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Cu(1,3-benzenedicarboxylate) [Cu(1,3-bdc)] contains structurally perfect kagome planes formed by Cu2+

ions without the presence of diamagnetic defects. This organometallic compound should serve as a precious
platform to explore quantum frustrated magnetism, yet the experimental results so far are mysterious, leading to
questions such as, “Is Cu(1,3-bdc) just a trivial weak ferromagnet?” Using the density functional theory, we have
systematically studied the electronic and magnetic properties of Cu(1,3-bdc), putting forth a theoretical basis to
clarify this novel material. We present numerical evidence of a dominating antiferromagnetic (AFM) exchange
between nearest-neighbor (NN) Cu2+ as experimentally extracted from the high-temperature susceptibility data.
We further show that beyond the NN AFM exchange, the additional interactions in Cu(1,3-bdc) have similar
strength as those in the well-studied kagome antiferromagnet, herbertsmithite, by designing a comparative study.
In the end, we discuss our understanding of the phase transition and FM signals observed under low temperature.
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I. INTRODUCTION

Since Anderson’s proposal in the 1970s [1], the concept of
quantum spin liquids (QSLs) has become an indispensable
brick laid upon the two milestones of modern condensed-
matter physics, namely the high-temperature cuprate su-
perconductivity and the fractional quantum Hall effect [2].
Experimental discovery of QSLs in the so-called quantum
frustrated materials is a long-sought goal to bring out exotic
new quasiparticles and gauge fields never encountered before
[3].

After decades of searching, several promising examples
have now emerged [4,5]. The hottest candidate at present is
perhaps herbertsmithite ZnCu3(OH)6Cl2, which realizes the
S = 1

2 antiferromagnetic (AFM) Heisenberg model on the two-
dimensional (2D) kagome lattice [6]. Extensive theoretical
studies have suggested that this model is likely to achieve a
QSL ground state, despite being close in energy with other
competing phases [7–13]. Experiments on herbertsmithite
have also shown QSL-like features, such as the absence of
any observed magnetic order down to 50 mK [14,15] and
an unusual continuum of spin excitations [16]. However, the
inevitable Cu/Zn substitutional defects make the interpretation
of experimental data difficult [17]. It remains an open debate
whether these defects obscure the intrinsic signals under low
temperature [18].

Cu(1,3-bdc), synthesized in the same group three years
after herbertsmithite, also features structurally perfect Cu2+

kagome planes [19]. A great advantage of Cu(1,3-bdc) is
that the substitutional defects are automatically avoided.
Unfortunately, Cu(1,3-bdc) has been found to undergo a phase
transition at Tc ∼ 2 K [19,20], which appears to exclude the
possibility of a QSL ground state. This material has thus been
largely overlooked. However, given the structural similarity
between Cu(1,3-bdc) and herbertsmithite, a natural question
is why the spins behave so differently in these two materials.
It is desirable to better understand the electronic properties
of Cu(1,3-bdc), as it would in turn help to understand the

QSL-like behaviors of herbertsmithite and further reveal key
factors to achieve QSLs.

An overview of the experimental data of Cu(1,3-bdc)
shows puzzling ambiguities. Fitting the high-temperature
susceptibility data to the Curie-Weiss law yields a Weiss
constant θ = −33 K, suggesting a mean nearest-neighbor
(NN) AFM exchange J1 ∼ 30 K [19]. The ratio |J1|/Tc >

10 indicates a strong frustration effect. Later, muon spin
relaxation (μSR) observes persistent spin fluctuation below
Tc, which further supports the frustration scenario [20]. On
the other hand, the magnetization data around Tc display a
ferromagnetic (FM)-like curve [21] and a small hysteresis loop
with the coercive field of 10.5 Oe [19]. A recent work starting
from the FM hypothesis extracted a mean NN FM exchange
J1 ∼ −2 K from the electron spin resonance line shape,
proposing that Cu(1,3-bdc) be rather a weak ferromagnet
without frustration (|J1|/Tc ∼ 1) [21]. In addition, there is
an unpublished neutron-scattering work, which employs this
FM scenario to interpret the dynamic structure factor [22].

