
 

Ubiquitous Spin-Orbit Coupling in a Screw Dislocation with High Spin Coherency
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We theoretically demonstrate that screw dislocation (SD), a 1D topological defect widely present in
semiconductors, exhibits ubiquitously a new form of spin-orbit coupling (SOC) effect. Differing from
the widely known conventional 2D Rashba-Dresselhaus (RD) SOC effect that typically exists at surfaces
or interfaces, the deep-level nature of SD-SOC states in semiconductors readily makes it an ideal SOC.
Remarkably, the spin texture of 1D SD-SOC, pertaining to the inherent symmetry of SD, exhibits a
significantly higher degree of spin coherency than the 2D RD-SOC. Moreover, the 1D SD-SOC can be
tuned by ionicity in compound semiconductors to ideally suppress spin relaxation, as demonstrated by
comparative first-principles calculations of SDs in Si=Ge, GaAs, and SiC. Our findings therefore open
a new door to manipulating spin transport in semiconductors by taking advantage of an otherwise
detrimental topological defect.
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Spintronics offers a promising paradigm shift for future
information and energy technologies by processing the
electron spin instead of charge degree of freedom, thereby
essentially avoiding heat dissipation. In a crystalline solid,
the motion of an electron is inevitably coupled with its spin
orientation through the spin-orbit coupling (SOC) effect.
Therefore, discovering new forms of the SOC effect that
provide more effective means to manipulate spin transport
properties is not only of fundamental interest but also
critical to the development of spintronics devices. In this
Letter, we demonstrate a surprising form of SOC that exists
ubiquitously in a screw dislocation (SD) in semiconductors.
The structural, mechanical, and electronic properties of

dislocations havebeen intensively studied for decades [1–7].
They fall into three categories, i.e., edge, mixed, and screw
type [1,2]. Recently, in a topological insulator, a dislocation
has been shown to conduct topological edge states [8]. Also,
the concept of quantum dislocation [6,7] has been intro-
duced to account for their effect on superconducting
transition temperature. In general, however, dislocations
are considered to have a negative impact on materials
properties and functionalities. For example, formation of
dislocation is the leading mechanism for growth instability
of coherent thin films [9]. Dislocationsmay create scattering
centers [3–5] to lower carriermobility, cause current leakage
and act as in-gap deep-level carrier recombination centers
[10–12]. Therefore, much research effort in the past has
been devoted to alleviating dislocations in semiconductors.

Defying the conventional wisdom, here we turn the ordi-
narily harmful dislocations into something useful through a
previously unknown SOC effect.
The extrinsic SOC effect (in contrast to the atomic SOC

effect) in a crystal requires breaking of inversion symmetry,
which commonly occurs on surfaces or interfaces as
manifested by the 2D Rashba and Dresselhaus SOC
(RD-SOC) effects [13,14]. Bulk RD-SOC was only found
in polar materials, such as BiTeI [15] and ferroelectric
semiconductors [16–17], which intrinsically lack inversion
symmetry. The SOC we found in a SD is 1D in nature
and exists in bulk materials, so it goes much beyond the
conventional 2D RD-SOC effect. The RD-SOC effect
has been widely exploited in spintronics devices, but
met two main challenges. First, the spin-polarized SOC
states are often not ideal, because they overlap with other
spin-unpolarized bulk states around the Fermi energy
[18–23]. Second, the spin texture is diverse, suffering
from spin randomization (relaxation) due to momentum-
changing electron scattering, and special combination of
the RD-SOC effects is needed to produce an ideal spin
texture to suppress spin relaxation [24]. Thus, an ideal SOC
effect would transport the spin current with a fixed spin
orientation (high spin coherency), without interference
from other spin-unpolarized electrons and immune to
changing electron momentum (direction).
The 1D SOC in a SD is inherently induced by breaking

of local inversion symmetry along the dislocations core,
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because the SD assumes always a rotational plus a frac-
tional translational symmetry and generates a 1D spiral-
type effective electrical field. Most importantly, the 1D
SD-SOC resides deep in the band gap of semiconductors,
completely isolated from the bulk bands. It has also an
spin texture with a much higher degree of spin coherency
than the 2D RD-SOC, which is tunable by the ionicity
of a compound semiconductor, as demonstrated by first-
principles calculations of several representative semicon-
ductors (Si=Ge, GaAs, and SiC). Therefore, the 1D
SD-SOC exhibits two ideal features that are not only
fundamentally interesting but also highly desirable for
spintronics device applications.
We first introduce the key features of the coherent 1D

