the atom U is replaced with the atom T, and the place
of the atom V is replaced with the atom U.

The energy curves corresponding to the direct hopping (Fig. 8a)
and Exchange 1 (Fig. 8b) are shown in Fig. 8e and f, respectively.
From Fig. 8e and f, the direct hopping with an ES barrier of
99 meV is more favorable than Exchange 1 with an ES barrier of
175 meV. Exchange 2 has an ES barrier of 185 meV (not shown in
Fig. 8), and therefore also unfavorable. For Exchange 3, our calcula-
tion shows that this three-atom concerted motion has an ES barrier
of much larger than 185 meV, and consequently is extremely unfa-
vorable. From Fig. 8e and f, we also note that when an adatom is
down to the A-step kink site F (see Fig. 8) from the terrace mini-
mum energy adsorption sites, there is a big energy drop of
295 meV. Therefore, the A-step kink site F is just like a ‘‘perfect
sink”, which can easily attach an adatom, but it is difficult to de-
tach the adatom from the sink.

Here, it should be mentioned that when the adatom is far from
the step (see Fig. 8e and f), we obtain a terrace diffusion barrier of
�47 meV, which is a little bit different from the flat-surface value
of 45 meV (see Section 3.2). This indicates that for two differently
chosen supercell slabs, there is an error bar with an order of a few
meV. We find that the largest error is ±9 meV in all of our diffusion
barrier calculations of this work.

For crossing B-step edge, we calculate three possible diffusion
modes. Fig. 9a shows the most possible direct hopping mode, in
which the adatom T diffuses towards the B-step, and directly hops
over the step edge from step top to step bottom, as indicated by the
arrow. Fig. 9b shows the first possible exchange mode (labelled as
Exchange 1). When the adatom T arrives at the step-top hcp site, it
pushes the edge atom U out of its site, and then fills the place that
the atom U leaves behind. Consequently, the atom U becomes a
new adatom migrating towards the step-bottom fcc site F, as indi-
cated by the arrow. Fig. 9c shows the second possible exchange
mode (labelled as Exchange 2), which is similar to Exchange 1,
but the adatom T first arrives at the step-top fcc site, and then
pushes the edge atom U.

The energy curves corresponding to the direct hopping (Fig. 9a)
and Exchange 1 (Fig. 9b) are shown in Fig. 9d and e, respectively.
From Fig. 9d and e, Exchange 1 with an ES barrier of 31 meV is
more favorable than the direct hopping with an ES barrier of
106 meV. Exchange 2 has an ES barrier of a 33 meV (not shown
in Fig. 9) very close to that of Exchange 1, and therefore also favor-
able. From Fig. 9d and e, we again note that when an adatom is
down to the B-step kink site F (see Fig. 9) from the terrace mini-
mum energy adsorption sites, the energy has a big drop of
277 meV. Therefore, the B-step kink site F is also like a ‘‘perfect
sink”, which is analogous to that of A-step case.

In experiments, an adatom island and then a vacancy island can
be formed on the Pb mesa top by the Coulomb sink charging effect
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d e

Fig. 9. Three possible diffusion modes of a Pb adatom crossing the B-step edge on the Pb(111) surface (top views): (a) direct hopping; (b) Exchange 1; (c) Exchange 2. For
details, see the text. (d) and (e) are energy curves corresponding to (a) and (b), respectively.
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[7,10,11,13,14]. Recently, using the isotropic surface steady-
state diffusion equation, we have obtained an ‘‘effective” ES barrier
of � 83� 10 meV at the growth temperature of 300 K, by
fitting decay rate of the vacancy island and the growth rate of
the adatom island from experiments [10]. Considering average
a b

e

Fig. 10. Two most possible diffusion modes of a Pb adatom crossing the A-facet–facet ed
(111)-top view of the direct hopping; (d) A (111)-top view of the exchange mechanism.
see the text; (e) and (f) are energy curves corresponding to (c) and (d), respectively.
effect of crossing A- and B-step edges, the average value, 65 meV,
of the A- and B-step edge barriers (99 meV and 31 meV,
respectively) from the present 2NN MEAM calculations agrees well
with the above ES barrier fitted from the experimental
measurements.
c d

f

ge from Pb(001) facet to Pb(111) facet: (a) A side view; (b) A (001)-top view; (c) A
For clarity, the A-facet–facet edge is painted with heavy gray. For more explanations,
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3.4. Diffusion of an adatom crossing a facet–facet edge