This paper aims to provide a first-principles description
of Cu(1,3-bdc) based on density functional theory (DFT)
[23] and possibly resolve some lasting controversies. Our
primary goal is to determine the type of NN spin exchange in
order to rationalize Cu(1,3-bdc) as a kagome antiferromagnet.
The second goal is to characterize additional interactions in
this material, such as the longer-range spin exchange and
Dzyaloshinskii-Moriya (DM) interaction, in order to explain
the subtleties in the experimental data. In Sec. II, we describe
the general formalism of our calculation. In Sec. III, we
show the structural and single-electron properties of Cu(1,3-
bdc). Sections IV and V present the results from Wannier
function analysis and the DFT+U total-energy calculation,
respectively. Section VI incorporates spin-orbit coupling
(SOC) into the calculation and estimates the strength of
DM interaction. A comparative study between Cu(1,3-bdc)
and herbertsmithite within the same calculation framework is
made in Sec. VII. Section VIII looks back upon the previous
experimental results and discusses the remaining ambiguities.
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II. CALCULATION METHOD

The calculations are carried out using the VASP package
[24], which solves the DFT Hamiltonian self-consistently
using the plane-wave basis together with the projector aug-
mented wave method [25]. A plane-wave cutoff of 500 eV is
enforced. The integration over the Brillouin zone is obtained on
a �-centered 4 × 4 × 2 k mesh. The self-consistent iterations
are converged to 0.1 meV precision of the total energy. We use
the unit cell and lattice parameters determined by experimental
x-ray diffraction [19]. The Cu coordinations are automatically
fixed by the hexagonal space group (P 63/m) without forces.
The light atoms of the 1,3-bdc ligands are fully relaxed until
the forces are less than 0.01 eV/Å.

Within this formalism, we first obtain the single-electron
properties under the local density approximation (LDA) [26],
and downfold the full band structure to a single-orbital hopping
model. Then, based on the ab initio Wannier functions [27], we
estimate the strength of various electron-electron interactions
and determine the spin exchange. Further analysis is performed
by using the generalized gradient approximation (GGA) [28]
and +U functional [29].

We note that these two methods have successful appli-
cations in closely related transition-metal insulators [30,31].
The Wannier function analysis has been used to explain the
unexpected ferromagnetism in La4Ba2Cu2O10 [32]. A recent
DFT+U study has nicely reproduced the NN AFM exchange
in herbertsmithite [33]. Meanwhile, it is understood that
first-principles predictions on sub-meV magnetic exchange
are highly challenging because either the exchange-correlation
functional or the pseudopotential can easily introduce un-
certainties at this scale. Therefore, as far as possible, we
avoid drawing shaky conclusions that sensitively rely on the
numerical precision. Instead, we proceed with evident and
consistent numerical features of the material as a guide to
construct a reasonable physical understanding.

III. STRUCTURAL AND SINGLE-ELECTRON
PROPERTIES

Figure 1 shows the atomic structure of Cu(1,3-bdc). The
crystalized network forms a hexagonal lattice, containing two
Cu kagome planes per unit cell [Fig. 1(a)]. Each kagome plane
consists of three inequivalent Cu sites [Fig. 1(d)]. The local
environment of the Cu atom is similar to that in the CuO2 plane
of cuprate superconductors: each Cu atom bonds with four
O atoms in different 1,3-bdc ligands, forming a local planar
coordination [Fig. 1(b)]. Each 1,3-bdc ligand also bonds with
four Cu ions via the two carboxyl groups, which mediates the
intraplane and interplane hopping [Fig. 1(c)]. The 1,3-bdc is
in the −2 state, so it is clear that Cu has an oxidation number
+2.

