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We have performed first-principles calculations of graphene edge stresses, which display two interest-

ing quantum manifestations absent from the classical interpretation: the armchair edge stress oscillates

with a nanoribbon width, and the zigzag edge stress is noticeably reduced by spin polarization. Such

quantum stress effects in turn manifest in mechanical edge twisting and warping instability, showing

features not captured by empirical potentials or continuum theory. Edge adsorption of H and Stone-Wales

reconstruction are shown to provide alternative mechanisms in relieving the edge compression and hence

to stabilize the planar edge structure.
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Graphene, a two-dimensional (2D) single layer of car-
bon atoms, has attracted tremendous attention because of
its unique electronic properties [1] and potential applica-
tions in electronic devices [2]. Earlier studies have focused
on characterizing the unusual electronic and transport
properties of graphene, particularly as a massless Dirac
fermion system [1,2]. Some recent attention has been
shifted to the structural stability of graphene [2–5]. On the
one hand, as a 2D membrane structure, graphene provides
an ideal testing ground [3,4] for the classical Mermin-
Wagner theorem on the existence of long-range crystalline
order in 2D [6,7]. On the other hand, the free edges of
graphene are amenable to edge instabilities [5,8–10].

The graphene edge stability is defined by two funda-
mental thermodynamic quantities: edge energy and edge
stress. The edge of a 2D structure can be understood in
analogy to the surface of a 3D structure [11,12]: the edge
(surface) energy accounting for the energy cost to create an
edge (surface) defines the edge (surface) chemical stabil-
ity; the edge (surface) stress accounting for the energy cost
to deform an edge (surface) defines the edge (surface)
mechanical stability. First-principles calculations showed
that chemically the armchair edge is more stable with a
lower energy, while the zigzag edge is metastable against
reconstruction [8]. Empirical-potential calculations
showed that both intrinsic edges are under compressive
stress rendering a mechanical edge twisting and warping
instability [10].

Usually, stress and mechanical instability are understood
as phenomena of classical mechanics, but they are ex-
pected to be affected by quantum effects which become
prominent at nanoscale. So far, however, quantum effects
have been mostly shown for electronic structure and ener-
getic quantities of low-dimensional nanostructures. Here,
we demonstrate an interesting example of quantum mani-
festations of mechanical quantities in graphene edge stress.
Using first-principles calculations, we predict that the arm-
chair edge stress in a nanoribbon exhibits a large oscilla-

tion with ribbon width arising from quantum size effect,
while the zigzag edge stress is reduced by spin polariza-
tion. Such quantum effects on edge stress in turn manifest
in graphene edge mechanical instability, with ‘‘quantum’’
features that apparently cannot be described by empirical
potentials or continuum theory.
Our calculations were performed using the density func-

tional theory (DFT) method as implemented in the VASP

code [13]. The supercell technique was adopted to model
the graphene nanoribbons (GNR), with a vacuum layer

>15 �A. We used a plane-wave energy cutoff of 500 eV
and optimized structure until the atomic forces converged

to <10 meV= �A. The edge energy is calculated as Eedge ¼
ðEribbon � EatomÞ=2L, where Eribbon is the total energy of
the graphene nanoribbon, Eatom is the energy per atom in a
perfect graphene, and L is the length of edge. The edge
stress is calculated as �edge ¼ �xx=2, where �xx is the

diagonal component of supercell stress tensor in the
x-direction (defined along the edge), which is calculated
using the Nielsen-Martin algorithm [14]. All other compo-
nents of stress tensor vanish. We note that DFT is suitable
for calculating ground-state properties of lattice energies
and stresses, to which the nonlocal many-body effects are
not important.
Figure 1 shows the edge energy and edge stress of arm-

chair edges as a function of ribbon width from �3:5 to

48 �A. One notices that both edge energy and edge stress
oscillate with the increasing width having a period of 3 but
out of phase with each other. The oscillations are origi-
nated from the quantum confinement effect, as seen in the
similar oscillations of electron band structures [15–18].
The oscillation of edge energy decays quickly with the

increasing width and converges to �1:0 eV= �A, which
agrees well with the previous first-principles values [8].
In contrast, the oscillation of edge stress decays much

slower with a mean value of �� 1:45 eV= �A (using nega-
tive sign as convention for compressive stress). The much
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larger oscillation in edge stress than in edge energy is
possibly caused by the fact that edge stress equals to the
derivative of edge energy with respect to strain so that
stress is much more sensitive to the width-dependent quan-
tum confinement effect. There is also a slight revival effect

in the stress oscillations at �40 �A width, whose origin is
not clear and needs further study.