In Section 3.1, it has been discussed that in terms of surface free
energy, the most favorable right sidewall of a Pb mesa is (001) fa-
cet, and the most favorable left sidewall is ð11�1Þ facet, as shown in
Fig. 2. Thus, we just calculate the diffusion barrier of an adatom
crossing the facet–facet edge from the right sidewall (001) facet
to top (111) facet, or from the left sidewall ð11�1Þ facet to top
(111) facet.

For the convenience of discussion, we name the adatom diffu-
sion between (001) facet and (111) facet as ‘‘A-facet–facet” diffu-
sion, and name the adatom diffusion between ð11�1Þ facet and
(111) facet as ‘‘B-facet–facet” diffusion. Here, it should be men-
tioned as a computational detail that because the A- or B-facet–fa-
cet diffusion involves the adatom motion from one facet to another
facet, we always, by an appropriate coordinate rotation, make the
Z-axis perpendicular to the facet that the adatom is diffusing on.

We calculate two most possible diffusion modes for a Pb ada-
tom crossing the A-facet–facet edge from Pb(001) facet to
Pb(111) facet. Fig. 10a is a side view, in which the diffusion of ada-
tom T on the (001) facet towards the edge. The arrows denote the
diffusion direction. Fig. 10b is a (001)-top view, in which the ada-
tom T first diffuses on the (001) facet towards the edge, and arrives
at a hollow site near the edge. Both Fig. 10c and d are the (111)-top
views. Fig. 10c shows the most possible direct hopping mode, in
which the adatom T directly hops over the edge. The arrows denote
a

c d

g

Fig. 11. Four possible diffusion modes of a Pb adatom crossing the B-facet–facet edge fr
hopping; (d) Exchange 1; (e) Exchange 2; (f) Exchange 3. For clarity, the B-facet–facet edg
see the text. (g) and (h) are energy curves corresponding to (c) and (d), respectively.
the diffusion path. Fig. 10d shows the most possible exchange
mechanism, in which the adatom T pushes the edge atom U out
of its site, as indicated by the short-thick arrow, and then fills
the place that the atom U leaves behind. Consequently, the atom
U becomes a new adatom on the (111) facet.

The energy curves corresponding to the direct hopping (Fig.
10c) and the exchange mechanism (Fig. 10d) are shown in Fig.
10e and f, respectively. From Fig. 10e and f, the direct hopping
has a small extra barrier of 23 meV, while the exchange mecha-
nism has no extra barrier. Therefore, the exchange mechanism is
slightly more favorable than the direct hopping mode.

We calculate four possible diffusion modes for a Pb adatom
crossing the B-facet–facet edge from Pbð11�1Þ facet to Pb(111) fa-
cet. Fig. 11a is a side view, in which the diffusion of adatom T on
the ð11�1Þ facet towards the edge. The arrows denote the diffusion
direction. Fig. 11b is a ð11�1Þ-top view, in which the adatom T first
diffuses on the ð11�1Þ facet towards the edge, and arrives at an hcp
site H or further an fcc site F near the edge. Figs. 11c–f are all the
(111)-top views. Fig. 11c shows the most possible direct hopping
mode, in which when the adatom T arrives at the fcc site F, and
then directly hops over the edge. The arrows denote the diffusion
path. Fig. 11d shows the first possible exchange mode (labelled
as Exchange 1), in which when the adatom T arrives at the hcp site
H, it pushes the edge atom U out of its site, as indicated by the
short-thick arrow, and then fills the place that the atom U leaves
behind. Consequently, the atom U becomes a new adatom diffusing
b

e

h

f

om Pbð11�1Þ facet to Pb(111) facet: (a) A side view; (b) A ð11�1Þ-top view; (c) Direct
e is painted with heavy gray. (c)–(f) are all (111)-top views. For more explanations,
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along the arrows. Fig. 11e shows the second possible exchange
mode (labelled as Exchange 2), which is similar to Exchange 1,
but the adatom T first arrives at the fcc site F, and then pushes
the edge atom U towards the left side along the arrows. Fig. 11f
shows the third possible exchange mode (labelled as Exchange
3), which is nearly the same as Exchange 2, but the edge atom U
is pushed towards the right side along the arrows.