We start from the standard LDA (spinless) band calculation
to understand the electronic properties. The result [Fig. 2(a)]
shows six bands around the Fermi level, isolated from the
other bands. This set of bands exhibits the typical feature of
single-orbital hopping on a 2D kagome lattice, i.e., a flat band
and two dispersive bands with a linear crossing [34]. We will
refer to these bands as the “kagome bands” hereafter. Recall
that there are two Cu kagome planes per unit cell, which give

FIG. 1. (Color online) Atomic structure of Cu(1,3-bdc). The
white numbers on Cu atoms label the three inequivalent sites of
a kagome plane. (a) Side view of the hexagonal unit cell. (b) Local
planar coordination of Cu. (c) 1,3-bdc as a linker; the solid lines show
the shortest intraplane path between two Cu sites, and the double lines
show the shortest interplane path. (d) Top view of the hexagonal unit
cell; the dashed lines are a guide to the eyes for the kagome geometry
formed by the Cu sites.

rise to two sets of kagome bands. The flatness of the top
bands suggests that except for the NN hopping, all of the
other hopping processes are weak. The Fermi level crosses
the middle of the six bands, which corresponds to half filling
of these states. It is well known that LDA cannot properly
describe the on-site Coulomb repulsion of 3d orbitals. Hence,
the LDA calculation predicts a metallic phase.

IV. WANNIER FUNCTION ANALYSIS

The single-electron band structure can be understood by
considering Cu2+ ions under a planar crystal-field splitting,
with a single dx2−y2 at the top. The nine d electrons in one
Cu2+ ion will fully occupy the bottom four orbitals, leaving
an unpaired electron on dx2−y2 , which in the end reduces to
a single-orbital degree of freedom around the Fermi level.
The low-energy dynamics is primarily determined by this
subspace, which is well defined in this case owing to a large
gap with other occupied bands [�Eband in Fig. 2(a)]. Then, it
is helpful to downfold the full band structure into an effective

FIG. 2. (Color online) (a) The single-electron (within LDA) band
structure of Cu(1,3-bdc). The inset is the Brillouin zone and high-
symmetry points of the hexagonal lattice. (b) Wannier function of the
kagome bands [red shaded in (a)] around the Fermi level. The wired
surface plots the isovalue contour, and the color (red/blue) denotes
the sign.
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TABLE I. A comparison of key parameters for Cu(1,3-bdc) and
herbertsmithite derived from the DFT Wannier function analysis.

Cu(1,3-bdc) Herbertsmithite Ref.

Hopping (eV)
t1 −5.0 × 10−2 1.8 × 10−1 Eq. (1)
t in
2 4.8 × 10−3 2.3 × 10−2 Eq. (1)
tout
2 2.3 × 10−3 3.7 × 10−2 Eq. (1)
λ̃ 1 × 10−3 5 × 10−3 Eq. (6)

Bare interaction (eV)
U0 6.8 6.4 Eq. (3)
U1 1.0 4.1 Eq. (3)
Jex 1.7 × 10−4 5.6 × 10−2 Eq. (3)

single-orbital hopping model,

Hhop =
∑
i,j

tij c
†
i cj , (1)

where i,j label the Cu site, and tij is the hopping parameter
between the two sites. To construct a quantitative basis, we
perform Fourier transformation from the Bloch representation
to the Wannier representation by using the WANNIER90 code
[35]. Figure 2(b) plots the spatial distribution of the maximally
localized Wannier function centered at one of the six Cu sites;
the others are related via the crystal symmetry. The Wannier
function takes the form of a hybridization between the Cu
dx2−y2 orbital and the O pσ orbital.

The hopping parameters between these Wannier functions
can be rigorously calculated by performing the same Fourier
transformation to the band structure. We list three leading
terms in Table I: the NN hopping t1, the second-largest in-plane
hopping t in

2 , and the largest out-of-plane hopping tout
2 . The NN

hopping t1 is one order of magnitude larger than the other
hopping terms, dominating the hopping dynamics. It is worth
noting that t1 has a nontrivial minus sign, which determines the
position of the flat band. This sign cannot be simultaneously
gauged away on the three Cu sites. When the electron circles
the three sites, the minus sign leads to a π Berry phase.

