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High-order topological insulators (HOTIs), as generalized from topological crystalline insulators, are
characterized with lower-dimensional metallic boundary states protected by spatial symmetries of a crystal,
whose theoretical framework based on band inversion at special k points cannot be readily extended to
quasicrystals because quasicrystals contain rotational symmetries that are not compatible with crystals, and
momentum is no longer a good quantum number. Here, we develop a low-energy effective model
underlying HOTI states in 2D quasicrystals for all possible rotational symmetries. By implementing a novel
Fourier transform developed recently for quasicrystals and approximating the long-wavelength behavior by
their large-scale average, we construct an effective k · p Hamiltonian to capture the band inversion at the
center of a pseudo-Brillouin zone. We show that an in-plane Zeeman field can induce mass kinks at the
intersection of adjacent edges of a 2D quasicrystal topological insulators and generate corner modes (CMs)
with fractional charge, protected by rotational symmetries. Our model predictions are confirmed by
numerical tight-binding calculations. Furthermore, when the quasicrystal is proximitized by an s-wave
superconductor, Majorana CMs can also be created by tuning the field strength and chemical potential. Our
work affords a generic approach to studying the low-energy physics of quasicrystals, in association with
topological excitations and fractional statistics.
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Introduction.—A first-order Z2 topological insulator
(TI) is characterized with a correspondence between a
d-dimensional gapped bulk state and a (d − 1)-dimensional
gapless boundary state protected by time-reversal (TR)
symmetry, while a high-order topological insulator (HOTI)
is instead featured with a (d − 2)-dimensional gapless
boundary state protected by spatial symmetries of a crystal,
such as mirror and rotation symmetry [1–22]. In the context
of crystalline symmetry protected topological boundary
states, the HOTI can be viewed as a generalization of
topological crystalline insulators (TCIs) [23]. In general,
the Z2 invariant can be calculated by the product of band
inversion indices at the TR invariant momenta (TRIM) in
the subspace of occupied bands, the eigenvalues of inver-
sion symmetry operator, in the first Brillouin zone (BZ)
[24]. One can generalize this scheme to identify a HOTI by
calculating the topological invariant, the eigenvalues of a
spatial symmetry at all k points linked by this spatial
symmetry [1,2]. Namely, a high-order topology is defined
in the subspace of a crystal operated by spatial symmetries.
Apparently, this approach is not applicable to quasicrystals
which do not have a BZ and momentum (k) is no longer a
good quantum number. Moreover, quasicrystals contain
rotation symmetries not compatible with translational
symmetry.

Alternatively, a HOTI can be viewed by gapping the
(d − 1)-dimensional gapless boundary (surfaces or edges)
of a Z2 TI, but the band degeneracy is locally protected at
the (d − 2)-dimensional boundary (hinges and corners) by
spatial symmetry. For example, in a 2D HOTI, corner
modes (CMs) can be viewed as topological Jackiw-Rebbi
domain-wall states [25], with opposite Dirac masses
between two edges enforced by a mirror symmetry [26–
28], and a variety of 2D HOTI systems have been proposed
by implementing such mirror-invoked mass-inversion
mechanism [16–22], including interestingly CMs in qua-
sicrystals [29–33]. More generally, a CM of a domain-wall
state can be protected by rotation symmetry, as derived
from edge network theory [34]. Instead of opposite edge
masses encoded by mirror eigenvalues (�1), an edge-
dependent Dirac mass emerges with a phase difference of
2π=n, termed as a mass kink [35,36], defined by eigen-
values of the Cn rotation ðeð2mπi=nÞ; m ¼ 1;…; nÞ, giving
rise to a fractional charged CMs of e=n. We note that the
mass inversion mechanism, as also applied to quasicrystals
[29–33], is a special case of mass link with C2 rotation with
a phase shift of π. Therefore, it is very interesting to explore
if the mass kink approach can be generalized to quasicrys-
tals, because they have rotation symmetries (such as five-
fold rotation) that are not compatible with translational
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symmetry, which may hinder the realization of topological
CMs with fractional charges that do not exist in crystals.
In this Letter, we develop a low-energy effective model