The energy curves corresponding to the direct hopping (Fig.
11c) and the exchange mechanism (Fig. 11d) are shown in Fig.
11g and h, respectively. From Fig. 11g and h, the direct hopping
has a larger extra barrier of 104 meV, and Exchange 1 has a rela-
tively smaller extra barrier of 38 meV, while both Exchange 2
and Exchange 3 have the larger extra barriers of � 115 meV (not
shown in Fig. 11). Therefore, Exchange 1 is the most favorable
one among the four calculated diffusion modes.

From Fig. 10e and f, we note that if an adatom climbs up to the
minimum energy adsorption site of (111) facet from the minimum
energy adsorption site of (001) facet (also see Fig. 10), the energy
of system will have to increase by at least � 203 meV. This large
energy increase implies that the A-facet–facet diffusion from
(001) facet to (111) facet is extremely unfavorable in spite of
the zero extra barrier. Thus, the adatom is thermodynamically pre-
vented from climbing onto (111) facet from (001) facet. Also,
ð11�1Þ facet and (111) facet belong to the same family {111}, so
that they have the same adsorption energy, as shown in Fig. 11g
and h. However, Fig. 11h shows that there is an additional
38 meV energy barrier for an adatom to cross the B-facet–facet
edge from ð11�1Þ facet to (111) facet. Thus, the adatom is kineti-
cally hindered from climbing onto (111) facet from ð11�1Þ facet.

The above results indicate that, normally, the adatom concen-
tration must be very low on the mesa top {111} facet, because it
is difficult for adatoms to climb onto the mesa top either thermo-
dynamically from the {001} sidewalls or kinetically from the
{111} sidewalls. This is consistent with the experimental observa-
tion that flat-top Pb(111) mesas are extremely stable staying in-
a

d

Fig. 12. Two most possible diffusion modes of a Pb adatom crossing the AA joint from
hopping mode; (c) A (111)-top view of the exchange mode. For clarity, the monolayer Pb
explanations, see the text. (d) and (e) are energy curves corresponding to (b) and (c), re
tact for days, and the island nucleation and overgrowth on the
mesa top can only be triggered by an external perturbation using
STM pulse [6].

3.5. Diffusion of an adatom crossing a facet–step joint

When an adatom climbs up from a sidewall {001} or {111} fa-
cet to a step kink site on the mesa top {111}, it may go through
four possible types of facet–step joints, which are denoted as AA
joint (from {001} facet to A-step), AB joint (from {001} facet to
B-step), BA joint (from {111} facet to A-step), and BB joint (from
{111} facet to B-step), respectively. From all our calculations, it
is known that when an adatom crosses all these four possible fa-
cet–step (AA, AB, BA, and BB) joints, the energy curves for adatom
diffusion are similar. Below, we only illustrate two typical diffu-
sions for the cases of crossing AA and BB joints.

As the computational details, here we need to mention that by
doing tests, in our above flat-surface diffusion barrier calculations,
the supercell can be relatively small (�100 atoms) with the peri-
odic boundary conditions along two directions (X- and Y-axes);
for the step-edge diffusion barrier calculations, to avoid not only
the spurious adatom–adatom interaction but also the spurious
step-step interaction between the adjacent replicas, we take the
supercell to be relatively bigger (more than �1000 atoms); for
the facet–facet diffusion barrier calculations, to make the terraces
wide enough with the periodic boundary condition along only
one direction (X-axis), the supercell is also chosen to be relatively
bigger (more than �1000 atoms). In the following facet–step diffu-
sion barrier calculations, there is no periodicity available in all
three directions (X-, Y-, and Z-axes) due to the complicacy of the
studied system, so that we have to use a much larger supercell
(more than �1500 atoms). In addition, similar to the calculations
for facet–facet edge barriers in Section 3.4, we always, by an appro-
priate coordinate rotation, make the Z-axis perpendicular to the fa-
cet that the adatom is diffusing on.
b c

