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Realization of flat bands by lattice intercalation in kagome metals
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Recently there has been intense interest in kagome metals, which are expected to host flat bands (FBs).
However, the observed “FBs” are not flat over the whole two-dimensional Brillouin zone and overlap strongly
with other bands. In fact, the FB does not truly exist in a default d-orbital kagome lattice, and the conditions
for its existence in kagome metals are unknown. Here, based on tight-binding model analyses of the interplay
between orbital and lattice symmetry, we establish such conditions. We show that for a single d-orbital kagome
lattice assuming large crystal field splitting (CFS), only the dz2 orbital gives rise to a FB, while dxy, dx2−y2 , dxz,
and dyz orbitals can only produce a FB with a rotated d-orbital basis so that they conform with the underlying
kagome lattice symmetry. Most importantly, we demonstrate that both conditions of d-orbital rotation and large
CFS can be ideally satisfied by intercalating the kagome lattice with a hexagonal sublattice without disrupting
the destructive interference of FB wave function. Furthermore, we propose layered metalorganic frameworks as
promising candidate kagome metals to realize FBs.
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I. INTRODUCTION

The kagome lattice is arguably the most intriguing lattice.
A spin kagome lattice is a prominent candidate for quan-
tum spin liquid (QSL) due to geometrical frustration, while
the quasiparticle eigenspectra of a kagome lattice contain an
eigenvalue with macroscopic degeneracy, a flat band (FB), due
to destructive quantum interference, i.e., phase cancellation of
Bloch wave function. Hybrid kagome metals, namely, com-
pounds containing layers of kagome sublattice of transition
metals (TMs) sandwiched by layers of organic ligands have
been long investigated to search for signatures of QSL [1–6],
as well as other magnetic quantum states, such as quantum
optical spin ice [7–11], kagome magnets [4,12,13], anomalous
Hall effect [14], and skyrmions [15].

Recently, inorganic kagome metals, such as CoSn, Fe3Sn2,
CsV3Sb5, YCr6Ge6, and Ni3In, have drawn increasing at-
tention, due to the presence of Dirac bands with Van Hove
singularities and the expected FB, which lead to a range of
observed interesting physical phenomena, such as ferromag-
netism [16–20] and superconductivity [21–24]. However, the
experimentally observed FBs [25–29] as well as the density
functional theory (DFT) calculated band structures are at best,
if existent, nonideal, as they are not flat over the whole 2D
Brillouin zone and buried with strong overlap with many
other bands around the Fermi level [25–29]. Moreover, there
remain fundamental gaps in our understanding of d-orbital
FBs in kagome metals. Most critically, the FB does not truly
exist in a default d-orbital kagome lattice [see Figs. S1(a)
and S1(b) in the Supplemental Material (SM) [30], different
from the simplest kagome lattice model assuming an s or-
bital per lattice site, and the conditions for its existence in
kagome metals are unknown. Therefore, it is highly desirable
to establish viable physical conditions for the emergence of
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FB in kagome metals, which will open a promising avenue
to realizing some elusive predicted FB phenomena, such as
the fractional Quantum Hall effect (QHE) [31–36], Wigner
crystallization [37–40], excitonic insulator [41,42], and the
Quantum anomalous Hall (QAH)/Quantum spin Hall (QSH)
effect [43–46].

In this paper, we develop a full tight-binding (TB) d-orbital
kagome lattice model, to establish orbital rotation and large
crystal field splitting (CFS) as general physical conditions for
the existence of FBs in kagome metals, and most importantly
demonstrate hexagonal lattice intercalation as an effective
means to simultaneously satisfy both conditions. We show
that in a single d-orbital kagome lattice model assuming a
large CFS, only a dz2 orbital by default gives rise to a FB;
while dxy, dx2−y2 , dxz, and dyz orbitals will only produce a FB
is in a rotated basis so that they conform with the kagome
lattice symmetry. Interestingly, the lattice having rotated dxy

(dxz) and dx2−y2 (dyz ) orbitals leads to a FB of opposite chirality
sitting above and below the Dirac bands, respectively. For
intercalated TM kagome lattice planes, the kagome-hexagonal
intercalation always exhibits an ideal FB, while the case for
the kagome-trigonal intercalation is conditional depending
on the interaction between the two sublattices. Our findings
explain why all the currently known inorganic kagome metals
do not have an isolated fully flat FB (see, e.g., Figs. S1(c)
and S1(d) in the SM [30]). Furthermore, we propose layered
metalorganic frameworks (MOFs) to be a family of kagome
metals hosting FBs.