for quasicrystals, based on a novel Fourier transform
developed recently [37] by representing a quasicrystal as
a projection of a hypercrystal from higher dimensions, from
a 4D hyper-BZ to a 2D pseudo-Brillouin zone (PBZ). Then,
an effective k · p Hamiltonian is constructed at the center
(Γ) of the PBZ, under long-wavelength approximation by
large-scale average with quasicrystalline symmetry. As
band inversion occurs at Γ, charged and Majarona CMs
arising from fractional mass kinks can emerge by applying
an in-plane Zeeman field. Taking the Penrose-tiling quasi-
crystal TI as an example, we show that the field induces a
fractional mass kink with a phase shift of 2π=5 at the
intersection of adjacent edges, generating five in-gap
localized CMs with a fractional charge of e=5, as displayed
in Fig. 1. Our scheme can be easily generalized to q-fold
quasicrystals (q ¼ 5; 8; 10; 12;…), leading to the corner
charge fractionalization by e=q that is disallowed in
crystals. In addition, when the 2D quasicrystal TI is in
proximity with an s-wave SC, Majorana CMs can be
generated by tuning the in-plane Zeeman field and chemi-
cal potential (see Fig. 1).
Model.—We construct quasicrystal lattices based on the

rhombic Penrose and Ammann-Beenker tilings which have
five- and eight-fold rotational symmetry, respectively
[38,39]. We assume the atoms have three atomic orbitals
ðs; px; pyÞ at the vertices of tiling and consider hoppings
between neighboring vertices connected by edges or the
shorter diagonals of the rhombi. The tight-binding (TB)
Hamiltonian is given by

H ¼
X
iα

ϵαc
†
iαciα þ

X
hiα;jβi

tα;βðrijÞc†iαcjβ

þ iλ
X
i

ðc†ipy
szcipx

− c†ipx
szcipy

Þ þ
X
iα

δαc
†
iαðm · sÞciα;

ð1Þ

where c†iα ¼ ðc†iα↑; c†iα↓Þ is electron creation operators on
the αð¼ s; px; pyÞ orbital at the ith site, ϵα is the on-site
energy, and tα;βðrijÞ is the Slater-Koster hopping integral
which depends on the orbital type (α and β) and the vector
rij between sites i and j. λ is the spin-orbit coupling (SOC)
strength and s ¼ ðsx; sy; szÞ are the Pauli matrices. The last
term represents a Zeeman field along the direction of m. δα
depends on field strength and the g factor of α orbital.
For simplicity, we take a uniform value δα ¼ δM, which
would not change the main physics we discuss here.
Experimentally, the Zeeman term can be introduced by a
magnetic field, coupling to a magnetic substrate, or
depositing magnetic adatoms on quasicrystal substrates.
It is well known that by considering a band inversion
between s and ðpx; pyÞ orbitals, topological states can be
realized in quasicrystal lattices [40–42]. Hence, we will
use the same settings and focus on nocc ¼ 2=3 filling of
electron states hereafter.
Low-energy effective theory.—Existing approaches

based on the analysis of states at high-symmetry k points
in the BZ of a crystal are ruled out because momentum is no
longer a good quantum number for quasicrystals. Instead,
in the following we elucidate the HOTI in quasicrystals by
establishing a low-energy effective theory in a continuum
model and performing analysis in terms of coupled
edge modes.
Generally, with the quasiperiodicity, the Fourier trans-

form of any function fðrÞ [e.g., the particle density ρðrÞ
and quasicrystalline potential UðrÞ] of a 2D pentagonal
quasicrystal can be expressed as

fðrÞ ¼
X
G∈L

f̂ðGÞeiG·r; ð2Þ

where L is a countable set of reciprocal wave vectors that
consist of G ¼ P

5
j¼1 njgj (nj ∈ Z) filling densely the 2D

reciprocal space. The five principal reciprocal vectors in the
kx-ky plane are

Helical edge states

Fractionally Charged CMs

xy

xyin-plane Zeeman M
m

SC pairing Majorana CMs

xy

s-wave superconductor

FIG. 1. Schematic illustration of the Zeeman-field-induced topological phase transitions in a 2D pentagonal quasicrystal. Starting
from a TI phase with helical edge states, the quasicrystal is driven to a HOTI phase with five charged corner modes (CMs) by an in-plane
Zeeman field δMm. When the system is in proximity with an s-wave superconductor (SC) with pairing Δ0, Majorana CMs can be
generated by tuning the Zeeman field and chemical potential.
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gj ¼ 2πfcos½2πðj− 1Þ=5�; sin½2πðj− 1Þ=5�g; j¼ 1;…;5;