Even without information on the spin exchange, the single-
electron properties shown above already suggest Cu(1,3-bdc)
as an ideal S = 1

2 kagome model system: (a) the half-filled
Wannier function gives rise to a half spin at each Cu site; (b)
beyond the NN coupling, the additional perturbations, such as
second neighbor and interplane couplings, are weak. In order
to uncover the underlying spin exchange, we need to evaluate
the many-body interactions between the Wannier functions not
captured within LDA. The dominating interaction Hamiltonian
contains three terms [36],

Hint = Ũ0

∑
i

ni↓ni↑ + Ũ1

∑
〈ij〉

ninj

+J̃
∑
〈ij〉α

c
†
i,αc

†
j,−αci,−αcj,α, (2)

where 〈ij 〉 and α denote the NN pairs and spin, respectively. Ũ0

is the on-site Hubbard repulsion, Ũ1 is the NN direct repulsion,
and J̃ex is the NN direct exchange. We explicitly include
the intersite direct exchange J̃ex to address the possibility of

any ligand-mediated Hund’s coupling as phenomenologically
formulated by the Goodenough-Kanamori rules [37,38]. A
similar Wannier function analysis has successfully explained
the ferromagnetism in La4Ba2Cu2O10 [32].

We first evaluate the “bare” Coulomb integrals with respect
to the Wannier functions as a zeroth-order approximation to
these interactions. The double-counting correction takes the
form of an on-site chemical potential. For the half-filling case
which we are studying here, it amounts to a rigid energy shift.
Since the screening effect is completely overlooked, the bare
values tend to overestimate the interaction strength. The on-site
U responsible for the superexchange is further limited by the
charge-transfer gap, as discussed later in Sec. V. The key
point here is that this bare-parameter estimation sets the upper
limit of the interaction-driven FM exchange and the lower
limit of the kinetic-driven AFM superexchange. We are going
to show that the FM exchange does not surpass the AFM
superexchange even in such limit.

The numerical results for the following integrals are listed
in Table I:

U0 =
∫

drdr′ |wi(r)|2|wi(r′)|2
|r − r′| ,

U1 =
∫

drdr′ |wi(r)|2|wj (r′)|2
|r − r′| ,

Jex =
∫

drdr′ w
∗
i (r)wj (r)w∗

j (r′)wi(r′)

|r − r′| , (3)

in which wi is the Wannier function centered at site i. The
condition U0 	 t1 suggests that the electron model can be
safely reduced to a Heisenberg spin model by the standard
second-order perturbation,

Hspin = J1

∑
〈i,j〉

Si · Sj , (4)

J1 = 4t2
1

Ũ0 − Ũ1
− 2J̃ex, (5)

in which Si is the spin- 1
2 operator at site i. Substituting the

bare parameters into Eq. (5) gives 4t2
1

U0−U1
= 1.72 meV and

2Jex = 0.34 meV, and the net effective NN spin exchange is
J1 = 1.38 meV = 16 K. J1 will be further pushed to the AFM
side with screening. Therefore, the 2 K FM scenario is not
supported.

V. DFT+U ANALYSIS

The DFT+U method incorporates at the Hartree-Fock level
the strong correlation of localized atomic orbitals and describes
magnetism in an itinerant picture. In spite of its mean-field
nature, this method has been proved to be an effective tool to
provide sensible information on the electronic and magnetic
properties of transition-metal insulators [30]. The calculation
involves two parameters, U and J , describing the average
repulsion and Hund’s exchange between the Cu 3d orbitals.
Following the previous DFT+U calculations on cuprates and
herbertsmithite [30,33], we choose a variety of empirical U

ranging between 6 and 8 eV and J = 1 eV. Note that these
parameters should not be confused with those in Eq. (3),
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TABLE II. Total energy per unit cell (ET ), energy gap around the
Fermi level (�), and relaxed magnetic moment on Cu (μCu) from the
DFT+U calculation.

