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Topological band evolution between Lieb and kagome lattices
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Among two-dimensional lattices, both kagome and Lieb lattices have been extensively studied, showing
unique physics related to their exotic flat and Dirac bands. Interestingly, we realize that the two lattices are in fact
interconvertible by applying strains along the diagonal direction, as they share the same structural configuration
in the unit cell, i.e., one corner-site and two edge-center states. We study phase transitions between the two
lattices using the tight-binding approach and propose one experimental realization of the transitions using
photonic devices. The evolution of the band structure demonstrates a continuous evolution of the flat band from
the middle of the Lieb band to the top/bottom of the kagome band. Though the flat band is destroyed during the
transition, the topological features are conserved due to the retained inversion symmetry, as confirmed by Berry
curvature, Wannier charge center, and edge state calculations. Meanwhile, the triply degenerate Dirac point (M)
in the Lieb lattice transforms into two doubly degenerate Dirac points, one of which moves along M-� and the
other moves along M-K/K ′ directions that form the kagome band eventually. Interestingly, the Dirac cones in
the transition states are strongly tilted, showing a coexistence of type-I and type-II Dirac points. We finally show
that these transitions can be experimentally realized in photonic lattices using waveguide arrays.
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I. INTRODUCTION

The band theory has empowered us to understand most
fundamental electronic properties of solid state systems [1,2].
For most generic cases, the energy En(k) is a parabolic
function of k [En(k) ∝ k2], from which the effective mass
and velocity of the quasiparticle can be derived. These
have been widely applied to semiconductors, e.g., Si and
Ge, to calculate their electrical conductivities [3–5]. There
are also exotic bands where En(k) is a linear function of
k [En(k) ∝ k1] or a constant independent of k [En(k) ∝ k0].
The famous example of the former scenario is discovered
in the two-dimensional (2D) crystal graphene, where the π

states form linear dispersive bands (Dirac state) around the
Fermi level [6–8]. Such a linear relationship between En(k)
and k gives rise to massless relativistic particles, leading to
peculiar electronic properties, such as semimetallic state with
extremely high electron mobility, and recently intensively
studied topological properties [9–12].

The latter scenario with a constant En(k), the so-called flat
band, has been studied for decades [13,14]. It is known for
its completely quenched kinetic energy and can be generally
categorized into two classes, i.e., localized state and itinerant
state with destructive interference. The localized states are
common but typically trivial, which can be viewed as isolated
states without interaction, such as dangling bond or the defect
state in semiconductors [15–17]. The flat bands formed by
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destructive interference are quite rare; they normally have
stringent symmetry and coupling requirements, such as in
the 2D kagome [18], Lieb [19], and most recently discovered
coloring-triangle (CT) [20] lattices. Because of the nonvanish-
ing interaction and strong correlation involved, such flat band
systems have been proposed to realize high-temperature ferro-
magnetism, superconductivity, and topological states [21–24].
Specifically, because of the vanishing bandwidth of the flat
band with nontrivial topology and strong Coulomb repulsion,
if the bandwidth is smaller than the band gap, then the high-
temperature fractional quantum Hall state can appear upon
partial filling of the flat band [25–27].

Though quite rare, there are a few 2D systems where both
Dirac and flat band coexist, such as the kagome, Lieb, dice,
and CT lattices [18–20,28]. However, the arrangement of the
Dirac bands and the flat band are quite different. In the Lieb
lattice, the flat band is located in the middle of the Dirac
bands, while in the kagome lattice, the flat band is located
either at the top or the bottom of the Dirac bands. Interestingly,
we find that the kagome and Lieb lattices are interconvertible
by applying strains along the diagonal direction, because they
share the same structural configuration in the unit cell, i.e.,
one corner-site and two edge-center states [Fig. 1(a)]. It is
interesting to understand the band transformation between the
two lattices and also examine the topological properties in the
transition state.

