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Abstract

Surface energies of Si(001), (110), (111), and (113) surfaces with different reconstructions are calculated systemat-
ically using first-principles total-energy method. In order to quantitatively compare their relative stability, the surface
energies of different surface orientations and their respective theoretical bulk atom energies are determined simulta-
neously by linear fitting slab supercell total energy as a function of the atom number in the slab. Equivalent computa-
tional parameters and convergence criteria are used for all calculations. Without considering entropy contribution, the
relative stability of these Si surfaces with given reconstructions is shown, in decreasing order, from (111) to (001) and
(113) at low temperature, and from (001), (113), (110), to (111) at high temperature.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Surface energy is the most fundamental thermo-
dynamic property of solid surfaces [1]. A solid sur-
face can be created by cutting a crystal into half,
and surfaces of different indices form when a crys-
tal is cut along different orientations of the atomic
plane. Because less number of atomic bonds are
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cut in creating a low-index surface, surface energy
of a low-index surface is generally lower than that
of a high-index surface. However, this general rule
may fail sometimes when a large degree of surface
reconstructions are involved, in particular for
semiconductor surfaces.

Surface energy is difficult to measure directly.
Experimentally, one way to determine the relative
surface energy is by measuring an equilibrium
crystal shape bounded by different surfaces (facets)
combined with Wulff-theorem analysis [2]. In an
equilibrium three-dimensional (3D) crystallite,
the area of individual facets scales inversely with
ed.
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their surface energy. In addition to the relative sur-
face energy, measurement of the absolute surface
energy has also been attempted through two inde-
pendent measurements on 3D and 2D equilibrium
crystal shapes [3], but its accuracy remains to be
improved. Theoretically, surface energy can be cal-
culated using first-principles method.

The Si surface has been extensively studied both
as the model system of semiconductor surfaces and
because Si is the base material used in modern
semiconductor industry. However, the relative sta-
bility of different Si surfaces has not yet been deter-
mined precisely and remains controversial. In a
measurement of the equilibrium shape of Si void
by He implantation, relative energies of Si{001},
{110}, {111}, and {113} surfaces have been
determined, and {111} surface is shown to be
the most stable Si surface [4,5]. In contrast, by
using monocrystalline columns to obtain the equi-
librium crystal shape of Si, {001} and {113} sur-
faces are suggested to be most stable [6].

Surface energies of various Si surfaces have also
been calculated from first-principles. These in-
clude, for example, {001} [7–9], {111} [10–12],
{110} [13], and {113} [14,15] surfaces. However,
these calculations have been performed separately
by different groups for individual surfaces. Conse-
quently, a comparison between them is not reliable
because the energies of these surfaces may differ
only by a few meV, which is about the uncertainty
inherent to a given first-principles calculation of
surface energy. To obtain the relative stability of
different Si surfaces, equivalent computational
parameters and convergence criteria must be used
for all the calculations to minimize systematic er-
rors. One such attempt has been made by Stekolni-
kov et al. [16–18] who calculated the surface
energies of Si{001}, {110}, {111}, and {113}
surfaces.

A standard procedure for calculating surface
energy is by the slab supercell technique, in which
one needs to subtract bulk energy from total en-
ergy of slab supercell. However, the inaccurate
bulk atom energy has been used to calculate sur-
face energy, namely the same bulk atom energy
obtained from a separate bulk calculation has been
used for different surface orientations. Such a
treatment can be used for comparing surface en-
ergy of different reconstructions for a given surface
calculated with the same slab supercell. It is inap-
propriate, however, for comparing surface energy
of different surface orientations. This is because
such treatment will lead to a divergence of surface
energy with increasing slab thickness due to the
error in the bulk atom energy [19,20]. The proper
way to derive surface energy and the correspond-
ing bulk atom energy is by fitting total energy
(ET) of the slab supercell as a function of slab
thickness or atom number (N) in the slab [19,20].
Such a procedure has to be applied to every sur-
face orientation of slab calculation, because differ-
ent bulk atom energies will be derived from
different slabs due to difference in slab size and
k-point sampling, as absolute convergence is rarely
achieved in the slab calculations.