II. TIGHT-BINDING MODEL OF A SINGLE ROTATED
d-ORBITAL KAGOME LATTICE

It is important to recognize that the basic kagome lattice
model assumes by default a single s or pz orbital of even
parity sitting at each lattice site [16,47–51]. The FB arises
from purely lattice symmetry, such as underlined by the line-
graph theorem [52–55]. When five d orbitals are placed on
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FIG. 1. Single d-orbital rotation in kagome lattice to form topological FB. (a) Schematic diagram of single d orbital with default orientation
(dz2 , dx2−y2 , dxy, dzx , and dyz) and corresponding (b) TB band structures. (c) Conceptual diagram of rotated d-orbital basis [indicated by black
arrows in (a)] and corresponding (d) TB band structures. Red and blue dots represent the positive and negative nodes of d-orbital wave
functions.

each lattice site [Fig. S1(a) in the SM [30]], however, the
FB diminishes [Fig. S1(b) in the SM [30]] due to the fol-
lowing complications. First, the five d orbitals have distinct
symmetries; each of them alone may not conform with the
underlying kagome lattice symmetry. Secondly, unlike the
s−s orbital hopping that is isotropic, inter-d-orbital hopping
is directional dependent, affecting the existence of the FB.
Thirdly, the atomic TM d orbitals have a fivefold degeneracy;
when the CFS is weak, the inter-d-orbital hopping changes
each individual subset of d bands and also causes overlap be-
tween them. Therefore, the existence of FBs in kagome metals
is rather nontrivial, much beyond the commonly perceived
simple kagome lattice model.

To concretely illustrate the above points, we develop a full
TB d-orbital kagome lattice model, by explicitly implement-
ing the five d-orbital symmetries to calculate band structure.
For clarity and simplicity, we place one single d orbital on
each kagome lattice site, which corresponds to the condition
of a very large CFS. Figure 1(a) shows the schematic diagrams
of a kagome lattice having the dz2 , dx2−y2 , dxy, dzx, and dyz

orbitals in their default orientations, respectively. Figure 1(b)
shows the corresponding calculated band structures. One sees
that only the dz2 -orbital kagome lattice produces a perfect
FB, while all other four orbitals fail. This is because the
inter-dz2 -orbital hopping within the 2D plane is isotropic. In
other words, the dz2 orbital symmetry conforms with the un-
derlying kagome lattice symmetry, the same as for the s or pz

orbital. In contrast, the other four orbitals have a twofold rota-
tion symmetry which does not conform with the underlying
lattice symmetries, e.g., C3 + T , and the interatomic hop-
ping between them is anisotropic and directional dependent.

Consequently, these four d-orbital symmetries interfere with
the kagome lattice symmetry to disrupt the condition of phase
cancellation of the Bloch wave function [56] and hence to
mitigate the FB.

We note that in the above calculations [Fig. 1(b)], we used
typical hopping strength (Vddσ = −1.20t0, Vddπ = +0.90t0,
and Vddδ = −0.10t0) for TM metals [57] in the Slater-Koster
formalism [58]. Due to the nature of localized d orbitals,
bandwidths are generally narrow and some appear rather “flat”
[see the middle band in the last two columns of Fig. 1(b)],
but they are isolated bands, different from the topological
FB hosted in the kagome lattice, which has a singular band
touching point with a dispersive Dirac band [16,47–55,59].

Therefore, a kagome lattice with default d-orbital orien-
tations, and hence a kagome metal, does not generally host
a topological FB, as commonly perceived. We found that an
effective way to make the other four d orbitals conform with
the kagome lattice symmetry is to rotate two of the three d or-
bitals clockwise/counterclockwise by a degree of 2π/3 within
a unit cell, so that they conform with the threefold rotation
among the three sublattice sites A, B, and C [marked in the
first column of Fig. 1(a)] plus translation in the kagome lattice.
Starting from the default d-orbital orientation in Fig. 1(a), we
rotate two of them clockwise/counterclockwise by 2π/3, as
indicated by the curved black arrows, to arrive at the configu-
ration of the rotated d-orbital basis in Fig. 1(c). Now they all
produce an ideal FB, as shown in Fig. 1(d). Interestingly, one
also sees that the lattice having rotated dx2−y2 /dxy orbitals [the
second/third column in Fig. 1(d)] leads to a FB of opposite
chirality sitting above/below the Dirac bands, respectively
[similarly for dzx/dyz orbitals in the fourth/fifth column of
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Fig. 1(d)]. This means that due to the directional dependence
of d-orbital hopping there are two groups of d-orbital kagome
lattices that effectively have the lattice hopping of opposite
sign (±t ) [59]. Also, we emphasize that the FB resulting from
the rotated d-orbital kagome lattices as shown in Fig. 1(d) is
symmetry protected and hence robust, independent of varia-
tions of hopping strength (Vddσ , Vddπ , and Vddδ).