In this work, we first apply the tight-binding method to
study the phase transition between the Lieb and kagome
lattices. It is shown that the flat band is destroyed during the
transition, due to symmetry breaking. Meanwhile, the triply
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FIG. 1. Tight-binding model for the transition between Lieb and kagome lattices. (a) Structures of the Lieb lattice, transition lattice with
θ = 105◦, and kagome lattice. (b) The corresponding first-Brillouin zone for the three lattices with high-symmetry K paths highlighted by red
dashed lines. (c) The band structure along high-symmetry paths for the three lattices with (blue dashed lines) and without spin-orbit coupling
(red solid lines). The Chern numbers for each band are labeled. Blue (red) arrows indicate compressive (tensile) strain along the diagonal
direction.

degenerate M point splits into two different Dirac points;
one moves toward � point and the other moves toward K/K ′
points. The topological properties of the system are conserved
at both 1/3 and 2/3 fillings, as confirmed from our surface
state, Wannier charge center, and Chern number calculations.
The symmetry analysis shows that the inversion symmetry
plays an important role in protecting the topological proper-
ties. Furthermore, we demonstrate the realization of such a
phase transition in photonic lattices.

II. TIGHT-BINDING CALCULATIONS

We start from a single-orbital tight-binding model on the
2D edge-centered square lattice, i.e., the Lieb lattice with the
D4h group symmetry. Each unit cell has one corner site B and
two edge-center sites A and C, as shown in Fig. 1(a). The
spinless Hamiltonian is defined as

H0 =
∑

i

εic
†
i ci +

∑
〈i, j〉

tc†
i c j +

∑
〈〈i, j〉〉

ti jc
†
i c j + H.c., (1)

where c†
i and ci are the creation and annihilation operators

of an electron on the site i, t and ti j represent the hopping

amplitude between the nearest-neighbor (NN) 〈i, j〉 and the
next-nearest-neighbor (NNN) 〈〈i, j〉〉 sites, respectively. The
NNN hopping term ti j is defined as

ti j = t e(
a0−ai j

a0
)n

, (2)

with a0 and ai j representing the distance between NN and
NNN sites. The exponent n controls how fast the hopping
strength decays as a function of distance. Essentially, a larger
n will yield a flatter band while a smaller n can better capture
the evolution of the band structure from Lieb to kagome.
We have tested a few choices and found n = 8 to give
both relatively flat bands and smooth transitions between the
two lattices. It is known that the NNN interaction affects
the flatness of the flat band [29,30], whose effect has been
suppressed using Eq. (2) here. The hoppings beyond the
NNN are neglected for simplicity. εi is the on-site energy
on site i, which is set to 0. We note that the on-site energy
difference between corner and edge-center sites changes the
degeneracy of the Dirac points [29,31], which, however, will
not be discussed here. The band structure of Eq. (1) can
be obtained by transforming H0 into momentum space as
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H = ∑
k �

†
k H (k)�k with �

†
k = (c†

Ak, c†
Bk, c†

Ck ) and

H (k) =

⎛
⎜⎝

0 −2t cos
(−→

k · −→v1
2

) −2t cos
(−→

k · −→v2
2

)
0 −2tAC

{
cos

[−→
k · (−→v1 −−→v2 )

2

] + cos
[−→

k · (−→v1 +−→v2 )
2

]}
0

⎞
⎟⎠,

where −→v1 = (1, 0) and −→v2 =(0, 1) are the unit vectors that
define the displacement vectors.

−→
k = (kx, ky) is the recipro-

cal lattice k vector. The lower triangle of the matrix should be
filled accordingly for a Hermitian matrix, which is not shown.