SD-SOC effect and highlight its main difference from a
conventional 2D RD-SOC effect, as illustrated in Fig. 1.
In general, the SOC in a crystal can be described by a
Hamiltonian HSOC ¼ ðα=ℏÞðE × pÞ · σ and E ¼ ∇V,
where α is the material-dependent SOC constant, h is
the Plank constant, E is the effective field induced by
gradient of potential (V), p is the momentum, and σ ¼
ðσx; σy; σzÞ are the Pauli matrices. For a system with
C2v rotational symmetry, a 2D RD-SOC Hamiltonian is
derived as [25]

H2D
RD ¼ λRðkyσx − kxσyÞ þ λDðkxσx − kyσyÞ; ð1Þ

where kx and ky are the reciprocal-space wave vectors,
and λR (λD) are the Rashba (Dresselhaus) SOC strength.
The first Rashba term usually arises at a surface or interface
[26,27], where there exists a k-independent effective
electric field in the direction perpendicular to the surface
or interface, i.e., E ¼ eẑ. Then the spin-polarized bands
adopt a 2D spin texture in the (kx, ky) plane as shown in
Fig. 1(a). The second linear Dresselhaus term arises in an
asymmetric quantum well or a strained zinc-blende film
[28], where there is no macroscopic “net” field but effective
k-dependent local fields, Eð−kx; kyÞ ¼ Eðkx;−kyÞ ¼ eẑ
andEðkx; kyÞ ¼ Eð−kx;−kyÞ ¼ −eẑ, and a 2D spin texture
in the (kx, ky) plane as shown in Fig. 1(b). In a system with
both terms of equal strength, the spin texture has a
k-independent spin orientation as shown in Fig. 1(c).
In a SD, the potential V and hence the effective field E

must follow the structural symmetry of the SD. Taking the
general twofold screw rotation symmetry along the c axis
Ŝ ¼ fC2jðc=2Þg, the potential becomesV ¼ Vðcosϑ; sinϑÞ,
where ϑ ¼ ½2π=ðc=2Þ�z ¼ 2Gzz. After some algebra (see
Supplemental Material [29]), a general 1D SD-SOC
Hamiltonian can be expressed as

H1D
SD ¼ λekz

�
cos

kz
2
σy − sin

kz
2
σx

�

þ λckz

�
cos

kz
2
σx − sin

kz
2
σy

�
; ð2Þ

where kz is in units of π=c. λe (λc) are the SOC strengths
for the first (second) term. These two terms are found to
correspond to the SD-SOC Hamiltonian in elemental and
compound semiconductorswith high ionicity, respectively, as
shown later. A key difference between Eqs. (2) and (1) is a
sinusoidal dependence of the effective field and hence spin
texture on kz, which results in a spin rotation in the (kx, ky)
plane with a period of π. By imposing the C2 rotation plus
translation symmetry, we solve Eq. (2) to obtain the spin
texture of the 1DSD-SOC [29]. The first termgives rise to the
following spin orientation as a function of kz,

S⃗1;2 ¼∓ sin
kz
2
k̂x � cos

kz
2
k̂y; ð3aÞ

FIG. 1. (a) The orientations of the effective electrical field
(light gray shaded circle) and spins (red and blue arrows) for
the conventional Rashba SOC effect at surfaces or interfaces.
(b) Same as (a) for the linear Dresselhaus effect in an asymmetry
QW or a strained zinc-blende film. (c) Combined effect of (a)
and (b). (d) The orientations of the effective electrical field (gray
arrows) and spins (red and blue arrows) for the 1D SD-SOC effect
as found in Ge. (e) Same as (d) as found in GaAs. (f) Combined
effect of (d) and (e) as found in SiC.

