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Topological semimetals (TSMs) in which conduction and valence bands cross at zero-dimensional (0D)
Dirac nodal points (DNPs) or 1D Dirac nodal lines (DNLs), in 3D momentum space, have recently drawn
much attention due to their exotic electronic properties. Here, we generalize the TSM state further to a
higher-dimensional Dirac nodal sphere (DNS) or pseudo DNS (PDNS) state, with the band crossings forming
a 2D closed or approximate sphere at the Fermi level. This TSM state can exhibit unique electronic properties,
making DNS/PDNS a type of fermion beyond the DNP/DNL paradigm. In realistic crystals, we demonstrate
two possible types of PDNS states underlain by different crystalline symmetries, which are characterized with
a spherical backbone consisting of multiple DNLs and approximate band degeneracy in between the DNLs. We
identify all the possible band crossings with pairs of 1D irreducible representations to form the PDNS states
in 32 point groups. Importantly, we discover that strained MH3 (M = Y, Ho, Tb, Nd) and Si3N2 are material
candidates to realize these two types of PDNS states, respectively. As a high-symmetry-required state, the PDNS
semimetal can be regarded as the “parent phase” for other topological gapped and gapless states.
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The rise of topological insulators [1,2] has brought the field
of topological states to the center stage of condensed matter
physics. Recent attention has been focused on topological
semimetals (TSMs), which can support quasiparticles either
analogous to elementary particles in high-energy physics or
previously unknown [3–7]. To date, the well-known TSMs
include Dirac, Weyl, and nodal-line semimetals [5–14]. The
Dirac semimetals [5–7] have zero-dimensional (0D) band
crossings, i.e., the Dirac nodal points (DNPs), whose Fermi
surface consists of isolated points in the Brillouin zone (BZ)
[upper panel, Fig. 1(a)]. The low-energy excitations (LEEs) of
DNP semimetals have some unique properties such as chiral
anomaly and surface states with Fermi arcs. The nodal-line
semimetals [6–14] feature 1D band crossings at the Fermi
surface with closed Dirac nodal lines (DNLs) in the BZ [upper
panel, Fig. 1(b)]. The DNL semimetals host special drumhead
surface states, which provide an important platform to realize
a strong electron correlation effect. Very recently, a nodal
surface has been also proposed, with the band crossing points
forming a 2D plane [15,16].

Unlike DNPs and DNLs, conceptually it is also possible
that the linear band crossing occurs on a 2D closed sur-
face [17,18], forming a Dirac nodal sphere (DNS) or pseudo
DNS (PDNS, an approximate DNS with the same LEE; see
below for details) at the Fermi energy, as shown in the upper
panel of Fig. 1(c). On a DNS/PDNS, each point is a crossing
point between two bands with linear dispersion along the
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surface normal direction, which can be expressed as

H (k′) = h̄vF k′σz, (1)

where k′ = k − k0 is the component of the wave vector normal
to the Fermi surface, k0 is the radius of DNS, vF is the Fermi
velocity, and σz is the Pauli matrix denoting the two crossing
bands.

Since the LEE dimensionality of DNS is fundamentally
different from that of DNP (DNL), the DNS semimetal can
possess very unique electronic properties. For example, it
has a significantly different density of states (DOS): DOS ∝
(E −EF )2 for a DNP [lower panel, Fig. 1(a)], DOS ∝ |E −
EF | for a DNL [lower panel, Fig. 1(b)], and DOS ∝ const [19]
for a DNS [lower panel, Fig. 1(c)]. The constant DOS may
make the DNS semimetals exhibit some unusual field re-
sponses and applications, e.g., a significantly stronger quan-
tum oscillation and peculiar plasmon excitations. Thus, the
DNS fermion can be recognized as a type of fermion beyond
the DNP/DNL paradigm.

One intriguing question is how to realize this DNS state
in realistic materials. Although the (Weyl) nodal sphere state
has been theoretically proposed based on global symme-
tries [17,18], it is too difficult, if not impossible, to be realized
in real crystals having discrete point group symmetries. Here,
we present an effective approach to generate the PDNS state in
accessible crystalline symmetries. In general, a band crossing
located on high-symmetry lines/planes is stable against band
repulsion only when the wave functions belong to different
eigenstates of some crystalline symmetry operation. For an
ideal DNS, the band degeneracy should occur at an arbitrary
momentum point (say, the P point) on the sphere. But gen-
erally the coupling between two crossing bands at P cannot
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FIG. 1. Comparison between (a) Dirac nodal point (DNP), (b) Dirac nodal line (DNL), and (c) Dirac nodal sphere (DNS) or pseudo DNS
(PDNS) for their distinct Fermi-surface geometries (upper panels) and density of states (lower panels) around the Fermi level. An arbitrary
point (loop) on DNS can be regarded as a “constrained” DNP (DNL).