When applying compressive or tensile strain along the
diagonal direction [Fig. 1(a)], the square unit cell becomes
orthorhombic with a group symmetry of D2h. The lattice can
be defined by two new unit vectors −→v1 = (1, 0) and −→v2 =
(− cos θ, sin θ ), with the angle θ in the range of [π/2, 2π/3].
Apparently, the lattice represents the Lieb and kagome lat-
tices when θ equals π/2 and 2π/3, respectively [Fig. 1(a)].
The two symmetric hoppings between A and C sites in
the Lieb lattice become asymmetric when θ does not equal
π/2. Therefore, the NNN term is modified to a more gen-

eral form: −t1
AC cos[

−→
k · (−→v1 − −→v2 )/2] − t2

AC cos[
−→
k · (−→v1 +−→v2 )/2], where t1

AC and t2
AC are defined using Eq. (2). It is

important to mention that when θ equals 2π/3, t1
AC between A

and C sites becomes equal to the NN hopping t . t2
AC becomes

the only NNN interaction, which has negligible effect accord-
ing to Eq. (2). With the change of θ from π/2 to 2π/3, the
first-Brillouin zone changes gradually from square to hexago-
nal parallelogon to regular hexagon, as shown in Fig. 1(b). We
note that even with different θ , the inversion symmetry of the
lattice remains. This is crucial for their nontrivial topological
properties, which will be discussed later.

A. Band evolution

We plot band structures for the three lattices along the
high-symmetry k paths, as shown in Fig. 1(c). The left and
right panels of Fig. 1(c) show the well-known features of
Lieb and kagome bands, characterized by the coexistence
of Dirac bands and flat band. The flat band locates at the
middle of the Dirac bands in the Lieb band, while at the
bottom in the kagome band [25,32]. It is worth mentioning
that with different signs of the hopping integral, the flat band
in the kagome band can sit at either the top or bottom of
the Dirac band, which can be understood by considering the
local magnetic flux [33,34]. Looking at the band structure
of the transition state [middle panel of Fig. 1(c)], one sees
the flat band has disappeared. This is reasonable because the
formation of the flat band in the Lieb and kagome lattices
is due to the destructive interference or phase cancellation
of Bloch wave functions caused by lattice symmetry. Such
delicate condition is broken by lattice distortion that breaks
the required symmetry for flat band.

On the other hand, we notice that the triply degenerate M
point splits into two doubly degenerate Dirac points located
along the �-M and M-K/K ′ paths, respectively. As θ changes
from π/2 to 2π/3, one of the Dirac points moves from the
M to � point on the M-� path, and the other moves from
the same M point to the K/K ′ point on the M-K/K ′ path

(see Appendix and the supplementary video [35]). Compared
with the Dirac cones in the Lieb and kagome lattices, the
Dirac cones in the transition state are strongly tilted. More
interestingly, the transition state hosts two types of Dirac
points with different features, i.e., type I, a point-like Fermi
surface, and type II, where the Dirac point locates at the
contact of the electron and hole pockets [36,37]. There are
proposals that the transition state between the type-I and type-
II Dirac points represents a solid-state analog of the black-hole
horizon, which could possibly be used to simulate black-hole
radiation [38,39]. As the band dispersion is tunable by varying
the distortion (θ ) and the NNN interaction, it is possible
to realize the transition between types I and II by straining
either a kagome or Lieb lattice. We will briefly illustrate this
possibility in photonic devices at the end.

B. Topological properties

Next, we study the topological properties of the lattices
in transition by adding an intrinsic spin-orbit coupling (SOC)
interaction:

HSOC = iλi j

∑
〈i, j〉

vi jc
†
i σzc j + iλi j

∑
〈〈i, j〉〉

vi jc
†
i σzc j + H.c., (3)

where both NN and NNN SOCs are considered with the

amplitude of λi j defined as λe(
a0−ai j

a0
)
n

. λ is set to be 0.05t . vi j

is defined as d1
i j × d2

i j , where d1
i j and d2

i j are the two vectors
along the NN bonds connecting sites i and j. n is again set
as 8 for consistency. It is important to mention that for the
Lieb lattice, the NN SOC respects the four-fold rotational
symmetry and will not lift the degeneracy of the Dirac point
to open a gap. In contrast, the NNN SOC would break the
symmetry that leads to gap opening [Fig. 1(c)]. This is further
confirmed when we break the D4h symmetry by applying
strain along the diagonal direction. The lattice now possesses
D2h symmetry, which opens a finite gap at both Dirac points
even when only the NN SOC coupling is included, as shown
in the middle panel of Fig. 1(c). The same behaviors are also
observed in the kagome lattice with the D6h symmetry.