III. LATTICE INTERCALATION INDUCED ORBITAL
ROTATION

The reason for the above “hypothetically” rotated d orbital
in a kagome lattice to produce a FB can be easily understood,
from a theoretical point of view, because it effectively makes
the inter-d-orbital nearest-neighbor (NN) hopping become the
same, as in the s-orbital kagome lattice (see Table S1 and
related discussion in the SM [30]). However, how to rotate
an isolated single d orbital, especially in a real material, is
highly nontrivial. One has to find a way to not only rotate two
out of three orbitals in the desired manner but also eliminate
the hopping between different d orbitals by lifting their de-
generacy. Remarkably, we found that this can be ideally done
by hexagonal lattice intercalation.

Since the objective is to rotate the d orbital to conform
with the C3 + T symmetry of the kagome lattice, we intu-
itively tried hexagonal and trigonal lattice intercalation. For
simplicity, assuming one s orbital at each site of the hexagonal
[Fig. 2(a)] and triangular sublattice [Fig. 2(b)], the calculated
bands are shown in Figs. 2(c) and 2(d), respectively, for
varying on-site energy differences (�sd = εs − εd ) and inter-
action strength (Vsdσ ) between s and d orbitals. Here we show
the case of dx2−y2 in Fig. 2 for illustration, and the other cases
are shown in Fig. S2 in the SM [30] with qualitatively the
same behavior. Red and blue bands present the intercalation-
sublattice and kagome-sublattice projection, respectively. The
TB bands obtained with two sets of representative limiting-
case parameters [(�sd = 10t0, Vssσ = −1.2t0, Vsdσ = 0) and
(�sd = 0, Vssσ = −1.2t0, Vsdσ = 4t0)] are shown in the up-
per and lower panels of Figs. 2(c) and 2(d), respectively
(another intermediate case is shown in Fig. S2 in the SM
[30]).

Most significantly, with the hexagonal intercalation
[Fig. 2(c)], an ideal FB emerges all the time, consistent with
the rotated d-orbital kagome bands modeled above, indepen-
dent of Vsdσ and �sd . Even when �sd is small, the d bands
of the kagome sublattice will inevitably overlap with the s-
Dirac bands of the hexagonal sublattice; still the FB remains
perfectly flat over the whole BZ [lower panel of Fig. 2(c)].
In contrast, the trigonal intercalation is less effective; the FB
becomes dispersive and mixed with other bands when �sd is
small [lower panel of Fig. 2(d)].

IV. COMPATIBILITY OF LATTICE INTERCALATION
WITH FB WAVE FUNCTION

The intriguing difference between the hexagonal versus tri-
angular lattice intercalation in preserving the FB is revealed to
be profoundly related to the fundamental nature of destructive
quantum interference of the Bloch state in a kagome lattice,
namely, the phase cancellation of outward hopping from the

(a) (b)

(c) (d)

FIG. 2. Illustration of lattice intercalation (green balls) induced
dx2−y2 -orbital (red and blue) rotation and compatibility of interca-
lation with FB wave function. (a) Kagome-hexagonal intercalated
lattice and (b) kagome-trigonal intercalated lattice. Thin black rhom-
bus indicates the unit cell. Black arrows indicate the outward NN
hopping from CLS (thick black hexagon). (c), (d) TB band structures
of kagome-hexagonal and -triangular intercalated lattice, respec-
tively. Upper panels in (d), (e) show bands with on-site energy
difference �sd = 10t0 and s−d hopping integrals Vsdσ = 0; the lower
shows bands with �sd = 0 and Vsdσ = 4t0. Blue and red bands rep-
resent the orbital projection onto the rotated d-orbital kagome and
s-orbital intercalation sublattice, respectively.