Here, in order to determine the relative stability
of Si surfaces more accurately, we apply such a
procedure to calculate Si surface energies system-
atically using first-principles method. These in-
clude low-index surfaces of {001}, {110} and
{111}, and high-index surface of {113}. To make
a reliable comparison, we use equivalent para-
meter settings and convergence criteria for all the
calculations to minimize the systematic errors,
and the respective bulk Si atom energies for differ-
ent surface orientations and slab sizes are correctly
used to derive the surface energies by fitting the
ET–N curve. Although the calculations have been
carried out at 0 K and thus the entropy contribu-
tion to the surface energy has not been considered,
the present results will provide a good reference to
assess the relative stability of Si surfaces at differ-
ent temperatures.
2. Si surface reconstructions

Most semiconductor surfaces reconstruct dri-
ven by the desire to eliminate dangling bonds [1].
Si(001) surface represents a typical case where
an atom-pairing mechanism works to remove
one dangling bond per atom, forming dimers and
doubling the periodicity along the [110] direction,
resulting in a (2 · 1) reconstructed surface [21–23].
Furthermore, dimer buckling, a secondary effect to
reduce the energy, leads to p(2 · 2) and c(4 · 2)-
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type of reconstructions [24–26]. Fig. 1 shows these
reconstruction models. Fig. 1(a) shows ideal
Si(001)-(1 · 1) surface with two dangling bonds
on each surface atom. Fig. 1(b) shows (2 · 1)
reconstruction, consisting of dimers that are ar-
ranged in parallel rows along the ½�110� direc-
tion. Only buckled dimers [noted as b(2 · 1)] are
considered in our calculation. Fig. 1(c) and (d)
illustrate, respectively, the p(2 · 2) and c(4 · 2)
reconstructions, which are formed by alternation
of buckled dimers with either in-phase or out-of-
phase buckling, respectively.

At high temperature, Si(111) surface retains a
unreconstructed (1 · 1) surface with one dangling
bond on each surface atom; at low temperature,
it transforms into a (7 · 7) reconstructed surface
[1]. The transition temperature is about 850 �C
and the transition is reversible. The low-tempera-
ture (7 · 7) phase is one of the most complex
reconstructions that have been discovered for sur-
faces. It is described as the dimer-adatom-stack-
ing-fault (DAS) structure [27,28]. The DAS
model, as shown in Fig. 2, represents a complex
interplay of different mechanisms between adatom,
dimer, and stacking fault to eliminate dangling
bonds. An as-cleaved Si(111) surface exhibits a
Fig. 1. Si(001) surface reconstruction models. The larger spheres repr
ones indicate the atoms buckled up. Solid-line rectangles show the un
side view. (b) b(2 · 1) reconstruction, top view and side view. (c) p(2
rhombus indicates the primitive unit cell.
(2 · 1) reconstruction, but it is metastable, con-
verting irreversibly into the (7 · 7) structure after
annealing at the elevated temperature [29]. So,
we do not include it in our calculation.

Clean Si(110) surface transforms from a high-
temperature (1 · 1) structure to a low-temperature
(2 · 16) structure at a transition temperature about
750 �C. We calculate only surface energy of (1 · 1)
reconstruction because the detailed structure of
(2 · 16) reconstruction has not been completely
clarified [13,30–34].

The Si(113) surface, oriented 25.2� from (001)
to (111) face, is of much interest in spite of its high
index. Si(113) has stable reconstructions [14,35]. It
exhibits a (3 · 2) reconstruction at room tempera-
ture and undergoes a phase transition to (3 · 1)
reconstruction at about 500 �C. Higher tempera-
ture (�570–750 �C) leads to (1 · 1) disordered
phase. The bulk-terminated Si(113) surface has
two types of atomic rows: one has two dangling
bonds per atom similar to that of bulk-terminated
(001) surface, and the other has one dangling bond
per atom similar to that of bulk-terminated (111)
surface, as indicated in Fig. 3(a). Fig. 3(b)–(e)
shows different reconstruction models for Si(113)
surface. Ranke proposed an adatom-dimer (AD)
esent the atoms at the first layer, in which the darker-grey-color
it cells of respective case. (a) Ideal (1 · 1) surface, top view and
· 2) reconstruction. (d) c(4 · 2) reconstruction. The dashed-line



Fig. 2. Si(111)-(7 · 7) reconstructions—DAS model. (a) Top view (b) side view.