The gap opening by the SOC effect indicates the lattice
is topologically nontrivial. To further reveal the topological
properties of the lattice, we then calculate the edge state of a
finite ribbon system (with a ribbon width of 15 units). Figure 2
shows clearly the edge states that connect the bulk states
within both gaps. Since we are using a spinless Hamiltonian,
only one spin-polarized edge state exists in the gap. When
we consider both the spin-up and spin-down components,
these topological edge states will form a 1D Dirac cone
within the gap. The red and blue colors of the edge states
in Fig. 2(a) represent the contributions from two sides of the
ribbon respectively. This is further confirmed by our edge-
state eigenfunction plot, as shown in Fig. 2(b). It is known
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FIG. 2. Ribbon calculation. (a) Surface state of a finite ribbon system with a ribbon width of 15 units for Lieb, transition, and the kagome
lattices. (b) The upper and lower panels show the wave function of the two edge states within the bulk gap for the three lattices, with their
corresponding k points highlighted by the red and blue stars in (a), respectively. The size of the black dots represents the norm of the wave
function.

that the topological properties can also be characterized by the
evolution of the charge centers of the hybrid Wannier function
(Wannier charge centers, WCCs), which carries the same
topological information as the surface energy bands [40,41].
Thus, we also plotted the WCCs of these three lattices at

the 1/3 and 2/3 filling, as shown in Fig. 3. The shapes
of the WCCs change smoothly from the Lieb lattice to the
kagome lattice through the transition state. They are con-
sistent with the edge-state results, confirming the nontrivial
topology.

FIG. 3. Wannier charge centers. (a) Evolution of WCCs along the ky direction integrated along the x direction for the Lieb lattice. Upper
and lower panels show the WCCs for 1/3 and 2/3 filling, respectively. (b) and (c) Same as (a) for the transition lattice and the kagome lattice,
respectively. The red and blue dots represent the first and second band, respectively.
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FIG. 4. Evolution of Berry curvature. (a)–(c) Berry curvature of the lower band for the Lieb lattice, transition state, and the kagome lattice
with 1/3 filling, respectively. The 2 × 2 unit cell Berry curvature plot shows the triangle lattice formed by Berry curvature peaks around the �

point. (d)–(f) Same as (a)–(c) for the middle band with 2/3 filling. The 2 × 2 unit cell Berry curvature plot shows the hexagonal lattice formed
by Berry curvature peaks around the K and K ′ points.

C. Topological invariant

The nontrivial topology of the systems can be further
confirmed through the topological invariant calculation, i.e.,
Chern number C, using the Kubo formula [42,43]:

C = 1

2π

∫
BZ

d2−→k 	(
−→
k ), 	(

−→
k ) =

∑
n

fn	n(
−→
k ), (4)

	n(
−→
k ) = −

∑
n′ �=n

2 Im
〈�nk|ν̂x|�n′k〉〈�n′k|ν̂y|�nk〉

(εn′k − εnk )2
, (5)

where n is the band index, �nk and εnk are the eigenstate
and eigenvalue of the band n, respectively. fn is the Fermi
distribution function, and ν̂x/y is the velocity operator. The
Chern numbers of different bands for the three systems are
labeled in Fig. 1(c), where the bottom and the top bands have
a nonzero Chern number (±1) and the middle band has a
zero Chern number. The Chern numbers are consistent with
the number of quantized edge states as observed in Fig. 2.
Therefore, the two SOC gaps between the three bands are both
topological nontrivial. This can also be confirmed by the Berry
curvature plot, as shown in Fig. 4. It can be clearly seen that
the nonzero Berry curvatures are mainly localized around the
Dirac points, which become gapped due the SOC effect. As
a consequence, the evolution of the Dirac points can also be
directly visualized from the change of Berry curvatures for the
three lattices. Figures 4(a)–4(c) depict the Berry curvatures
for the bottom bands with 1/3 filling, where the peak (bright