PHYSICAL REVIEW LETTERS 121, 066401 (2018)

066401-2



θ1 ¼
π

2
þ kz

2
; θ2 ¼ − π

2
þ kz

2
; ð3bÞ

where subscripts 1 and 2 represent spin-up and spin-down,
respectively. θ is the angle between the spin and the kx axis.
Similarly, from the second term in Eq. (2),

S⃗1;2 ¼ � cos
kz
2
k̂x ∓ sin

kz
2
k̂y; ð4aÞ

θ1 ¼ π − kz
2
; θ2 ¼ − kz

2
: ð4bÞ

When both terms are present with equal strength, one has

θ1 ¼
3π

4
; θ2 ¼ − π

4
: ð5Þ

These results lead to spin textures with spins rotating within
one of the four quadrants, as shown in Figs. 1(d) and 1(e) for
the first and second terms in Eq. (2), respectively. They differ
by a phase of π=2 [Fig. 1(d) vs Fig. 1(e)]. A very interesting
case is when both terms are present with equal strength, then
the effective field and hence the spin orientation becomes
fixed along the diagonal direction of a quadrant independent
of kz, as shown in Fig. 1(f).
There are significant implications of different spin

textures, as shown in Fig. 1. In a solid, due to the spin-
momentum locking property, spin will rotate when elec-
trons are scattered with a sudden change of momentum,
leading to spin relaxation and a shortened spin coherence
time. For the conventional 2D RD-SOC [Figs. 1(a) and
1(b)], spins can rotate in four quadrants in the (kx, ky) plane
with an angle changing from 0 to 2π. In contrast, for the
newly discovered 1D SD-SOC [Figs. 1(d) and 1(f)], spins
only rotate in one quadrant with an angle changing from
0 to π=2. Consequently, the 1D SD-SOC will exhibit a
significant higher degree of spin coherency because the
spins are constrained to vary within a much narrower range
of angles. Furthermore, it is known that, for the 2D RD-
SOC, an ideal spin texture [Fig. 1(c)] can be engineered by
including both the first and second terms in Eq. (1) with
equal strength, such as in a III-V heterostructure [37].
Similarly, an ideal spin texture can be achieved with the 1D
SD-SOC [Fig. 1(e)], albeit be available intrinsically in a
single material.
Next, to confirm the above theoretical analysis, we

will characterize and quantify the 1D SD-SOC effects in
several representative semiconductors with different ion-
icity, including Ge (Si), GaAs, and SiC, using first-
principles density-functional theory and the tight-binding
(TB) model Hamiltonian calculations [29]. Furthermore, to
support our theoretical studies, we will demonstrate an
experimental approach to show the feasibility of controlled
formation of SDs in Si [29].

We first present the atomic and electronic structures of
SDs in Ge, GaAs, and SiC for comparison, as shown in
Fig. 2. Because of the larger SOC effect in Ge, we will
show the results of Ge, while leaving the results of Si to be
shown in Fig. S2 of the Supplemental Material [29]. The
SDs are known to induce deep in-gap defect levels, as
shown in Figs. 2(d)–2(f). Excluding SOC in the calculation,
the two in-gap bands are spin degenerate, with charge
distributions that are solely determined by the Ge, GaAs,
or SiC atoms in the dislocation core [29]. Time reversal
symmetry (TRS) ensures EσðkÞ ¼ Eσ̄ð−kÞ for Kramers
doublets with opposite momenta and orthogonal spins.
Including SOC, the spin degeneracy of the two defect
bands is lifted, as shown in Figs. 2(d)–2(f). Consistent with
the SOC strength, the spin splitting is larger in GaAs than
in Ge and SiC.
In Fig. 3(a), we show the spin texture p⃗ðk⃗Þ of the SOC-

lifted states induced by the SD in Ge. At the same k, the
directions of spins of lower and higher energy bands are
opposite. Within the same band, the spin texture satisfies
the condition, p⃗ðk⃗Þ ¼ −p⃗ð−k⃗Þ, ensured by the TRS. The z
component of the spin polarization is negligible compared
with the x and y components. Most interestingly, in
Fig. 3(b) we plot the spin orientation θ, the angle between
the spin and the þkx axis, as a function of kz. It clearly

FIG. 2. (a)–(c) The atomic structures of a SD in bulk Ge, GaAs,
and SiC, respectively. (d)–(f) Band structures of a SD in Ge,
GaAs, and SiC with SOC effect, respectively. The Fermi level is
set to zero. The red and blue lines represent SD-SOC bands with
different spin projections.
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shows a linear dependence following closely with Eq. (3b)
as theoretically predicted from the first term of Eq. (2).
This indicates that the SD in an elemental semiconductor
generates a kz-dependent local field pattern as depicted in
Fig. 1(d). Therefore, generally, in a nonpolar elemental
semiconductors with zero iconicity, the SOC arises from
“structural” inversion symmetry breaking (in analogy to the
Dresselhaus effect). It can be described by the first term in
Eq. (2) and generates a spin texture following Eq. (3).
The calculated spin texture of SD in GaAs is shown in