ð3Þ
among which only four are independent due to the linear
dependence of

P
5
j¼1 gj ¼ 0. Note that all the momentum

values are scaled in the unit of inversed bond length a−1,
and we set a ¼ 1 without loss of generality. The wave
vectors in L can be divided into nth order with
n ¼ P

5
j¼1 jnjj, corresponding to the order of diffraction

peaks [see Fig. 2(a)]. The first order of L, which contains
ten principal wave vectors as �gj, defines the PBZ [43], in
analogy to the conventional first BZ of crystals. According
to the gap labeling [44,45], the leading-order gap opens at
the boundary of the PBZ with the gap size determined by
the first-order Fourier coefficient Ûð�gjÞ of quasicrystal-
line potential. Whereas nearby the Γ point of the PBZ, the
higher-order gaps appear in a hierarchy, which corresponds
to multiple scattering processes having a rapidly decreasing
size. This enables a continuum description based on a low-
energy effective model with a proper truncation of L.
Specifically, we employ the projection method, for

which a quasicrystal can be viewed as a higher-dimensional
crystal in hyperspace [46]. Then, an equivalent 4D repre-
sentation of the 2D quasicrystal can be made by imple-
menting the novel Fourier expansion proposed by Jiang and
Zhang (JZ) [37],

fðrÞ ¼
X
Π

f̂ðΠÞei½ðS·ΠÞT ·r�; ð4Þ

where Π ¼ P
4
i¼1 miQi ∈ R4, mi ∈ Z, and Qi are the 4D

primitive reciprocal vectors of the hypercrystal. S is the

projection matrix connecting the 2D physical space with
the 4D hyperspace. Mathematically, for any 2D quasiperi-
odic function fðrÞ, Eq. (4) has the property [37]

lim
V→∞

1

V

Z
dr fðrÞ ¼ f̂ðΠÞjΠ¼0: ð5Þ

Consequently, the large-scale average property of quasi-
crystals is well captured by the contribution around
k ¼ S ·Π ¼ 0, i.e., the Γ point of the PBZ. In fact, it
has been proven that the behavior of a quasicrystal for
excitations of any kind with long-wavelength modes can
be related to its average structure [47–54]. Since the
band inversion happens around Γ (see Fig. S1 in the
Supplemental Material [55]), a low-energy effective model
at the long-wavelength limit, which can be approximated
by the average structure of quasicrystals, is sufficient to
describe the relevant topological physics.
To derive the effective Hamiltonian in the pseudo-k

space, we first apply the JZ Fourier expansion to Eq. (1)
without the Zeeman field, which yields (see Supplemental
Material [55]),

HðΠÞ ¼
X
α

ϵαc
†
Π;αcΠ;α þ

X
α;β

tα;βðΠÞc†Π;αcΠ;β

þ iλðc†Π;py
szcΠ;px

− c†Π;px
szcΠ;py

Þ: ð6Þ

Here we have adopted the long-wavelength approximation
to calculate an average hopping as

tα;βðΠÞ ≈ lim
V→∞

1

V

Z
drPðrÞtα;βðrÞei½ðS·ΠÞT ·r�: ð7Þ

Note that around Γ, electron scattering is not affected by the
local details of the quasicrystalline potential but only feels
an average effective potential [54,66]. Here PðrÞ is the
statistical average distribution of interatomic vectors in
quasicrystals, which is also known as the Patterson function
and can be extracted from diffraction data [67,68]. We then
downfold the Hamiltonian to the two-orbital subspace
around the Fermi level based on the Löwding perturbation
method [69,70], followed by projecting the two-orbital
Hamiltonian to 2D space by taking k ¼ S ·Π and expand-
ing k around Γ. Finally, we obtain the effective k · p
Hamiltonian without the Zeeman term as [55]

Heff ¼ ðm − bk2Þσz þ ½aky þ a0ðk3y þ k2xkyÞ�σxsz
þ ½akx þ a0ðk3x þ kxk2yÞ�σy; ð8Þ

where σ and s are Pauli matrices acting on the orbital and
spin degrees of freedom, respectively. It is noteworthy that
Eq. (8) still satisfies the C5v symmetry of the pentagonal
quasicrystal. More importantly, its solution of band struc-
ture shows a band inversion between s and p orbitals
around Γ [see Fig. 2(b)], indicating a nontrivial topology.