dot) splits from the M point into two points and moves to the
� point through the M-� path. While the Berry curvatures
for the middle band with 2/3 filling [Figs. 4(d)–4(f)] evolve
from the M point to the K/K ′ point through the M-K/K ′ path
that is perpendicular to the M-�. In a 2 × 2 unit cell, Berry
curvature plots for the kagome lattice show clearly the triangle
and hexagonal lattices formed by Berry curvature peaks at the
� and K/K ′ points, respectively. These results are consistent
with our Dirac points evolution in band structure calculations,
when the Lieb lattice changes to the kagome lattice, as shown
in Fig. 1(c).

By analyzing the structural symmetry, we find that the
lattice symmetry changes from D4h to D2h to D6h when θ

changes from π/2 to 2π/3, all of which possess the inversion
symmetry and the mirror symmetry with respect to both diag-
onal lines. To understand the topological origin, we first break
the inversion symmetry by introducing a dimer interaction
between the corner site B and edge-center sites (A, C), while
keeping one mirror symmetry intact [Fig. 5(a)]. Such a dimer
interaction can be easily introduced by shifting A and C
away from the center sites of the same amount, which act
as staggered hopping terms ti, j = t + �t and t j,i+1 = t − �t
in the Hamiltonian. As can be seen from the band structures
in Fig. 5(b), without considering SOC, the triply degenerate
M point in the Lieb lattice splits in energy forming two
gaps (�1,�2). Although it looks similar as the SOC effect
[Fig. 1(c)], it is actually a topological trivial state with no
signature of edge state in the ribbon band structure [left
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FIG. 5. Inversion symmetry broken lattices. (a) Structural configurations for the inversion symmetry broken lattices with one of the mirror
symmetry intact, as highlighted by the dashed line. (b) Band structure of the corresponding lattices without SOC. (c) Ribbon band structures
for the three lattices show the transition from the topological trivial state to the nontrivial state with the changes of θ .

panel of Fig. 5(c)]. When one gradually increases θ , the band
gap �2 increases. Interestingly, however, �1 decreases and
disappears at a certain θ value and reopens, indicating a band
inversion and hence a topological transition. The gap opening
mechanism of the �1 for the kagome lattice (θ= 2π/3) is
similar to that of the �1 and �2 for the Lieb lattice (θ= π/2),
which is due to breaking of the crystal symmetry, i.e., D6h and
D4h symmetry for kagome and Lieb lattices, respectively. The
interesting behavior of �1 gap closing during the transition
is due to the conservation of the mirror symmetry, and the
value of θ when the �1 closes is determined by the strength of
the dimer interaction, i.e., the staggered hopping term �t . The
topological properties are further confirmed by the edge-state
calculations as shown in Fig. 5(c). For the transition state with
θ equaling to 105◦, only �1 is topologically nontrivial; while
for the kagome lattice, both gaps are topologically nontrivial.
When we further break the mirror symmetry by shifting A
and C with a different amount away from the center site,
the system becomes fully gapped, leading to a completely
topological trivial state.

III. PHOTONIC WAVEGUIDE SYSTEM

Next, we demonstrate the realization of band transition
between Lieb and kagome lattices in weakly coupled waveg-
uide arrays. The periodic waveguides play the role of states
with different potentials, where photons in a photonic lattice
behave similar to electrons in a crystal. In tight-binding ap-
proximation, time evolution for the diffraction of light in a 2D
photonic lattice is described as

i∂z�mn(z) =
∑
m′n′

tm′n′�m′n′ (z), (6)

where �mn is the field amplitude of the m, nth waveguide, tm′n′

is the hopping term representing coupling strength between
two neighboring waveguides, and z is the propagation direc-
tion. The corresponding three-band Hamiltonian is obtained
as

HT (K ) =
⎛
⎝0 t (1 + e−ik·v2 ) t (1 + e−ik·v1 )

0 t ′(1 + e−ik·(v1−v2 ) )
0

⎞
⎠, (7)
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FIG. 6. Schematic diagram of waveguide systems. (a) Structures of the Lieb lattice, transition lattice with θ = 105◦, and kagome lattice.
The corresponding numerical simulated band structures are shown in (b).

where t ′ is NNN hopping which is much smaller than t . The
eigenvalue β, which represents the propagation constant in the
z direction, can be solved by diagonalization.