Fig. 3(c). Again the z component of the spin polarization is
negligible. Interestingly, the spin texture is different from
that of Ge, with the spin orientations phase shifted by π=2.
As plotted in Fig. 3(d), θ shows a linear dependence on kz,
closely following Eq. (4b), as theoretically predicted from
the second term of Eq. (2). This indicates that the SD in a
compound semiconductor with large ionicity generates a
kz-dependent local field pattern as depicted in Fig. 1(e).

Therefore, generally in compound semiconductors with
large iconicity, the SOC arises from a local “electrical field”
(in analogy to the Rashba effect). It can be described by
the second term in Eq. (2) and generates a spin texture
following Eq. (4).
The results for Ge and GaAs represent two extreme cases

of an elemental semiconductor, with zero iconicity, and a
compound semiconductor with large ionicity, respectively.
Their spin textures correspond to the first and second term
in Eq. (2), respectively, as shown above. We suppose that
the SiC may be an intermediate case representing a system
with medium iconicity. To test this hypothesis, we calcu-
lated the spin texture of SiC. Indeed the spin texture of SD
in SiC, as shown in Figs. 3(e) and 3(f), is almost exactly the
same as theoretically predicted in Eq. (5) and Fig. 1(f). The
spin no longer rotates, but is fixed in the [110] direction.
Therefore, generally, in compound semiconductors with
medium ionicity, a SD generates a SOC effect as described
by both the first and second terms in Eq. (2). It generates an
ideal spin texture with spin conservation, which is predicted
to be robust against all forms of spin-independent scattering
[24,37,38]. Thus, the SD in those compound semiconduc-
tors with medium iconicity, like SiC, may be used effec-
tively for suppressing spin relaxation in spintronics devices.
To support our theoretical studies, we will demonstrate

an experimental approach to show the feasibility of con-
trolled formation of SDs in Si (see Supplemental Material
[29]). We have also calculated the stability of different
SD structures and their corresponding SOC effects, which
further confirmed the general applicability of our results
and conclusions [29]. Because the unique spin texture of
the 1D SD-SOC is induced by the intrinsic helical sym-
metry of the SD, all the properties we reveal here will be
ubiquitous in semiconductors with SDs. To supplement our
first-principles calculations, we have also constructed a
general (2 × 2) TB model Hamiltonian [see Eq. (S6) [29] ]
to extract the quantitative strength of SOC in different
materials (Supplemental Material, Table S3) by fitting the
TB bands to the first-principles bands [Figs. 3(a), 3(c),
and 3(e) for spin texture and Fig. S4 for band structures,
respectively]. For SiC, a semiconductor with middle
iconicity (λc ¼ λe), it behaves as an intermediate (or
average) effect of the first two. These results affirm again
that the detailed spin texture can be tuned by the degree of
iconicity with the same geometry of SDs or by different
geometries of SDs. The latter deserves further investiga-
tion. Thus, effectively, a SD can act as a “SOC torque” to
generate and conduct highly coherent spin currents, and
SDs are therefore useful for spintronics device applications
[24]. Especially, the SD in SiC is predicted to afford the
most attractive test bed for future experiments, with an ideal
form of SOC. The perspective of maximizing the strength
of SOC in SDs [39] is also very appealing.

We thank S. B. Zhang, S.-H. Wei, and X.W. Zhang for
helpful discussions. L. H. and B. H. acknowledge the

FIG. 3. (a),(c),(e) The spin textures of SD-SOC bands obtained
from DFT calculations for Ge, GaAs, and SiC, respectively. The
red and blue arrows show orientations of two spin projections.
The dashed-line spin textures are obtained from TB results. (b),
(d),(f) Data points (dots) show θ, the angle between the spin and
the þkx axis, as a function of kz obtained from DFT calculations
for Ge, GaAs, and SiC, respectively. The lines are drawn
according to Eqs. (3b), (4b), and (5), respectively.
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