U (eV) 6 7 8
J (eV) 1 1 1
EFM

T (eV) −696.710(9) −695.461(1) −694.294(4)
EAFM

T (eV ) −696.716(4) −695.465(6) −694.298(2)
�ET (K) 63 52 44
�FM (eV) 1.8 2.0 2.2
�AFM (eV) 1.9 2.1 2.3
μFM

Cu (μB ) 0.66 0.68 0.71
μAFM

Cu (μB ) 0.66 0.68 0.71

which refer to the downfolded Wannier functions. The DFT+U
calculations represent an independent analysis based on a full
description of the material, rather than a mean-field solution
to Eq. (1) + Eq. (2).

The ground state of Cu(1,3-bdc) is expected to be a
spin-ordering state. We start from two spin configurations of
the Cu kagome plane, as shown in Fig. 3(a), to address the FM
and AFM NN scenarios, respectively. After the self-consistent
iteration is converged, the FM solution maintains the parallel
spin configuration with only relaxed magnetic moment on
Cu. The AFM solution slightly deviates from the perfect
120 degree configuration into an asymmetric 130, 130, 100
degree pattern. It is possible that spin configurations with
lower energy exist in larger periodicity, but a comprehensive
search is computationally expensive. Notwithstanding this,
a comparison between these two typical configurations is
sufficient to determine the type of the NN exchange.

Figure 3(b) presents the projected density of states before
and after the +U correction. Without U, the Fermi-level

states are hybridized from the Cu and O states, which have
been identified by the Wannier function analysis. Below the
Fermi level, the nearest valence states also largely come
from Cu. Hence, �Eband in Fig. 2(a) reflects the size of
crystal-field splitting. After the gap opening (with U turned
on), the unoccupied band edge becomes Cu dominated; the
occupied band edge becomes O dominated. The occupied
Cu states are pushed deeper away from the Fermi level.
For the FM configuration, the unoccupied band edge still
exhibits the typical feature of kagome bands. For the AFM
configuration, the density-of-states profile is renormalized due
to the noncollinear spin structure. According to Fig. 3(b), we
draw a schematic plot of the electronic states around the Fermi
level in Fig. 3(c). Like in cuprates [31,39], the low-energy
excitation is between O and Cu, placing Cu(1,3-bdc) in the
regime of charge-transfer insulator. Consequently, the AFM
superexchange is mainly mediated by a transition state with
double holes on O (see, for example, Eq. (4) in Ref. [39]).
The transition energy 2� ∼ 4 eV plays the role of Ũ0 − Ũ1

in Eq. (5). The corresponding AFM coupling strength is
4t2

1 /(2�) ∼ 30 K, which agrees with the experimental value
from Curie-Weiss fitting. A summary of the AFM J1 values
obtained from different methods is discussed in the Appendix.

In Table II, we list the self-consistent total-energy per unit
cell (ET ), the energy gap around the Fermi level (�), and the
relaxed magnetic moment on Cu (μCu). The results show sev-
eral features robust to the variation of U-J parameters. First, the
AFM configuration is found to be lower in energy than the FM
configuration. Second, DFT+U correctly reproduces the in-
sulating phase, and the AFM configuration gives a gap
slightly larger than the FM configuration. Third, the calculated
magnetic moment on Cu is similar to previous DFT+U results
for cuprates [30]. The value is identical for different initial
spin configurations, confirming the validity of an effective

FIG. 3. (Color online) (a) Two spin configurations for the DFT+U calculation. (b) Projected density of states before and after the +U
correction. (c) Schematic plot of the formation of energy states around the Fermi level.
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FIG. 4. (Color online) (a) The SOC-induced gap around the A

point in the single-electron band structure. Red dashed curve: with
SOC; blue solid curve: without SOC. (b) The hopping direction
corresponding to a positive ηij in Eq. (6).

local spin model [Eq. (4)]. These evidences consistently show
that J1 is of the AFM type.

VI. EFFECTS OF SOC

The SOC is responsible to various secondary spin
anisotropic terms. These terms, especially the DM interaction
[40,41] in quantum frustrated magnets, have attracted a
lot of attention due to their potentially important role in
determining the ground state [18,42,43]. By including SOC
in the DFT(+U) Hamiltonian, we quantify its effects within
the first-principles formalism.