We then carried out calculations to reveal the evolution
of band structures from the Lieb lattice to kagome lattice
by full-wave numerical simulations. As seen from Fig. 6(a),
waveguides are arranged (from left to right) in a Lieb lattice,
transition lattice with θ equals 105◦, and kagome lattice. Each
waveguide only supports one single fundamental mode. The
distance between two adjacent waveguides is tuned to make
NNN hopping relatively small in the Lieb lattice. The diame-
ter D of every waveguide is 4 μm and the distance d between
two adjacent waveguides is 17 μm. The waveguide array has
the perturbed refractive index δn = 0.003, and the wavelength
of the laser is set to be 633 nm. Silica with a refractive index
n0 = 1.45 is used as the supporting media. These parameters
in the simulations can be readily implemented experimentally
via femtosecond direct-writing or optothermal nonlinearities
method [44,45]. The band structures were constructed by
mode analysis based on the finite-element method. The band
structures of Lieb lattice, transition lattice, and kagome lattice
are shown in Fig. 6(b), from left to right, which agree with
the electronic structure calculations. Topological properties
of the system can be explored using periodically driven
waveguides [46–48]. We note that hopping terms can also be
tuned by a chain of waveguides [20,49], which could possibly
be used to tune the band dispersion to realize the transition
between type-I and type-II Dirac states. On the other hand,
the Lieb and kagome lattices have been separately proposed
in real material systems, such as the 2D metal-organic and
covalent-organic frameworks (MOF/COF) [24,50–53]. Con-

sidering the high tunability of the MOF/COFs [54,55], it is
also possible to find suitable real 2D material systems to real-
ize such phase transitions. Analog to the SOC in the electronic
system, we can use gyromagnetic materials as waveguides
to break the symmetry of left-hand and right-hand polarized
light; or use helical instead of straight waveguides to break
the z-reversal symmetry of the photonic lattice to achieve
topological properties [56].

IV. CONCLUSION

In summary, we have implemented a tight-binding method
to study the band transition between the Lieb and kagome
lattices, which are found to share the same structural con-
figuration. Although the exotic flat band is destroyed in the
transition states due to breaking of the D4h and D6h symmetry,
the topological feature of the Dirac state is well preserved by
the retained inversion symmetry. Further breaking inversion
symmetry does not fully destroy the topological order, but
instead leads to a surprising change of the topological origin
because of the remaining mirror symmetry. The proposed
photonic lattice and MOF/COF systems may serve as promis-
ing platforms to experimentally observe such an interesting
topological band evolution.
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APPENDIX: TOPOLOGICAL BAND EVOLUTION

To have a better view of the band evolution. We have plot-
ted several band structures of the transition state with different
angles along high-symmetry k paths, as shown in Fig. 7.

FIG. 7. Topological band evolution. Band structures for transition lattice with θ= (a) 95◦, (b) 100◦, (c) 110◦, and (d) 115◦.

[1] C. Kittel, Introduction to Solid State Physics, 8th ed. (Wiley,
New York, 2004).

[2] O. K. Andersen, Phys. Rev. B 12, 3060 (1975).
[3] D. L. Smith and C. Mailhiot, Rev. Mod. Phys. 62, 173 (1990).
[4] D. Yu, Y. Zhang, and F. Liu, Phys. Rev. B 78, 245204 (2008).
[5] Z. Liu, J. Wu, W. Duan, M. G. Lagally, and F. Liu, Phys. Rev.

Lett. 105, 016802 (2010).
[6] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.