(b)

(c)

(a)

FIG. 2. (a) The set of all reciprocal wave vectors consists of five
wave vectors gj, forming a dense set of points in k space. The
perpendicular bisectors of the 10 principal wave vectors �gj

form a decagonal boundary to the pseudo-Brillouin zone. (b) The
effective band structure around the center of the PBZ of the
Penrose-tiling quasicrystal. (c) Schematic illustration of an edge
along e⃗1 ¼ cos ζêx þ sin ζêy direction, where ζ is the angle
between the edge and positive x direction.
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Now, let us consider a generic open boundary along the
e⃗1 ¼ cos ζêx þ sin ζêy direction with the normal vector
e⃗2 ¼ − sin ζêx þ cos ζêy [see Fig. 2(c)]. To further derive
the low-energy Hamiltonian for the edge states along e⃗1, we
perform a rotational transformation to Eq. (8), and replace
k2 → −i∂x2 , k1 → 0. After some algebra (see Supplemental
Material [55]), we obtain a pair of edge-state solutions for
two spin channels, and arrive at the 1D edge model to the
leading order in k1: Hedge ¼ −ak1sz. It indicates the
existence of a pair of spin-polarized gapless edge states
protected by time-reversal symmetry.
When an in-plane Zeeman field of H0

in ¼
δMðcos θσ0sx þ sin θσ0syÞ is applied, the edge state
Hedge will generally be gapped by a mass term

MðζiÞ ∼ cosϕisx þ sinϕisy; ð9Þ

where ϕi ¼ ζi þ θ − π=2 is the generalized phase of the
effective Dirac mass [56,57], which depends on the
orientation angle ζi of the ith edge. From the work of
Jackiw and Rebbi [25], a phase shift of Δϕ ¼ Δζ ¼ π
between two edges results in a CM with fractional charge
Q ¼ e=2 due to mass inversion. Moreover, according to
Moore’s theory [34], a kink arising from the effective mass
term at the corner gives rise to a localized CM with
fractional charge of Q ¼ ejΔϕ=2πj ¼ ejΔζ=2πj [35,36].
Remarkably, for adjacent edges of a pentagonal Penrose-
tiling quasicrystal, the angle difference Δζ ¼ 2π=5 leads to
a fractional charge Q ¼ e=5. On the contrary, an out-of-
plane Zeeman field H0

out ¼ δMσ0sz only contributes an
energy-shift term of δMsz which cannot gap the edge state
Hedge (see Supplemental Material [55]).
For the Ammann-Beenker-tiling quasicrystal, a similar

low-energy theory can be derived and the phase shift
becomes Δϕ ¼ π=4 at the corners of the octagonal sample,
giving rise to a fractional charge ofQ ¼ e=8 at each corner.
Thus, our model is valid for quasicrystals with odd- as well
as even-rotational symmetries. We stress that our approach
of realizing CM in quasicrystals via the fractional mass
kink is fundamentally different from previous works based
on the mass-inversion mechanism [29–31], because their
CMs rely on an alternating sign of the artificial mass term at
the boundary, and hence does not work for odd rotations.
Topological CMs in quasicrystals.—The above effective

model predictions are confirmed by numerical TB calcu-
lations. In the absence of the Zeeman field, the model (1)
describes a TI state in the pentagonal quasicrystal, which is
verified by the calculation results of a nonzero spin Bott
index (Bs ¼ 1) [40,41] and time-reversal symmetry-pro-
tected edge states residing inside the bulk gap (see Fig. S3
and S4 in the Supplemental Material [55]). In the presence
of an in-plane Zeeman field along the x axis with
δM ¼ 0.12 eV, the energy spectrum of the finite pentagonal
quasicrystal is gapped and five states appear at the Fermi
level and separate from other states, as shown in Fig. 3(a).