For the kagome band around the Fermi level, the primary
effect of SOC on the single-electron band structure is the split
of the degeneracy at several k points. In Fig. 4, we zoom
in around the A point to show a SOC-induced band gap of
6 meV. Note that this SOC-split gap is much smaller than
the SOC constant of a free Cu atom. The reason is that the
intra-atomic SOC manifests in the crystal-field-split dx2−y2

subspace only through higher-order perturbation, namely, the
intra-atomic SOC first promotes the electron to underlying d
orbitals outside the subspace, and then the electron hops to
the other site, altogether becoming an imaginary interatomic
hopping [44]. This gapping mechanism has recently been an
active topic because of the associated nontrivial band topology
[34,45,46]. A simplified form of SOC on the kagome lattice
can be written as [46]

Hsoc = iλ̃
∑
〈i,j〉α

ηij c
†
iασ z

ααcjα, (6)

in which λ̃ is the effective strength of SOC and σ z is the
z-component Pauli matrix. ηij is a sign determined by the
hopping direction: + if following the arrows in Fig. 4(b),
and − if the opposite. This form of SOC conserves Sz, i.e.,
assuming the electric field on each site is in the 2D plane.
Intuitively, it pins a nontrivial phase to the electrons when they
hop around the lattice. As shown later, this SOC leads to an
out-of-plane DM interaction, which is typically the dominant
spin anisotropic term.

By fitting the first-principles band splitting to Eq. (6), the
value of λ̃ can be determined to be 1 meV (Table I). We can
now add Hsoc to Hhop, and do the second-order perturbation
again with respect to Hint. Besides the isotropic Heisenberg

exchange, the next largest interaction arises from the λ̃t1 cross
term,

HDM =
∑
〈i,j〉

Dz
ij (Si × Sj )z, (7)

Dz
ij = 8λ̃t1

Ũ0 − Ũ1
ηij , (8)

which is nothing but the out-of-plane DM interaction. Since
2Jex 
 4t2

1 /(Ũ0 − Ũ1) in Cu(1,3-bdc), the ratio |Dz
ij |/|J1| is

simply 2λ̃/|t1| = 1/25. Taking |J1| ∼ 30K , |Dz
ij | is estimated

to be of the order of 1 K, comparable to the phase transi-
tion temperature Tc. The pseudodipole interaction Haniso =∑

〈i,j〉 �μνSμ

i · Sν
j arises from the λ̃2 terms, and thus one more

order smaller than the DM interaction.
Including SOC in the DFT+U calculation is found to have

negligible effects. Both the self-consistent spin configuration
and the energy difference are the same as described in Sec. V
without SOC. When we globally rotate the spins, the spin
anisotropic energy can be observed showing an in-plane
preference. The magnitude is less than 1 meV per unit cell.
In summary, we conclude that the dominant role of SOC in
Cu(1,3-bdc) is inducing a DM interaction between NN spins.
Despite a weak magnitude, it can induce observable anisotropy
as observed in the single-crystal measurement [21], and is
possibly related to the phase transition around 2 K.

VII. COMPARISON WITH HERBERTSMITHITE

Considered the end to the drought of QSL, herbertsmithite
has been extensively studied in the past few years [4]. Some of
its properties are carefully determined experimentally, such as
a dominant AFM NN coupling, J ∼ 180 K, and a z-component
DM interaction, Dz ∼ 1/10J [47]. Being the “siblings,” it
is informative to conduct a comparative study on these two
materials within the same theoretical framework.

With the rhombohedral (R − 3m) space group, herbert-
smithite contains three Cu+ kagome planes per unit cell [6].
The NN Cu atoms are bonded to one common O atom. The
two kagome planes are bridged by an O-Zn-O three-atom path.
Hence, the kagome planes are much more compact than in
Cu(1,3-bdc). We show the single-electron band structure and
the Wannier function of herbertsmithite in Fig. 5. A quick com-
parison between Figs. 2 and 5 gives the following information:

FIG. 5. (Color online) (a) The single-electron band structure of
herbertsmithite. (b) Wannier function of the kagome bands [red
shaded in (a)] around the Fermi level. The wired surface plots the
isovalue contour, and the color (red/blue) denotes the sign.
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(a) For herbertsmithite, the bands around the Fermi level
deviate from the ideal kagome bands more significantly.
Therefore, compared with Cu(1,3-bdc), the additional hopping
terms beyond NN have larger magnitudes, as expected from
the more compact structure.