be strictly avoided. Interestingly, near some high-symmetry k

points, we discover that under some appropriate conditions the
special crystalline symmetries will only allow for high-order
interaction terms (HITs) of k between two crossing bands,
which can be sufficiently weak and hence negligible. In this
case, a PDNS state forms. As illustrated in Fig. 2, the PDNS
state is characterized with a spherical backbone consisting of
multiple crossing DNLs while band degeneracy in between
the DNLs is approximately maintained by weak interactions.
It is emphasized that the LEE of a PDNS is the same as
an ideal DNS, albeit only a key subset of crossing points
(DNLs) formed as the spherical backbone of the PDNS is
topologically protected.

We identify two sets of crystalline symmetries under time-
reversal symmetry (TRS) to realize the desired PDNS states:
type I for inversion plus at least two mirror (P̂ + 2M̂) sym-
metries and type II for at least three mirror (3M̂) symmetries.
Importantly, we identify all the possible band crossings with

kx
ky

kz

kn kn

Protected band
crossing

Pseudo band
crossing

Pseudo DNS
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FIG. 2. Illustration of the pseudo DNS (PDNS) state. The band
crossing on multiple DNLs formed as the spherical backbone of
PDNS (green points) is topologically protected, while band degener-
acy in between the DNLs (cyan points) is approximately maintained
by weak interactions, which is called pseudo band crossing.

pairs of 1D irreducible representations (IRRs) to form these
two types of PDNS states in 32 point groups. Employing
first-principles calculations, we further show that MH3 (M =
Y, Ho, Tb, Nd) and Si3N2 are type-I and type-II PDNS
semimetals under certain strains, respectively. They both have
drumhead surface states independent of surface orientations.

We consider a two-band model in a system with TRS and
ignore the spin degree of freedom [19]. The type-I PDNS
has P̂ + 2M̂ symmetries. At a high-symmetry point, e.g., the
� point, if the two bands have opposite parities for P̂ and
opposite mirror eigenvalues for two different mirror operators
(M̂x and M̂y), the Hamiltonian can be written as [19]

H (k) = (M − Bk2)σz + δkxkykzσy, (2)

where k2 = k2
x + k2

y + k2
z , and σy,z are Pauli matrices for the

two bands. Under the band inversion condition (MB > 0),
P̂ + 2M̂ will strictly create three crossing nodal lines in the
kx,y,z = 0 planes [11,12]. Away from the three planes, there
would be a gap induced by HIT of g2(k), but it can be suffi-
ciently tiny and negligible for small k near the high-symmetry
point. Consequently, the band crossings can extend to form a
PDNS. Around a crossing point, the LEE quasiparticles can be
described by Eq. (1) with k0 = √

M/B and vF = −2
√

MB.
The minimum symmetries required for the type-I PDNS

are P̂ + 2M̂ plus TRS. Meanwhile, the two inverted bands
at the high-symmetry point should belong to two different
1D IRRs, i.e., R1 and R2, which have opposite parities and
mirror eigenvalues. It is emphasized that the required number
of symmetric mirror planes for PDNS can be more than two,
e.g., three, four, or even six. Applying theses criteria to 32
point groups, we identify that six point groups can host type-I
PDNS, and all the associated possible pairs of 1D IRRs are
listed in Table I.

The type-II PDNS has 3M̂ symmetries. One may take three
mirrors as 3σ̂v of the C3v point group. If the two crossing
bands have opposite eigenvalues for 3σ̂v , the Hamiltonian can
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TABLE I. Two different types of PDNS realized by different
point groups with all the possible 1D IRRs, and the proposed
materials (without SOC effect), where MH3 (M = Y, Ho, Tb, Nd),
Tl5Se2Br, Tl4PbTe3, Tl4SnTe3, and Si3N2 require strains to realize
PDNS states.