Fig. 3. Side view and top view of different Si(113) surface reconstruction models. Darker-grey-color spheres represent the atoms at the
first layer. (a) Ideal (1 · 1) surface, (b) (3 · 1)-AD model, (c) (3 · 2)-AV model, (d) (3 · 2)-ADI model, (e) (3 · 1)-AI model.
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model for the (3 · 1) reconstruction and adatom-
void (AV) model for the (3 · 2) reconstruction
[35]. In the AD model (Fig. 3(b)), every third
(001)-like atom is removed and the remaining
two atoms dimerize, resulting in formation of a
pentagon containing this dimer. The removed atom
is taken alternately from two lattices apart in the
neighboring rows, leading to (3 · 1) reconstruc-
tion. This is equivalent to adding every two of three
(001)-like atoms to the (111)-like surface forming



Table 1
Surface cell size and k-points sampling for various Si surfaces
and reconstructions

Surface
orientation

Reconstruction Surface
cell size (Å)

k-points
sampling
in S.B.Z.

(001) Ideal (1 · 1) 3.832 · 3.832 8 · 8
Relax (1 · 1) (orthorombic)
b(2 · 1) 3.832 · 7.664 8 · 4

(orthorombic)
p(2 · 2) 7.664 · 7.664 4 · 4

(orthorombic)
c(4 · 2) 7.664 · 15.327 4 · 2

(orthorombic)
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a dimer, so it is called AD model. If one of two the
pentagons in the AD model is removed, the struc-
ture becomes a (3 · 2)-AV model, as shown in
Fig. 3(c), in which strain is expected to be released
around the adatoms. Dabrowski et al. proposed
two different models for the (3 · 2) and (3 · 1)
reconstructions [14]. They suggested adding a
near-surface self-interstitial below one of the two
pentagons in the AD model, forming an adatom-
dimer-interstitial (ADI) model for (3 · 2) recon-
struction, as shown in Fig. 3(d), and one each
interstitial atom below both pentagons in the AD
model, forming an adatom-interstitial (AI) model
for (3 · 1) reconstruction, as shown in Fig. 3(e).
They also suggested that the transition from
(3 · 1) to (3 · 2) structure occurs through reducing
one surface interstitial atom, and the AI recon-
struction should exist in the (3 · 1) phase. How-
ever, so far the (3 · 1)-AI structure has not been
confirmed experimentally [15]. We have compared
energies for all these proposed reconstructions.

Wang et al. [36] purposed so-called �puckered�
Si(113)-(3 · 1) and (3 · 2) models based on
Ranke�s (3 · 1)-AD model. In both �puckered�
models, two (111)-like atoms in the pentagons of
the (3 · 1)-AD model (Fig. 3(b)) are buckled sig-
nificantly perpendicular to the surface. Puckered
(3 · 1) and (3 · 2) reconstructions form if the
neighboring pentagons in the (3 · 1)-AD model
are buckled in the same or opposite way, respec-
tively. According to the calculation of Stekolnikov
et al. [17], the puckered (3 · 1) model has higher
surface energy than the (3 · 1)-AI model, and the
puckered (3 · 2) model has higher surface energy
than the (3 · 2)-ADI model. Therefore, we exclude
them from our calculations.
(111) Ideal (1 · 1) 3.832 · 3.832 8 · 8
Relax (1 · 1) (Hexagonal)
(7 · 7)-DAS 26.823 · 26.823 1 · 1

(Hexagonal)

(113) Ideal (1 · 1)
Relax (1 · 1)
(3 · 2)-ADI 11.519 · 12.734 2 · 2
(3 · 2)-AV (orthorombic)
(3 · 1)-AD
(3 · 1)-AI

(110) Ideal (1 · 1) 3.832 · 5.429 8 · 4
Relax (1 · 1) (orthorombic)
3. Methodology and computational details

We employ the pseudopotential plane wave
total-energy method [37,38] based on the density
functional theory within the local-density approxi-
mation [39–42]. The plane-wave kinetic energy cut-
off is 12 Ry. For Brilliouin-zone sampling, a special
grid of k points is chosen using the Monkhorst–
Pack scheme [43]. We constructed ab initio semi-
relativistic norm-conserving pseudopotential for
Si [44,45]. We used theoretical Si lattice constant
of 5.42 Å in all our surface energy calculations.
All atoms are relaxed using the Hellman–Feynman
scheme until all the forces are less than 0.01 eV/Å.