(b) For herbertsmithite, the band that can be traced back to
the ideal flat mode resides on the bottom, opposite to the case
in Cu(1,3-bdc). As discussed in Sec. III, the position of the flat
band is determined by the nontrivial sign of t1. The hopping
sign comes from the overlap of the Wannier functions, which
depend on the bonding pattern and distance.

(c) The Wannier function is similar as a consequence of the
same local CuO4 coordination. With this picture, Cu(1,3-bdc)
can be roughly viewed as a loosely packed herbertsmithite.

To provide deeper insights, we list the parameters of
herbertsmithite calculated by the same Wannier function
analysis along with Cu(1,3-bdc) for comparison (Table I). The
hopping amplitudes are, in general, one order of magnitude
larger in herbertsmithite because of the shorter hopping path,
yet the ratios, e.g., |t2|/|t1| and |λ̃|/|t1|, are roughly the
same. With regard to the interactions, U0 is almost the same,
confirming the similarity of the Wannier functions; U1 and Jex

are larger in herbertsmithite as expected.

VIII. CONCLUSION AND DISCUSSION

In summary, our DFT calculations suggest that Cu(1,3-bdc)
closely reproduces the ideal S = 1

2 kagome AFM Heisenberg
model. The relative strength of additional interaction terms
with respect to the dominant NN AFM exchange is summa-
rized below:

(a) DM interaction: λ̃
t1

∼ O(10−1).

(b) Next-NN exchange and interplane exchange: t2
2

t2
1

∼
O(10−2).

(c) Pseudodipolar interaction: λ̃2

t2
1

∼ O(10−2).
Based on these numerical results, our overall understanding

of previous experimental results is as follows. The local spin
nature guarantees a nice Curie-Weiss behavior in the high-T
range, so the Weiss constant θ = −33 K extracted from the
high-T susceptibility [χ−1(T )] fitting should be respected,
which defines a reliable J1 energy. The deviation from the
Curie-Weiss law occurs when T is comparable or smaller than
J1 because of the breakdown of the molecular field picture,
which makes the χ−1(T ) fitting no longer meaningful. Just
as observed in herbertsmithite, the downturn of χ−1(T ) [or,
equivalently, upturn of χ (T )] has complicated origins, leading
to a false FM interpretation. The phase transition around
Tc = 2 K may be associated with the additional secondary
interactions, such as the DM interaction. The system undergoes
an ordering transition but, due to the frustrated lattice and small
spin value, quantum fluctuations persist as observed in μSR.
The weak hysteresis after ordering is not from a fully polarized
FM order, but rather a canted Neél order.

It is known that the Schwinger boson mean-field theory
(SBMFT) provides a satisfying description of the disorder-
order transition of the S = 1

2 kagome AFM Heisenberg model
[7]. Using the SBMFT language, the ordering transition is
described as a Bose-Einstein condensation of spinons on the
QSL ground state. Following this picture, Cu(1,3-bdc) can be

viewed as a condensed QSL. The SBMFT predicts a flat spinon
band at the top of the excitation spectrum [48]. This property
is in sharp contrast to the conventional spin-wave theory,
which gives a flat magnon band at the bottom of the excitation
spectrum [49]. Hence, the inelastic neutron-scattering signal
of Cu(1,3-bdc) can be very different from that of large-spin
kagome AFM materials, such as iron jarosite, which have been
found to agree with the spin-wave theory [50].