Katsnelson, I. V. Grigorieva, S. V. Dubonos, and A. A. Firsov,
Nature 438, 197 (2005).

[7] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov,
and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009).

[8] A. K. Geim and K. S. Novoselov, The Rise of Graphene
(Macmillan, London, UK, 2009) pp. 11–19.

[9] C. Lee, X. Wei, J. W. Kysar, and J. Hone, Science 321, 385
(2008).

[10] Y. Zhang, Y.-W. Tan, H. L. Stormer, and P. Kim, Nature 438,
201 (2005).

[11] C. L. Kane and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).
[12] Z. F. Wang, Z. Liu, and F. Liu, Nature Commun. 4, 1471 (2013).
[13] T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).
[14] P. W. Anderson, Phys. Rev. 109, 1492 (1958).
[15] H. Kim, J. Lee, S.-J. Kahng, Y.-W. Son, S. B. Lee, C.-K. Lee, J.

Ihm, and Y. Kuk, Phys. Rev. Lett. 90, 216107 (2003).
[16] W. Jiang, Z. Liu, M. Zhou, X. Ni, and F. Liu, Phys. Rev. B 95,

241405 (2017).
[17] L. Hu, H. Huang, Z. Wang, W. Jiang, X. Ni, Y. Zhou, V.

Zielasek, M. G. Lagally, B. Huang, and F. Liu, Phys. Rev. Lett.
121, 066401 (2018).

[18] A. Mielke, J. Phys. A 24, L73 (1991).
[19] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
[20] S. Zhang et al., Phys. Rev. B 99, 100404(R) (2019).

125131-8

https://doi.org/10.1103/PhysRevB.12.3060
https://doi.org/10.1103/PhysRevB.12.3060
https://doi.org/10.1103/PhysRevB.12.3060
https://doi.org/10.1103/PhysRevB.12.3060
https://doi.org/10.1103/RevModPhys.62.173
https://doi.org/10.1103/RevModPhys.62.173
https://doi.org/10.1103/RevModPhys.62.173
https://doi.org/10.1103/RevModPhys.62.173
https://doi.org/10.1103/PhysRevB.78.245204
https://doi.org/10.1103/PhysRevB.78.245204
https://doi.org/10.1103/PhysRevB.78.245204
https://doi.org/10.1103/PhysRevB.78.245204
https://doi.org/10.1103/PhysRevLett.105.016802
https://doi.org/10.1103/PhysRevLett.105.016802
https://doi.org/10.1103/PhysRevLett.105.016802
https://doi.org/10.1103/PhysRevLett.105.016802
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1038/nature04233
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1103/RevModPhys.81.109
https://doi.org/10.1126/science.1157996
https://doi.org/10.1126/science.1157996
https://doi.org/10.1126/science.1157996
https://doi.org/10.1126/science.1157996
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1038/nature04235
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1103/PhysRevLett.95.226801
https://doi.org/10.1038/ncomms2451
https://doi.org/10.1038/ncomms2451
https://doi.org/10.1038/ncomms2451
https://doi.org/10.1038/ncomms2451
https://doi.org/10.1103/RevModPhys.21.400
https://doi.org/10.1103/RevModPhys.21.400
https://doi.org/10.1103/RevModPhys.21.400
https://doi.org/10.1103/RevModPhys.21.400
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1103/PhysRevLett.90.216107
https://doi.org/10.1103/PhysRevLett.90.216107
https://doi.org/10.1103/PhysRevLett.90.216107
https://doi.org/10.1103/PhysRevLett.90.216107
https://doi.org/10.1103/PhysRevB.95.241405
https://doi.org/10.1103/PhysRevB.95.241405
https://doi.org/10.1103/PhysRevB.95.241405
https://doi.org/10.1103/PhysRevB.95.241405
https://doi.org/10.1103/PhysRevLett.121.066401
https://doi.org/10.1103/PhysRevLett.121.066401
https://doi.org/10.1103/PhysRevLett.121.066401
https://doi.org/10.1103/PhysRevLett.121.066401
https://doi.org/10.1088/0305-4470/24/2/005
https://doi.org/10.1088/0305-4470/24/2/005
https://doi.org/10.1088/0305-4470/24/2/005
https://doi.org/10.1088/0305-4470/24/2/005
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1103/PhysRevB.99.100404
https://doi.org/10.1103/PhysRevB.99.100404
https://doi.org/10.1103/PhysRevB.99.100404
https://doi.org/10.1103/PhysRevB.99.100404