real-space compact localized state (CLS) of FB wave func-
tion. To illustrate this point, in Figs. 2(a) and 2(b) we draw the
outward hopping pattern from the CLS formed by the rotated
dx2−y2 -orbital FB on the TM kagome lattice (silver balls) in
the presence of a hexagonal and triangular intercalation lattice
(green balls), respectively. Black arrows indicate the outward
hopping from the CLS to the NN sites. The alternating pos-
itive and negative phases of d orbitals on six nodes of the
CLS (marked by a black hexagon) are indicated in Figs. 2(a)
and 2(b). It ensures the condition of phase cancellation for
outward hopping from the CLS to all NN sites to vanish, so
that the FB forms inherently in a kagome lattice without inter-
calation. In the presence of an additional intercalated lattice,
one can see from the pattern of NN hopping, the condition
for phase cancellation is still preserved by symmetry with the
hexagonal lattice intercalation [paired curved black arrows in
Fig. 2(a)]; namely, the hexagonal sublattice does not perturb
the CLS outward hopping pattern, but not with the triangu-
lar intercalation [single straight black arrow in Fig. 2(b)]. In
other words, the triangle lattice intercalation would disrupt the
destructive interference of FB wave function, even though it
could rotate the d orbital.
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FIG. 3. Illustration of hexagonal intercalation motifs on effec-
tively rotating the default dx2−y2 and dxy orientations in the kagome
lattice and enhancing CFS. (b), (c) Schematics of benzene-derived
molecule intercalation. (c), (d) TB band structures with default d
orbitals corresponding to atomic structure of (a), (b), respectively.
Orbital projection of bands onto the rotated dx2−y2 and dxy orbital
basis is shown by cyan and red, respectively, indicating clearly the
effect of orbital rotation induced by hexagonal intercalation. Green
dotted bands are orbital projection onto the hexagonal intercalation
lattice.

V. EFFECT OF CRYSTAL FIELD SPLITTING

In the above analyses, we consider only one d orbital per
kagome lattice site, which corresponds to the limit of a large
CFS so that this d band is energetically well separated from
other d bands. In real kagome metals, the CFS can vary. In
addition to d-orbital rotation, another general condition for
the emergence of a FB is to have a strong enough CFS (�0)
exceeding the bandwidth (W ), namely, �0 � W (see Fig. S3
and related discussion in the SM [30]). CFS is determined
by local point-group symmetry of atoms (or molecular mo-
tifs) coordinated with the center TM atom and their bonding
strength. The former dictates the lifted d-level degeneracy,
while the latter affects the magnitude of energy splitting.
When �0 � W , the isolation of d orbitals also makes the or-
bital rotation more effective by suppressing the inter-d-orbital
hopping.

One way to tune CFS is by changing the intercalation
potential, such as by placing a benzene-derived molecule at
each hexagonal sublattice site instead of a single atom, as
shown in Fig. 3. Remarkably, the conditions of orbital rotation
and �0 � W are found to be satisfied simultaneously by
the intercalation with a strong ligand field, as revealed by
TB calculation. Figures 3(a) and 3(b) show a case study of
such intercalated kagome lattice. We place three degenerate d
orbitals (εdx2−y2 = εdxy = εdz2 = 0) in their default orientation,
i.e., without rotation. These three d orbitals are orthogonal to
other two d orbitals (εdyz and εdzx ) and the two groups have
opposite mirror parity eigenvalues; therefore, the latter two
are neglected without loss of generality. Two different orien-
tations of benzene-derived molecules are considered as shown
in Figs. 3(a) and 3(b), respectively, to account for different
CFS due to different local bonding geometry. Figures 3(c) and
3(d) show the TB band structures corresponding to Figs. 3(a)
and 3(b), respectively. In all cases, typical hopping strengths

(Vddσ = −1.20t0, Vddπ = +0.90t0, and Vddδ = −0.10t0) are
used again. Vssσ = 16t0 is used for stronger interaction within
the molecule, and Vsdσ = 4t0 is used between the kagome and
hexagonal sublattices.

One sees that for both molecular orientations, the d bands
from the kagome lattice are forming an identifiable FB, while
a set of Dirac bands can be distinguished arising from the
hexagonal sublattice. By purposely projecting bands onto the
rotated d basis rather than the default basis, one reveals also
the FB arises from the rotated dx2−y2 orbital (cyan) in Fig. 3(c)
but the dxy orbital (red) in Fig. 3(d), due to different molecular
orientations that change their local bonding geometry and
strength with the TM to modify the CFS. In contrast, as shown
in Fig. 2(c), the single-atom intercalation is not able to modu-
late the flat band via changing Vsdσ . These results indicate that
hexagonal intercalation with a strong ligand field can promote
FB formation in a kagome metal by simultaneously rotating
the d orbital and increasing CFS. Also, a larger intercalation
molecule and a stronger intercalation potential are preferable
for increasing CFS.