PDNS Point 1D IRRs of two Materials
type group bands {R1, R2}

Type I D2h {Ag, Au}, {Big, Biu},
i = 1, 2, 3

D4h {Aig, Aiu}, {Big, Biu}, LaN,
{Aig(u), Bju(g)}, i, j = 1, 2 CaTe

D3d {Aig, Aiu}, i = 1, 2 YH3, HoH3,
TbH3, NdH3

D6h {Aig, Aiu}, {Big, Biu},
{Aig(u), Bju(g)}, i, j = 1, 2

Th {Ag, Au}
Oh {Aig, Aju}, i, j = 1, 2

Type II C4v {A1, A2}, {B1, B2}
D4h {A1g(u), A2g(u)}, Tl5Se2Br,

{B1g(u), B2g(u)} Tl4PbTe3,
Tl4SnTe3

C3v {A1, A2}
D3d {A1g(u), A2g(u)}
C6v {A1, A2}, {B1, B2},

{Ai, Bj }, i, j = 1, 2
D3h {A

′
1, A

′
2}, {A

′′
1, A

′′
2},

{A
′
1, A

′′
1}, {A

′
2, A

′′
2}

D6h {A1g(u), A2g(u)}, {B1g(u), B2g(u)},
{Aig(u), Bjg(u)}, i, j = 1, 2

Td {A1, A2} β-Si3N2

Oh {A1g(u), A2g(u)} α-Si3N2

be written as [19]

H (k) = (M − Bk2)σz + δ
(
k3
x − 3kxk

2
y

)
σy. (3)

Once again, strictly speaking, it creates three crossing DNLs,
which are related with each other by C3 rotational symmetry.
However, away from the three planes, the small gap induced
by HIT of g2(k) can be neglected near the high-symmetry
point. Thus, we obtain the PDNS under the type-II symmetry
constraints.

The minimum symmetries required for the type-II PDNS
are 3M̂ plus TRS. At the high-symmetry point, the two in-
verted bands with two different 1D IRRs should have opposite
mirror eigenvalues. Also, the required number of symmetric
mirror planes for the type-II PDNS can be more than three,
e.g., four or six. Applying this criterion to 32 point groups, we
determine that nine point groups can potentially host type-II
PDNS, and all the associated pairs of 1D IRRs are listed in
Table I.

Next, we discuss the topological properties of PDNS. For
an ideal DNS semimetal, its topological invariant can be
defined on a 0D point enclosing manifold [16–18,37]. Con-
sidering two momentum points kin and kout located anywhere
inside and outside the ideal DNS, its topological invariant
can be defined as �c = [c(kin ) − c(kout )]/2, where c(k) =∑

n∈occ〈un(k)|X̂|un(k)〉 is a quantum number of symmetry
operator X̂ for all the occupied bands. However, our PDNS

is not an ideal one so that c cannot be well defined at an
arbitrary k point; instead, it needs to be defined within a plane
that contains the loop formed by DNLs. Since the DNLs are
underlain by the crystal symmetries as we discussed above,
one can selectively choose those high-symmetry k points
accordingly. For type-I PDNS that has inversion symmetry,
c can be defined as the sum of parity for every occupied
band at the time-reversal invariant point (X̂ = P̂ ); for type-II
PDNS, c can be defined as the sum of mirror eigenvalues at
the mirror-invariant plane (X̂ = M̂).

We emphasize that the nontrivial (nonzero) �c defined
here cannot protect the whole PDNS against being gapped
under a symmetry preserving perturbation, but it can protect
the existence of multiple crossing NLs (a necessary condition
for achieving the PDNS state). Furthermore, if a perturbation
preserves all the required symmetries and maintains a weak
band inversion, the band degeneracy of the whole PDNS
will be kept. In addition, the zero codimensionality of PDNS
cannot, in principle, guarantee any boundary state [16]. The
surface states if generated will interact with the bulk states
not to be localized on the boundary. However, the drumhead
surface states arising from the multiple crossing DNLs are
protected on the boundary, except they may appear somewhat
fuzzy due to overlapping with the bulk states.

It is noted that we did not include the spin degree of
freedom in our PDNS model discussions. All the predicted
materials listed in Table I are strictly crossing-nodal-line
semimetals with an extremely tiny energy gap (<2 meV) at a
general band crossing point P (induced by HITs of k) [19,38].
Without the SOC effect, all the candidates listed in Table I
can be treated as PDNS semimetals in terms of their LEE
properties. For LaN, CaTe, Tl5Se2Br, Tl4PbTe3, Tl4SnTe3

(Table I), however, the SOC effects are sufficiently strong to
reduce the PDNS phase to the DNP (or topological insulator)
phase [19]. Interestingly, for MH3 (M = Y, Ho, Tb, Nd) and
α-/β-Si3N2, their PDNS phases (under certain strains) are
robust against the SOC effect [19], as demonstrated in the
following discussions.