e

Pb(001) facet to A-step: (a) A (001)-top view; (b) A (111)-top view of the direct
island on Pb(111) and the A-facet–facet edge are painted with heavy gray. For more
spectively.
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Fig. 13. Four possible diffusion modes of a Pb adatom T crossing the B-facet–step joint from Pbð11�1Þ facet to B-step: (a) A ð11�1Þ-top view; (b) Hopping 1; (c) Exchange 1; (d)
Hopping 2; (e) Exchange 2. (b)–(e) are (111)-top views. For clarity, the single-layer Pb island on Pb(111) and the B-facet–facet edges are painted with heavy gray. For more
explanations, see the text. (f) and (g) are energy curves corresponding to (b) and (c), respectively.
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In Fig. 12, we show two most possible diffusion modes of a Pb
adatom crossing the AA joint from Pb(001) facet to A-step. Fig.
12a is a (001)-top view, in which the adatom T first diffuses on
the (001) facet towards the edge, and arrives at a hollow site H
near the joint. The arrow denotes the diffusion direction. Both Figs.
12b and c are the (111)-top views. Fig. 12b shows the most possi-
ble direct hopping mode, in which the adatom T directly hops over
the edge. The arrows denote the diffusion path. Fig. 12c shows the
most possible exchange mode, in which the adatom T pushes the
edge atom U out of its site, as indicated by the short-thick arrow,
and then fills the place that the atom U leaves behind. Conse-
quently, the atom U becomes a new adatom diffusing along the
arrows.

The energy curves corresponding to the direct hopping (Fig.
12b) and the exchange mechanism (Fig. 12c) are shown in Fig.
12d and e, respectively. From Fig. 12d and e, the direct hopping
has a tiny extra barrier of 9 meV, while the exchange mechanism
has no extra barrier. We also note that the minimum adsorption
energy has a drop of � 100 meV from (001) facet to (111) facet
(Fig. 12d and e). Therefore, the adatom diffusion of crossing the
AA joint from (001) facet to A-step will be thermodynamically
allowable, in contrast to the case of crossing the A-facet–facet edge
(Section 3.4). In addition, from Fig. 12d or e, the adatom diffusion
along the A-step edge has a rather large barrier of 200 meV.

Fig. 13 shows the two possible direct hopping modes and two
possible exchange modes of a Pb adatom crossing the BB joint from
Pbð11�1Þ facet to B-step. Fig. 13a is a ð11�1Þ-top view, in which the
adatom T first diffuses on the ð11�1Þ facet towards the edge, and ar-
rives at the hcp site P near the joint. The arrows denote the diffu-
sion directions. Figs. 12b–e are all the (111)-top views. Fig. 12b
shows the first possible direct hopping mode (labelled as Hopping
1), in which, from the site P, the adatom T first arrives at the fcc site
Q near the joint, and then directly hops over the A-facet–facet
edge. The arrows denote the diffusion path. Fig. 12c shows the first
possible exchange mode (labelled as Exchange 1), in which, at the
site P, the adatom T pushes the edge atom U out of its site, as indi-
cated by the short-thick arrow, and then fills the place that the
atom U leaves behind. Consequently, the atom U becomes a new
adatom diffusing along the arrows. Fig. 12d shows the second pos-
sible direct hopping mode (labelled as Hopping 2), in which, from
the site P, the adatom first arrives at the site S via the site R, and
then directly hops over the bridge between atom U and atom V to-
wards the fcc site near the joint. The arrows denote the diffusion
path. Fig. 12e shows the second possible exchange mode (labelled
as Exchange 2), in which, the adatom T arriving at the site S pushes
the edge atom V out of its site, and then fills the place that the
atom V leaves behind. Consequently, the atom V becomes a new
adatom diffusing along the arrows.