VI. REALIZATION OF ROTATED d-ORBITAL FB IN MOF
KAGOME METAL

Finally, we present the electronic band structures of real
materials using DFT calcalculations [60–63] to confirm the
above theoretical findings. TM kagome lattices are often

FIG. 4. Comparison between single stacking and alkali atom-
intercalated layered 3D MOF metals. (a) Crystal structure and (b)
DFT band structure of 2D Ni3C12S12. (c) Crystal structure and (d)
DFT band structure of AA stacked Ni3C12S12. (e) Crystal structure
and (f) DFT band structure of Li intercalation (Ni3C12S12−Li6). Or-
bital projections onto the rotated dz2 , dx2−y2 , dxy, dyz, and dzx orbitals
are colored green, cyan, red, magenta, and blue, respectively.
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TABLE I. Analysis of crystal structure of inorganic kagome metals. Intra- and interlayer intercalations with kagome TM sublattice are
specified.

Intralayer Intercalation
intercalation motif Interlayer intercalation FB existence

CoSn Triangular Sn [Hexagonal Sn] ×2 No
AV3Sb5 Triangular Sb [Triangular A] ×2 No
(A = K, Cs, Rb)

[Hexagonal Sb] ×2
GdV6Sn6 None None [Triangular Gd/Y + hexagonal Sn/Ge] No

[Triangular Sn/Ge] ×2
YCr6Ge6 [hexagonal Sn/Ge]
Ni3In Triangular In [Triangular In + kagome TM] ×2 No
Fe3Sn2 Triangular Sn [Hexagonal Sn] ×2 No

[Kagome TM + triangular Sn] ×2
Ni3C12S12 − Li6 Hexagonal C6S6 [Hexagonal Li3] ×2 Yes

found in two material systems, inorganic and MOF kagome
metals. Our studies point to the need for an in-plane hexagonal
intercalation of molecular motifs. By examining the known
inorganic kagome metals (see Figs. S4 and S5 in the SM [30],
and Table I), we found GdV6Sn6/YCr6Ge6 do not have an in-
plane intercalation lattice, while the others have a single-atom
triangular intercalation lattice. Thus, the d orbital cannot be
effectively rotated and the CFS is too small based on our the-
oretical analyses (Table I). This explains why they do not truly
exhibit a topological FB, as commonly perceived. Instead,
some 2D MOF structures are known to have a TM kagome lat-
tice intercalated with a hexagonal lattice of benzene-derived
motifs. Therefore, we propose layered MOF kagome metals
to be a promising family of organic kagome metals to realize
FB. This has been indeed confirmed by DFT calculations of
an example system, Ni3C12S12−Li6, as shown in Fig. 4. A
monolayer 2D MOF with a kagome TM sublattice, such as
Ni3C12S12, is well known to host an ideal FB [48,64], as
shown in Fig. 4(b), which can be understood by our analyses
in Figs. 2 and 3. Now, in forming layered three-dimensional
(3D) MOF kagome metals, if one simply stacks 2D MOF
layers together, such as AA stacking shown in Fig. 4(c),
then the FB in each individual 2D layer is heavily perturbed
becoming dispersive [Fig. 4(d)] due to too strong interlayer
interaction. To reduce the interlayer interaction, alkali metal
intercalation can be used, such as Li intercalation [Fig. 4(e)],
which will resume the FB [see red and blue dotted bands in
Fig. 4(f)]. It is important to point out that such intercalation
has been indeed observed in experiments [64,65]. Also, by

first-principles calculation, AA stacking is suggested as be-
ing energetically more stable than AB stacking [66,67]. We
also perform orbital decomposition of DFT band structures
by projecting onto the rotated d orbitals using the rotation
matrix (Eq. (S5) in the SM [30]), to illustrate the effective
d-orbital rotation by intercalation (see also Fig. S6 and related
discussions in the SM [30]). This allows us to clearly show the
FBs in MOF are composed of single rotated d-orbitals.

VII. CONCLUSION

We have developed a TB model to establish the necessary
conditions of d-orbital rotation and strong CFS for the emer-
gence of topological FBs in kagome metals. Significantly, we
demonstrate that these two conditions can and only can be
simultaneously met by intercalating the kagome TM lattice
plane with a hexagonal sublattice of molecular motifs, which
are not fulfilled by any known existing inorganic kagome
metal. Instead, we propose a family of layered MOF kagome
metals as promising candidate materials for realizing the elu-
sive topological FB.
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