Metal hydrides have been studied extensively for super-
conductivity and metal-insulator transitions under pressure
[39–41]. YH3 adopts the HoD3 structure [42] having the space
group P 3̄c1 (No. 165), as shown in Fig. 3(a). It has inver-
sion symmetry, threefold rotation symmetry, and three glide
planes related by C3 rotation. It is a normal semiconductor
whose conduction band minimum (CBM) and valence band
maximum (VBM) at the � point belong to the A2g and A2u

representations of D3d (without SOC effect) [19], respec-
tively. Based on our PDNS model (Table I), it is expected to
have a type-I PDNS when its A2g and A2u bands are weakly
crossed. Indeed, we found that YH3 can be transformed into a
gapless PDNS semimetal when a compressive uniaxial strain
(εc < −3.8%) is applied along the c axis [19], as shown in
Fig. 3(b). As shown in Fig. 3(c), the gapless band crossing
maintains along any arbitrary k direction around �, with a
negligible gap (<0.5 meV) induced by HITs. We note that
the HITs between the two crossing bands are related with
the band inversion strength. The condition for the HITs to be
negligibly small can always be guaranteed by an appropriate
εc [19]. Given the opposite parities of P̂ and M̂ eigenvalues
of three glide planes [labeled in Fig. 3(c)], the band crossing
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FIG. 3. (a) Crystal structure of YH3. (b) Band structure of YH3 under εc = −6% (without SOC) using Heyd-Scuseria-Ernzerhof functional
(HSE06) calculations. (c) Left panel: Magnified band structure along two arbitrary directions around � (P1 and P2 are two arbitrary k points
in BZ), where the opposite eigenvalues of parity and glide planes for two crossing bands are labeled. Right panel: DOS, where the dashed line
denotes a constant DOS. (d) The Fermi surface of YH3 in BZ. Cyan (yellow) surface denotes hole (electron) pockets at the Fermi level. (e) and
(f) Surface projected bands and Fermi surfaces for (001) surface of YH3.

for type-I PDNS is approximately protected by D3d symmetry
with a calculated �c = 1. The calculated constant DOS in the
energy range of nearly linear dispersion [Fig. 3(c)] agrees well
with that in Fig. 1(c). The spherical Fermi surface of strained

YH3 formed by the band crossing is shown in Fig. 3(d), and
its size k0 can be tuned by εc [19]. Since the band crossing
is not exactly located at the Fermi energy, the Fermi surface
presents hole (electron) pockets near (away from) the �MK
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FIG. 4. (a)–(f) Same as Fig. 3 but for type-II α-Si3N2.
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plane. These results are not affected by the SOC effect [19],
as reflected by a tiny SOC gap (<1.5 meV).

Drumhead surface states arising from the crossing nodal
lines are shown in Figs. 3(e) and 3(f). Due to the interaction
with the projected bulk states, the drumhead surface states
appear a little fuzzy. Different from the usual DNL semimetal,
the drumhead surface states of YH3 are independent of its
surface orientations, i.e., the [001]- and [010]-oriented surface
states are almost the same [19], because of its near spherical
band crossing.

As a candidate material for a type-II PDNS semimetal,
α-Si3N2 [43] adopts the cubic structure having the space
group Pm3̄m (No. 221), as shown in Fig. 4(a). α-Si3N2 is
a normal semiconductor [19], whose VBM and CBM belong
to the A2g and A1g representations of the Oh point group,
respectively. Based on our analysis (Table I), a type-II PDNS
phase can be achieved when these two bands are crossed. We
found that a sufficiently large triaxial compressive strain of
ε < −5% (corresponds to a hydrostatic pressure of ∼30 GPa)
can induce this desired phase [19], as shown in Fig. 4(b). Near
the Fermi level, band crossing persists along any arbitrary
direction around � [Fig. 4(c)]. Importantly, although the two
crossing bands have the same parities, the eigenvalues of six
mirror planes for these two bands are of opposite sign [labeled
in Fig. 4(c)]. Thus, α-Si3N2 is a type-II PDNS with multiple
DNLs protected by the mirror symmetries (the calculated
�c = 1). As expected, it has a constant DOS in the energy

range of nearly linear dispersion [Fig. 4(c)], a spherical Fermi
surface [Fig. 4(d)], and surface-independent drumhead sur-
face states [Figs. 4(e) and 4(f)]. The PDNS phase in α-Si3N2

is robust with a very small SOC gap (<0.1 meV) [19].
As a high-symmetry-required state, the PDNS semimetal

can be considered as the “parent phase” for other gapped and
gapless topological states. For instance, certain perturbations
may tune the HIT transforming a PDNS semimetal into a
nodal-line semimetal [19]; a sufficiently large SOC may con-
vert a PDNS semimetal into a DNP semimetal or a topological
insulator [19]. Moreover, because of the finite DOS in the
linear band crossing region [Fig. 1(c)], Coulomb repulsion
might drive the PDNS phase to induce various quantum
orders [44]. Especially, the existence of superconductivity in
MH3 under pressure (strain) [39,40] may provide a unique
platform to study the interplay between the PDNS fermions
and superconductivity.
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