TOPOLOGICAL BAND EVOLUTION BETWEEN LIEB AND … PHYSICAL REVIEW B 99, 125131 (2019)

[21] S. Depenbrock, I. P. McCulloch, and U. Schollwöck, Phys. Rev.
Lett. 109, 067201 (2012).

[22] T.-H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-
Rivera, C. Broholm, and Y. S. Lee, Nature 492, 406 (2012).

[23] Z. Liu, F. Liu, and Y.-S. Wu, Chin. Phys. B 23, 077308
(2014).

[24] W. Jiang, Z. Liu, J.-W. Mei, B. Cui, and F. Liu, Nanoscale 11,
955 (2018), .

[25] E. Tang, J.-W. Mei, and X.-G. Wen, Phys. Rev. Lett. 106,
236802 (2011).

[26] K. Sun, Z. Gu, H. Katsura, and S. Das Sarma, Phys. Rev. Lett.
106, 236803 (2011).

[27] T. Neupert, L. Santos, C. Chamon, and C. Mudry, Phys. Rev.
Lett. 106, 236804 (2011).

[28] B. Sutherland, Phys. Rev. B 34, 5208 (1986).
[29] W.-F. Tsai, C. Fang, H. Yao, and J. Hu, New J. Phys. 17, 055016

(2015).
[30] H. Ozawa, S. Taie, T. Ichinose, and Y. Takahashi, Phys. Rev.

Lett. 118, 175301 (2017).
[31] R. Chen and B. Zhou, Phys. Lett. A 381, 944 (2017).
[32] C. Weeks and M. Franz, Phys. Rev. B 82, 085310 (2010).
[33] K. Ohgushi, S. Murakami, and N. Nagaosa, Phys. Rev. B 62,

R6065(R) (2000).
[34] H.-M. Guo and M. Franz, Phys. Rev. B 80, 113102

(2009).
[35] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevB.99.125131 for phase evolution video.
[36] Y. L. Chen, J.-H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi,

H.-H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M.
Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain,
and Z. X. Shen, Science 329, 659 (2010).

[37] A. A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X.
Dai, and B. A. Bernevig, Nature 527, 495 (2015).

[38] H. Huang, K.-H. Jin, and F. Liu, Phys. Rev. B 98, 121110
(2018).

[39] H. Liu, J.-T. Sun, C. Cheng, F. Liu, and S. Meng, Phys. Rev.
Lett. 120, 237403 (2018).

[40] A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 235401
(2011).

[41] A. A. Soluyanov and D. Vanderbilt, Phys. Rev. B 83, 035108
(2011).

[42] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Phys. Rev. Lett. 49, 405 (1982).

[43] Y. Yao, L. Kleinman, A. H. MacDonald, J. Sinova, T. Jungwirth,
D.-S. Wang, E. Wang, and Q. Niu, Phys. Rev. Lett. 92, 037204
(2004).

[44] S. Shabahang, N. S. Nye, C. Markos, D. N. Christodoulides,
and A. F. Abouraddy, Opt. Lett. 42, 1919 (2017).

[45] A. Szameit and S. Nolte, J. Phys. B 43, 163001 (2010).
[46] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D.

Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit,
Nature 496, 196 (2013).

[47] S. Mukherjee, A. Spracklen, M. Valiente, E. Andersson, P.
Öhberg, N. Goldman, and R. R. Thomson, Nat. Commun. 8,
13918 (2017).

[48] L. Lu, J. D. Joannopoulos, and M. Soljačić, Nat. Photon. 8, 821
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