Figure 2 shows the edge energy and edge stress of GNR
zigzag edges as a function of ribbon width from �5:0 to

85 �A. In this case, both edge energy and edge stress show
very weak width dependence and converges quickly, again
consistent with their corresponding electronic-structure
behavior [15–18]. However, the zigzag edge is known to
have an antiferromagnetic (AFM) ground state [17]. The

AFM edge energy is calculated to be �1:2 eV= �A, about

0:2 eV= �A lower than the paramagnetic (PM) edge energy
[8,9,19]. Thus, we have calculated the spin dependence of
edge stress and found that spin polarization reduces the

compressive stress from �� 0:7 eV= �A in the PM edge to

�� 0:5 eV= �A in the AFM edge.
Our first-principles stress calculations confirm qualita-

tively the recent empirical-potential results [10] that both
edges are under compressive stress. However, there are
also some significant differences. Two quantum manifes-
tations of edge stress stand out, which are absent from the
empirical prediction. One is the quantum oscillation of
armchair edge stress, and the other is the spin reduction
of zigzag edge stress. The physical origin of edge energy
and edge stress is associated with the formation of one
dangling bond on each edge atom. The repulsive interac-
tion between the dangling bonds is believed to be one
origin for the ‘‘compressive’’ edge stress. In addition, in
the armchair edge, it is well known [20] that the edge
dimers form triple -C � C- bonds with a much shorter

distance (�1:23 �A according to our calculation) add-
ing extra compressive stress to the edge, while in the
zigzag edge, spin polarization further reduces the compres-
sive stress. Consequently, the armchair edge has a much

larger compressive stress (��1:45 eV= �A) than the zigzag

edge (��0:5 eV= �A), in contrast to the empirical predic-
tion of a smaller compressive stress in the armchair edge

(��1:05 eV= �A) than in the zigzag edge (��2:05 eV= �A)
[10].
The quantum effects in edge stress will in turn modify

the mechanical edge instability. The compressive edge
stress means the edge has a tendency to stretch. If we apply
a uniaxial in-plane strain to a nanoribbon along the edge
direction, the strain energy can be calculated as [10]

Estr ¼ 2�eL"þ EeL"
2 þ 1

2
EsA"

2: (1)

Here, A is the ribbon area, L is the edge length, �e is the
edge stress, Ee is the 1D edge elastic modulus in a 2D
nanoribbon, in analogy to the 2D surface elastic modulus
in a 3D nanofilm [21], and Es is the 2D sheet elastic
modulus. Since �e is negative, for small enough tensional
strain " (positive), the negative first term (linear to ") in
Eq. (1) can always overcome the positive second and third
terms (quadratic to ") to make Estr negative. So, the ribbon
is unstable against a small amount of stretching along the
edge direction. Fitting first-principles calculations, by
manually deforming the sheet and ribbon along the edge

direction, to Eq. (1), we obtained Es � 21:09 eV= �A2,

EeðamchairÞ � 3 eV= �A and EeðzigzagÞ � 24 eV= �A with
�e already calculated directly (see Figs. 1 and 2). Our Es

value is in good agreement with the experiment [22] and
empirical result [10], but Ee are notably different from the
empirical results [10].
Another effective way to stretch the edge of a 2D sheet

is by out-of-plane edge twisting and warping motions,
which are barrierless processes. For example, assuming a
sinusoidal edge warping with displacement �e ¼
a sinð2�x=�Þ of amplitude a and wavelength �, which

decays exponentially into the sheet as e�y=l (See inset of
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FIG. 2 (color online). The AFM and PM zigzag edge stresses
and edge energies of graphene nanoribbons as a function of
ribbon width. Inset: schematics of the nanoribbon; the rectangle
marks one unit cell (supercell) of the ribbon.
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FIG. 1 (color online). The armchair edge stresses and edge
energies of graphene nanoribbons as a function of ribbon width.
Inset: schematics of the nanoribbon; the rectangle marks one unit
cell (supercell) of the ribbon.
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Fig. 3), where l is the decay length, Shenoy et al. have
shown that minimization of strain energy leads to charac-
teristic length scales of such warping instability as l �
0:23� and a � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið���eÞ=ð1:37Eb þ 14:8Ee=�Þ

p

. Using
their empirical-potential values of �e, Ee and Es, they
estimated that the warping magnitude of armchair edge is
smaller than that of zigzag edge, and both are larger than
typical thermal fluctuations [10].

Our first-principles predictions, however, are different in
several ways. First, absent from empirical prediction, the
quantum oscillation of �e of armchair edge gives rise to an
oscillating armchair edge warping amplitude for given
wavelength as a function of nanoribbon width, as shown
in Fig. 3(a). Second, the mechanical undulation of zigzag
edges induced by compressive edge stress is comparable to
thermal fluctuations [3,4], as shown in Fig. 3(b), and hence,
the two are difficult to distinguish.