We plot the spatial distribution of these states [see inset of
Fig. 3(a)], and find that they are indeed CMs localized at
the corners of the pentagonal quasicrystal. This implies that
the system becomes a HOTI, although the CMs are not
located at the midgap position due to the lack of chiral or
particle-hole symmetry. Remarkably, since four of the five
CMs are occupied for a charge-neutral system, a fractional
charge of e=5 localized at each corner can be realized by
adding one electron, resulting in a fractionalized charge
distribution due to the filling anomaly [71,72]. Similarly,
for the octagonal Ammann-Beenker-tiling quasicrystal, we
found eight CMs in the gap and a charge fractionali-
zation of e=8 per corner if one extra electron is added [see
Fig. 3(b)]. It is worth noting that the corner charge in
crystals are fractionally quantized module of e=n with
n ¼ 2, 3, 4, and 6, covering all the allowed rotational
symmetries by the crystallographic restriction theorem.
Our results extend the possible values of the corner charge
fractionalization with e=q, where q ¼ 5, 8 and other
rotational orders in quasicrystals.
We further investigated numerically the phase evolution

with the field strength δM for the Penrose-tiling quasicrys-
tal. By increasing δM, the bulk energy gap, which is
estimated from the calculations of quasicrystal approxi-
mants with 1364 atoms [55], decreases gradually and closes
eventually when δM > 0.2 eV. While the CMs exist in the
gap only when δM < 0.15 eV, beyond that they merge into
the bulk spectrum. In addition, we studied the effect of
arbitrary Zeeman field orientations in the x-y plane, e.g.,
m ¼ ðcos θ; sin θ; 0Þ, and found that the CMs persist
regardless of θ. This can be understood by simply perform-
ing a rotation of spin about the z axis to make the Zeeman
field pointing along the x direction [20].
Majorana CMs in quasicrystal TI and s-wave SC

heterostructures.—In addition to fractional topological
corner charge, our model and approach are also applicable
to create Majorana CMs in the TI quasicrystals, under an
in-plane Zeeman field and in proximity with s-wave SCs.
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(a) (b)

0
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0
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FIG. 3. Energy spectrum of a finite (a) pentagonal Penrose-
tiling quasicrystal sample with 2146 atoms and (b) octagonal
Ammann-Beenker-tiling quasicrystal sample with 2241 atoms in
the presence of an in-plane Zeeman field with δM ¼ 0.12 eV and
δM ¼ 0.15 eV, respectively. The parameters used here are
ϵs¼0.7, ϵp¼−2.3, Vssσ¼−Vspσ¼−0.17, Vppσ ¼ Vppπ ¼ 0.34,
and λ ¼ 1.0 eV. Insets show the spatial distributions of CMs.
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The physics of the heterostructure can be described by an
effective Bogoliubov-de Gennes (BdG) Hamiltonian

HBdG ¼
�
H − μ Δ0

Δ†
0 −H� þ μ

�
; ð10Þ

where μ is the chemical potential and Δ0 denotes an s-wave
SC pairing gap by proximity effect. Although the normal-
state part of HBdG is topologically nontrivial with helical
edge states, the proximity induced s-wave SC pairing
necessarily trivializes the full BdG model and gaps out
the edge states [73]. As shown in Fig. 4(a), with the
increasing in-plane Zeeman field δM at a fixed Δ0, the
quasiparticle energy gap first closes and then reopens
accompanied by the emergence of localized modes at
corners, implying the nontrivial topology is resumed.
Moreover, these CMs can be fine-tuned to zero energy
by adjusting the chemical potential, giving rise to Majorana
CMs [74] [see Fig. 4(b)]. As shown in Fig. 4(c), in the
topological phase at ðδM; μ;Δ0Þ ¼ ð0.13; 0.02; 0.04Þ eV,
five pairs of Majorana zero modes emerge inside the gap.
The inset of Fig. 4(c) shows the spatial distribution of these
zero modes, confirming that they are localized around the
corners of a finite pentagonal quasicrystal.
Conclusion.—We have devised a low-energy theory of

quasicrystals under the long-wavelength approximation,
and demonstrated that higher-order topological CMs with
fractional charges can be generated by in-plane Zeeman-
field-induced fractional mass kinks. Our model predictions
are further confirmed by numerical TB calculations, which
show also emergence of Majorana CMs in TI quasicrystals
in proximity with an s-wave SC. Our work greatly extends
the higher-order topological physics for mass-kink induced
domain-wall states to quasicrystals and establishes a
generic theoretical framework to study the low-energy
physics of quasicrystalline systems.
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