The energy curves corresponding to Hopping 1 (Fig. 13b) and
Exchange 1 (Fig. 13c) are shown in Fig. 13f and g, respectively.
From Fig. 13f and g, Hopping 1 has a extra barrier of 90 meV, while
Exchange 1 has a small extra barrier of 18 meV. Also, Hopping 2
has a extra barrier of 109 meV, while Exchange 2 has a barrier of
51 meV (not shown in Fig. 13). Thus, Exchange 1 is most favorable
kinetically. Similar to the case of crossing AA joint from (001) facet
to A-step (Fig. 12d and e), the minimum adsorption energy from
ð11�1Þ facet to (111) facet (Fig. 13f and g) has a big drop, which
is � 281 meV. Therefore, the adatom diffusion of crossing the BB



Table 2
The calculated diffusion barriers of an adatom on a flat surfaces, and the calculated
extra diffusion barriers of an adatom crossing A- and B-steps, A- and B-facet–facet
edges, as well as AA and BB joints (in meV units)

Adatom motion Direct
hopping

Exchange
mechanism

On (111) 45 �45
On (001) 321 404
Crossing A-step edge 99 175
Crossing B-step edge 106 31
Crossing A-facet–facet edge from (001) to

(111)
23 0

Crossing B-facet–facet edge from ð11�1Þ to
(111)

104 38

Crossing AA joint from (001) to A-step 9 0
Crossing BB joint from ð11�1Þ to B-step 90 18
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joint from ð11�1Þ facet to A-step will be thermodynamically favor-
able, in contrast to the case of crossing the B-facet–facet edge (Sec-
tion 3.4). In addition, from Fig. 13f or g, the adatom diffusion along
the B-step edge has a large barrier of 244 meV.

3.6. An explanation for kinetic growth of a Pb mesa in experiments

In recent experiments, an unusual growth behavior of Pb mesa
has been observed [6–10,14]. Briefly, Pb mesas are first grown on
Si(111) substrate. Then, nucleation and growth of a 2D island in
the middle of mesa top was triggered by applying a STM pulse
through the Coulomb sink effect [7,10,11,13,14]. After removing
the STM tip from the Pb mesa top, the 2D island continues to grow
until a complete overlayer is formed on the top. When the STM tip
is quickly removed from the Pb mesa top, the discharging process
[13] is so quick that the followed growth behavior of Pb mesa will
not be impacted by charge effects. One interesting observation is
that the rate of overlayer growth undergoes three different stages:
First, the 2D island expands slowly in the middle of the mesa top
until it touches the edge of the mesa top. Second, as soon as the is-
land touches the edge, it grows rapidly along the edge to form a
closed annular ring around the mesa top. Last, the annular ring
grows inward again slowly until it closes to form a complete over-
layer. The growth rate of stage 2 is several orders of magnitude
higher than that of stages 1 and 3, and the stage 3 is slightly slower
than the stage 1. In order to understand this intriguing kinetics of
Pb mesa overlayer growth, we have given a plausible explanation
by using the energy parameters (especially the various diffusion
barriers), which have been obtained in this work. For the details,
see our recently published paper [14].

In Table 2, we list the calculated flat-surface, step-edge, facet–
facet, and facet–step diffusion barriers. As discussed in the above
sections, for either direct hopping or exchange mechanism, the
possible diffusion path is not unique. In Table 2, we only list the
barrier values corresponding to the most favorable direct hopping
or exchange diffusion paths.

4. Conclusion

In conclusion, we have made an extensive investigation on the
possible diffusion modes of a Pb adatom on a flat surface, as well as
crossing step-edge, facet–facet edge, and facet–step joints, using
the 2NN MEAM. The adatom diffusion paths and diffusion barriers
under various different diffusion modes have been obtained. Our
results can provide a good explanation to understand the unusual
kinetic growth behavior of a faceted Pb mesa in the recent exper-
iments, and should be also useful as input to further perform the
numerical simulations for the epitaxial growth of a Pb mesa.
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