For all Si surfaces, we employ a slab supercell
with the same reconstruction on the top and bot-
tom of the supercell surface. In order to reduce
the systematic error in comparing energies of dif-
ferent surfaces, we use the same computational set-
up as much as possible in all calculations. The
thicknesses of the vacuum layers are 10 Å for all
cases. Table 1 shows the surface size and corre-
sponding k-point sampling for various reconstruc-
tion models. The number of k-points in surface
Brilliouin zone (S.B.Z.) is chosen to scale closely
with the surface unit cell size.

In calculating the surface energy Es, one needs
to subtract the bulk energy from the supercell total
energy ET, i.e.

Es ¼ ðET � NEbÞ=2A; ð1Þ
where Eb is the bulk atom energy, N is the number
of atoms in the slab and A is the surface cell area.
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One method to obtain the bulk atom energy is to
perform a separate bulk calculation; for example,
using a two-atom diamond unit cell (we call this
method as the �bulk method�). Although this
method has been used to estimate the energy of a
given surface orientation, it introduces systematic
errors due to the different accuracies in the slab
and bulk calculations [19,20].

To determine bulk atom energy accurately for a
given size of a given surface orientation, we rewrite
Eq. (1) as

ET ¼ NEb þ 2AEs. ð2Þ
Obviously, the total energy ET has a linear relation
with atom number (N) in the slab because the sur-
face energy Es does not change with N if N (or slab
thickness) is sufficiently large to eliminate interac-
tion between the upper and lower surface. There-
fore, as introduced by Gay et al. [19], we can
calculate ET as a function of N by increasing the
atomic layers in the slab, and extract both the bulk
atom energy and the surface energy by linear fit-
ting of ET–N curve (we call this method as the �slab
method�). The slope and intercept of the fitted
straight line are the bulk atom energy (Eb) and
the surface energy contributed from the two sur-
faces (2AEs), respectively.

Different bulk atom energy has to be fitted for
every different surface orientations. However, be-
cause the bulk atom energy is the same for a given
surface orientation of different surface reconstruc-
tions calculated from the same supercell slab, we
need to fit the bulk atom energy for a given surface
orientation of slab only once to save the computa-
tional time.
4. Results and discussion

4.1. Bulk atom energy

We use slab thickness of 16–22 layers (20.32–
28.45 Å) for (001) surface, 11–17 layers (19.16–
Table 2
Bulk atom energies obtained by linear fitting of ET–N curve accordin

Surface orientation or reconstruction (001) (110) (1

Bulk atom energy (eV) �6.000 �5.999 �
30.65 Å) for (110) surface, 14–20 layers (19.55–
28.94 Å) for (111) surface, and 24–30 layers
(18.38–23.28 Å) for (113) surface to fit the ET–N
curve to accurately determine the bulk atom en-
ergy. The results are shown in Table 2, in compar-
ison with the bulk atom energy determined by
the bulk method (�5.993 eV). It clearly shows
that the bulk atom energy obtained from the slab
method depends on both surface orientation and
slab size, and they all differ from that obtained
from the bulk method. Using the bulk atom energy
determined by the bulk method will cause a diver-
gence of surface energy with increasing slab thick-
ness, and introduce different errors in different
surface orientations. This makes the compari-
son of stability of different surface orientations
unreliable.

Theoretically if number of atoms N (or slab
thickness) are large enough, surface energy Es will
not change with N and converge to a constant
value. However, if the bulk atom energy Eb calcu-
lated from the bulk method is not equal to
the value from the slab method, Es will diverge.
Fig. 4 shows the surface energy of Si(111)-(1 · 1)
surface as a function of the number of atomic lay-
ers calculated by the slab and bulk method, respec-
tively. Initially, surface energy by both methods
increases with the increase of the number of atom-
ic layers. Beyond 12 layers of slab thickness, sur-
face energy by the slab method converges to a
constant value, while surface energy by the bulk
method diverges. In principle, the bulk method
can never give a unique surface energy value, be-
cause the result depends on the slab thickness
one would use. This error has been overlooked in
some of the previous calculations.
4.2. Surface energies and relative stability

Table 3 shows the calculated results of surface
energies for the various Si surfaces. The surface
energies determine the relative stability of different
g to Eq. (2)