Unpublished neutron-scattering data on Cu(1,3-bdc) have
been reported, which suggests FM ordering below Tc [22].
The primary evidence, however, appears to be a top flat mode
observed in the inelastic spectrum, which is considered to
coincide with the spin-wave theory of a kagome ferromagnet.
We note that this data may need to be reexamined carefully
because if the SBMFT describes Cu(1,3-bdc) correctly, then
the dynamic structure factor bears many features similar to the
magnon branches of a kagome ferromagnet, including a top flat
peak (for reference, see Fig. 1(a) in Ref. [51]). This so-called
“weather-vane” mode [43] has never been observed in materi-
als before, and thus could be easily interpreted in a wrong way.
A distinction between the FM and the AFM scenarios is the
energy scale: if Cu(1,3-bdc) turned out to be a ferromagnet,
the NN FM exchange is estimated to be ∼2 K [21], whereas
the AFM scenario anticipates a NN exchange that is one order
of magnitude larger. This energy scale will be unambiguously
reflected by the width of the neutron-scattering spectrum.

The remaining question is why herbertsmithite can stay
in a disorder phase, while Cu(1,3-bdc) is tuned into an
ordering phase by seemingly weaker perturbations. The only
qualitative difference between these two materials shown by
our calculations is the nontrivial NN hopping sign. However,
this sign does not explicitly enter the Heisenberg model as well
as the additional terms we have discussed because they all arise
from the secondary-order perturbation in terms of hopping.
This sign will manifest in higher-order perturbations, and
theoretically it is interesting to ask whether the sign of these
higher-order terms selects a specific ground state. Another
obvious difference between Cu(1,3-bdc) and herbertsmithite
is that Cu(1,3-bdc) is intrinsically free from the Cu/Zn
substitutional defects. Then the open possibility is that these
defects indeed play an important role in the low-temperature
magnetic properties.
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APPENDIX: ON QUANTITATIVE EXTRACTION
OF THE SPIN EXCHANGE ENERGY

The traditional approach employed by the DFT community
to extract the spin exchange energy is based on the total-
energy difference between different spin configurations. It is
by no means a rigorous approach, especially for the highly
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frustrated kagome AFM: on the one hand, DFT(+U) is of the
mean-field nature; on the other hand, the description of AFM
within DFT(+U) is essentially based on a spin-density wave
picture that maps to a classical-spin model. To proceed using
this approach, we first consider the spin operators in Eq. (4)
as ordinary vectors, i.e., mapping to the classical Heisenberg
model. Then, it will be convenient for us to rewrite Eq. (4)
into [3]

Hspin = J1

∑
〈i,j〉

Si · Sj = J

2

∑
α

|Lα|2 + const, (A1)

where Lα = ∑
i∈α Si , and α is over the triangles formed by

the NN ij pairs of the sites. Lα is nothing but the total spin
of each triangle. By assuming a classical-spin mapping, for
the FM configuration, |Lα| = 3

2 ; for the AFM configuration,
|Lα| = 0 [see Fig. 3(a) for reference). Therefore,

�ET = ZJ1

2

(
3

2

)2

, (A2)

where Z = 4 is the number of triangles in each unit cell. Note
that there are two kagome planes in the unit cell, and each

plane contains two triangles. Consequently, J1 is 2
9�ET , in

the range of 10–14 K based on �ET in Table II.
Another approach to extract J1 is based on Eq. (5), as we

showed in the main text. It is commonly agreed that LDA band
dispersion gives a good estimation of t1. The complexity lies in
the rigorous extraction of the screened Coulomb parameters.
The bare Coulomb integrals by using the Wannier function can
be used as a rough estimation, but one should keep in mind
that it, in general, underestimates the AFM superexchange due
to the missing of screening. We obtain J1 = 16 K using this
method.

For the specific case of Cu(1,3-bdc), we find that a more
reasonable description of the AFM superexchange can be
obtained by taking advantage of the charge-transfer gap
determined by the +U calculation. Being a charge-transfer
insulator, the AFM superexchange is mainly mediated by a
transition state with double holes on O [see, for example,
Eq. (4) in Ref. [39] and Fig. 3(c)]. The transition energy 2� ∼
4 eV plays the role of Ũ0 − Ũ1 in Eq. (5). The corresponding
AFM coupling strength is 4t2

1 /(2�) ∼ 30 K, which is in the
best agreement with the experimental value from Curie-Weiss
fitting.
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