Because the compressive edge stress is partly originated
from the dangling bond, naturally, we may saturate the
dangling bonds to relieve the compressive stress. We have
tested this idea by saturating the edge with H that indeed

confirmed our physical intuition. For armchair edge in a
1-nm wide ribbon, we found H saturation changes the edge

stress from �1:42 eV= �A to �0:35 eV= �A; for zigzag edge
in a 2.0-nm wide ribbon, it changes the edge stress from

�0:42 eV= �A toþ0:13 eV= �A. Thus, the H edge saturation,
or saturation by other molecules in general, is expected to
relieve the edge compression and even reverse the com-
pressive stress in a zigzag edge to tensile.
Surface reconstruction has long been known as an ef-

fective mechanism in relieving surface stress [23]. Thus,
we have also investigated possible edge reconstructions in
relieving the edge compressive stress. The Stone-Wales
(SW) defect [24] appealed to us because a SW defect in
2D is equivalent to a dislocation core in 3D that is known as
a common stress relieve mechanism. Figure 4(a) shows the
calculated armchair edge stress along with edge energy as a
function of one type of SW defect (7-5-7 ring structure)
concentration. Figure 4(b) shows an example of the opti-
mized edge structure at the 50% defect concentration. The
edge stress increases linearly from compressive to tensile
with the increasing SW defect concentration. The most
stable edge structure is at �25% defect concentration
where the edge stress is very small and slightly compres-
sive. A small stress value indicates that this chemically
stable edge structure (with the lowest edge energy) is also
most mechanically stable against deformation.
Figure 5(a) shows the ground state AF zigzag edge stress

along with edge energy as a function of another type of SW
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FIG. 4 (color online). (a) The armchair edge stresses (with
linear fit) and edge energies as a function of edge SW defect
concentration. (b) The optimized ribbon structure at the 50% SW
defect concentration.
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FIG. 3 (color online). (a) Armchair edge ripple amplitude
versus ribbon width for � ¼ 50 �A. Inset: Schematics of ripple
formation along the armchair and zigzag edge. (b) Armchair and
zigzag edge ripple amplitude as a function of �. Light blue band
shows the typical range of thermal fluctuation.
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defect (5-7 ring structure) concentration. Figure 5(b) shows
an example of the optimized edge structure and spin charge
density at the 50% defect concentration. The edge stress
increases linearly from compressive to tensile with the
increasing defect concentration, the same as the case of
armchair edge [Fig. 4(a)], but the edge energy decreases
monotonically with the most stable edge having 100%
of defects, in agreement with a recent first-principles
calculation [8]. The initial compressive edge stress

(��0:5 eV= �A) is completely reversed to a large tensile

value of �1:2 eV= �A in the most stable edge. Also, the
100% defected edge becomes non-spin-polarized. In gen-
eral, the zigzag edge spin decreases continuously with the
increasing SW defect concentration, similar to the behav-
ior found previously for other types of defects [25].

In conclusion, quantum effects have been widely shown
for electronic structure and energetic quantities of low-
dimensional nanostructures. We demonstrate, in addition,
quantum manifestations of mechanical quantities in gra-
phene edge stress. We show that quantum confinement can
lead to stress oscillations, and spin polarization can reduce
stress, which in turn ‘‘quantummechanically’’ modifies the
edge twisting and warping instability. We further show that
H edge saturation and SWedge reconstruction can not only
improve the ‘‘chemical’’ stability of graphene edges by
lowering the edge energy, but also enhance their ‘‘me-

chanical’’ stability by converting compressive edge stress
towards tensile and hence stabilizing the planar edge struc-
ture. Our first-principles findings, which cannot be cap-
tured by classical methods, provide new insights to the
understanding of mechanical stability of graphene. We
expect the quantummanifestation of mechanical properties
such as stress to exist generally in many low-dimensional
nanostructures.
The work at Tsinghua is supported by the Ministry of

Science and Technology of China and NSFC; the work at
Utah is supported by DOE-BES (DEFG0203ER46027).
Note added in proof.— Another empirical calculation

[26] was published. Although it can not capture the quan-
tum effects of our study, its calculated edge stress agrees
better with first-principles results than Ref. [10] and
showed also edge saturation effect.
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FIG. 5 (color online). (a) The zigzag edge stresses (with linear
fit) and edge energies as a function of SW defect concentration.
(b) The optimized ribbon structure and spatial distribution of
spin density (charge density difference between spin-up and
spin-down states in units of �B

�A�2) of the AFM ground state
at the 50% SW defect concentration.
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