11)-(1 · 1) (111)-(7 · 7) (113) Bulk method

6.020 �5.996 �6.010 �5.993
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Fig. 4. Surface energy as a function of number of atomic layers
for Si(111)-(1 · 1) surface. Solid and blank circles represent
surface energy from the slab method and the bulk method,
respectively.
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Si surfaces. Because surfaces adopt different recon-
structions at different temperatures, we assess their
relative stability at high and low temperatures sep-
Table 3
The surface energies (meV/Å2) of different Si surface orienta-
tions calculated by the slab methoda

Surface
orientation

Surface
reconstruction

Surface
energy

Surface
energy
(Refs. [16–18])

(001) Ideal (1 · 1) 161.2 149.1
Relaxed (1 · 1) 147.1 149.1
b(2 · 1) 94.1 90.5
p(2 · 2) 92.0 –
c(4 · 2) 91.9 88.0

(111) Ideal (1 · 1) 139.1 113.6
Relaxed (1 · 1) 124.5 108.6
(7 · 7)-DAS 88.6 84.9

(113) Ideal (1 · 1) 145.8 137.9
Relaxed (1 · 1) 113.5 115.5
(3 · 2)-AV 106.1 –
(3 · 2)-ADI 94.8 87.4
(3 · 1)-AD 98.9 93.0
(3 · 1)-AI 96.3 90.5

(110) Ideal (1 · 1) 130.5 127.3
Relaxed (1 · 1) 109.5 106.1

a Surface energies from Refs. [16–18] are also presented for
comparison.
arately by calculating the surface energies of high-
and low-temperature structures, respectively. It
should be noted that the present calculations were
carried out at 0 K, so the calculated surface energy
is the internal energy U. At finite temperature, one
must take into account the entropy contribution
and use surface free energy F = U � TS instead
of U, where T and S are temperature and entropy,
respectively. Therefore, the relative stability, we
discuss here does not include the entropy contribu-
tion. Furthermore, at high temperature, surfaces
may disorder without perfect reconstructed sur-
face structures, making the theoretical calcula-
tions impossible. Nevertheless, if we consider the
entropy contribution is small for well-ordered sur-
face structures, we may still make a qualitative
comparison of the relative stability between differ-
ent high-temperature surface reconstructions (if
they can exist), which may provide some useful
theoretical reference in understanding the experi-
mental assessment on the relative surface stability
at high temperature.

The high-temperature structure of Si(001) is
still controversial. It may be a dynamic mixture
of all of the possible reconstructions or one kind
of reconstruction. Nevertheless, the surface energy
falls in the range from 92 to 94 meV/Å2 for these
different reconstructions. Si(113) surface has
(3 · 1) reconstruction at high temperature, whose
surface energy is 96.3 meV/Å2 for the (3 · 1)-AI
model, and 98.9 meV/Å2 for the (3 · 1)-AD
model. Because there are no reconstructions for
(111) and (110) at high temperature, we take their
energies from the non-reconstructed surface,
which are 124.5 and 109.5 meV/Å2, respectively.
Therefore the relative stability of these Si surfaces
from high to low at high temperature is (001),
(113), (110), and (111), regardless of it we take
(3 · 1)-AI or -AD model for the (113) surface.

At low temperature, Si(111) surface exhibits
(7 · 7)-DAS reconstruction, while (113) surface
shows (3 · 2)-ADI reconstruction. Their surface
energies are 88.6 and 94.8 meV/Å2, respectively.
The surface energy of Si(001) at low temperature
should be �92 meV/Å2 for p-(2 · 2) and/or
c(4 · 2) structures at very low temperature, and
92–94 meV/Å2 at room temperature.Consequently,
surface energy of Si(001) and (113) is about



Table 4
Surface energies of Si{001}, {113} and {110} in comparison
with that of {111} from the experiments and the present
calculations

{001} {113} {110}

Ref. [4] 1.11 1.13 1.16
Ref. [5] 1.09 1.07 –
Ref. [6] 0.97 0.98 –

Present
calculation

High
temperature

�0.75 0.78 0.86

Low
temperature

1.04–1.06 1.07 –
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degenerate within the computational accuracy.
The surface energy of Si(113) is much higher than
those of (111) surfaces, and the (111) surface has
the lowest surface energy among them. Therefore,
the relative stability of these Si surfaces from high
to low at low temperature are (111) and (001),
(113). Also, it is shown that (3 · 2)-AV model is
not an energy-favorable one though it is believed
that this structure can relieve the strain [35]. We
have not calculated the surface energy of Si(110)
surface at low temperature. However, Si(110) is
generally considered as a high-energy surface com-
pared to (001) and (111).

For a given surface orientation, the relative sur-
face energies of different reconstructions calculated
by the different groups show the same trend with
difference absolute values, using either slab or bulk
method. For example, for Si(001), p(2 · 2) and
c(4 · 2) reconstructions have the lower surface en-
ergy than b(2 · 1), and the surface energy of
c(4 · 2) is the lowest. The surface energies of differ-
ent Si(113) reconstructions calculated by Dabrow-
ski et al. [14] are 111, 97, 99, 99 meV/Å2 for
(3 · 2)-AV, (3 · 2)-ADI, (3 · 1)-AD, and (3 · 1)-
AI, respectively. While the values calculated by
Laracuente et al. [15] are 93, 97, 95 for (3 · 2)-
ADI, (3 · 1)-AD, and (3 · 1)-AI reconstructions,
respectively. Both have the same trend as the pres-
ent calculations. Therefore, the bulk method is
applicable for comparing the relative stability of
different reconstructions for a given surface orien-
tation, provided they are calculated with the same
slab thickness and surface cell size.

However, it is unreliable to compare the relative
stability between different surface orientations
using the calculation results from different groups,
especially because of the possible error in bulk
atom energy. For example, our calculations show
that the slab method predicts the Si(111) surface
to be more stable than (113) at low temperature,
but the bulk method would predict the two sur-
faces to be degenerate.

4.3. Comparison with the experimental results

In the experiments, the surface free energy was
measured at high temperature in order to obtain
the equilibrium crystal shape and thus includes en-
tropy contribution. Also, as we mentioned above,
the surface may transform to disordered structure
at high temperature. Therefore, the calculated re-
sults might not be directly comparable to experi-
ments. However, if we consider the entropy
contribution is small for well-ordered surface
structures and assuming the surface reconstruction
exists at high temperature, we may still theoreti-
cally compare their relative stability.

It is very difficult to measure the absolute sur-
face energy by experiments. Only the relative sur-
face energies of certain Si surfaces have been
measured [4–6]. These results are summarized in
Table 4. Eaglesham et al. [4] showed that the sur-
face energies of Si {1 0 0}, {113} and {110} are
1.11, 1.13, 1.16 times of that of {111}, respec-
tively, and therefore {111} is the most stable sur-
face. Follstaedt [5] showed that the surface
energies of Si{001} and {110} planes are 1.09
and 1.07 times of that of {111} planes, indicating
also that {111} is the most stable surface. In con-
trast, Bermond et al. [6] showed that the surface
energies of {001} and {113} are, respectively,
3% and 2% lower than that of {111} surface, indi-
cating that Si{001} and {113} surfaces are more
stable than {111}.

The present calculations show that assuming
the surfaces are reconstructed as shown in Table
4 at high temperature, the surface energy of
(111) is the highest, and the surface energies of
(001), (113) and (110) are 75%, 78% and 86%
of that of (111) surface, respectively, which indi-
cates that (001) and (113) surfaces are more sta-
ble. Thus, our idealized theoretical order is more
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consistent with the experimental results of Ber-
mond et al. [6].

Recently an attempt to determine the absolute
surface energy of Si has also been made based on
two independent measurements on 3D and 2D
crystal equilibrium shapes by the analysis of the
thermal fluctuation of an isolated step [3]. The sur-
face energy of Si{111} at 1372 K is determined to
be ranging from 36.8 to 51.2 meV/Å2. Future
theoretical calculation of surface free energy is
needed to make a comparison.
5. Summary

Surface energies of Si(001), (110), (111), and
(113) are calculated using first-principles total-
energy method in order to determine the relative
stability of these surfaces. Various reconstructions
are considered for these surfaces. In order to
obtain the reliable surface energy comparison,
in addition to using equivalent computational
parameters and convergence criteria for all calcu-
lations, we determine Si bulk atom energies for dif-
ferent surface orientations by linear fitting of slab
supercell total energy as a function of atom num-
ber in the slab. Without considering entropy con-
tribution, the relative stability of these Si surfaces
from high to low is (111) to (001) and (113) at
low temperature, and (001), (113), (110), and
(111) at high temperature, assuming the surfaces
are ideally reconstructed. Si(113) is a stable sur-
face for its given reconstructions at both high
and low temperature in spite of its high index.
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