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High-temperature fractional quantum Hall state in the Floquet kagome flat band
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A fractional quantum Hall effect (FQHE) has been predicted in a topological flat band (FB) by a single-particle
band structure combined with phenomenological theory or solution of a many-body lattice Hamiltonian with
fuzzy parameters. A long-standing roadblock toward the realization of a FB-FQHE is lacking the many-body
solution of specific materials under realistic conditions. We demonstrate a combined study of single-particle
Floquet band theory with exact diagonalization (ED) of a many-body Hamiltonian. We show that a time-periodic
circularly polarized laser inverts the sign of second-nearest-neighbor hopping in a kagome lattice and enhances
spin-orbit coupling in one spin channel to produce a Floquet FB with a high flatness ratio of bandwidth over band
gap, as exemplified in monolayer Pt3C36S12H12. The ED of the resultant Floquet-kagome lattice Hamiltonian
gives a one-third-filling ground state with a laser-dependent excitation gap of a FQH state, up to an estimated
temperature above 70 K. Our findings pave the way for exploring the alluding high-temperature FB-FQHE.
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Integer quantum Hall effect (IQHE) and fractional quan-
tum Hall effect (FQHE) arising from intrinsic band topology
in crystal lattices can potentially overcome the low tempera-
ture and high magnetic field required for their counterparts in
two-dimensional (2D) electron gas [1–8]. The IQHE without
Landau level (LL) was originally proposed by Haldane [9] in a
honeycomb lattice model with a Chern insulating gap, and was
recently predicted [10–12] and observed [13] in Chern insula-
tors. Also, a partially filled Chern flat band (FB) in 2D lattices
is predicted to support high-temperature FQHE [14–17]. A
widely used numerical technique to identify the existence of
FQHE in lattice systems is the exact diagonalization (ED)
of a FB Hamiltonian with a many-body Hubbard interaction
[17–22], where the signatures of Laughlin-like state [20–22],
including ground-sate degeneracy, spectral flow, and frac-
tional statistics, can be shown for a partially filled Chern FB.

Some 2D materials have been found to host FBs from
first-principles calculations [23–32]; however, none of them
has a sufficiently large flatness ratio of band gap (�) over band
width (w)—i.e., �/w � 1—which is required for realizing
high-temperature FQHE [14–17]. It has been shown that to
obtain an “isolated” FB with large �/w, a peculiar negative
kinetic hopping integral and strong spin-orbit coupling (SOC)
are needed in a kagome lattice [14]. But, such requirements
are unlikely to be met with the natural decay of lattice hopping
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with interatomic spacing in real materials; and indeed, all the
FBs found so far have too small a flatness ratio of �/w ∼ 1
[23–32]. On the other hand, the existing many-body ED cal-
culations are carried out for FB–lattice models using artificial
hopping parameters, SOC strength, and a Hubbard interaction
[21,22], which are disconnected from realistic materials and
conditions.

Therefore, there remain at least two challenges to demon-
strating the FB-FQHE in the real world: first, developing
an approach to tune the lattice hopping parameters so that
they can meet the stringent requirements to attain a large
�/w; and second, solving the many-body lattice Hamiltonian
corresponding to real materials to show directly the solution
of FQHE. In this letter, we demonstrate that the Floquet-
FB in a kagome lattice can reach an unprecedented high
�/w � 1 through photo-engineered lattice interactions. A
time-periodic circularly polarized laser (CPL) strongly alters
the steady-state electronic interactions in a kagome lattice
by virtual photon processes (VPPs), in particular to invert
the second-nearest-neighbor (2NN) kinetic hopping and en-
hance the effective SOC in one spin channel locked with
CPL helicity. Consequently, the originally dispersive Chern
band is transformed into a FB. In a prototypical example
of monolayer Pt3C36S12H12, an organometallic framework
synthesized from reacting triphenylene hexathiol molecules
(HTT) with PtCl2, which is called HTT-Pt, the so-formed FB
reaches a flatness ratio of �/w ∼ 40. Furthermore, we use the
ED method to solve the material-specific lattice Hamiltonian
of HTT-Pt under laser illumination, based on realistic Floquet
hopping, SOC, and Hubbard interaction parameters. We show
that the original electronic kagome lattice Hamiltonian does
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not support FQHE; only the Floquet-kagome lattice can host
the FQH states at the one-third filling of a FB, with a many-
body excitation gap tunable by laser intensity, reaching an
estimated temperature above 70 K.

Recently, irradiating time-periodic light on crystals has
been shown to offer an effective way to create and control
the experimentally measurable Floquet topological electronic
states [33–36], such as the nonequilibrium IQHE [37,38]
and FQHE [39] closely related to the present study, Floquet-
Dirac/Weyl semimetals [40–44], and topological FB positions
[45,46]. Here, we illustrate an interesting case of a laser-
created FB with large �/w for high-temperature FQHE.

To study coherent interactions between a laser field and
a kagome lattice, we consider the NN (2NN) kinetic hop-
ping integral γ1

0(γ2
0) and SOC strength λ1

0(λ2
0) in two spin

channels s = ±1 (see details in Fig. S1 and Section I of the
Supplemental Material [47]), and we adopt a CPL with a time-
dependent vector potential A(t ) = A0(η cos ωt, sin ωt ), where
h̄ω, A0, and η are photon energy, laser amplitude, and laser
helicity, respectively. Under a time-periodic off-resonant CPL,
the Floquet-Bloch Hamiltonian can be expanded as [38,52]

HF (k) = H0(k) +
∑
n∈Z+

1

nh̄ω
[H−n(k), Hn(k)] + O

(
1

ω2

)
.

(1)

The VPPs, comprising the photon absorption (n′ ∈ Z+)
and emission (n′ ∈ Z−) terms, Hn′ (k) = 1

T ∫T
0 H (k, t )ein′ωt dt ,

will modify (γ1, λ1) and (γ2, λ2) [Fig. 1(a)], derived as

γ1 = γ1
0J0(A1) + sη{2J1(A1)[

√
3J1(A1)B1 + J1(A2)C1]

+
√

3J2(A1) · [J2(A1)B1 + J2(A2)C1]}/(h̄ω), (2)

λ1 = λ1
0J0(A1) + sη{J1(A1)[

√
3J1(A1)D1 − 2J1(A2)C2]

+
√

3J2(A1)[J2(A1)D1/2 − J2(A2)C2]}/(h̄ω), (3)

γ2 = γ2
0J0(A2) −

√
3sη

{
2
[
J2

1 (A1)B1 + J2
1 (A2)B2

]
− [

J2
2 (A1)B1 − J2

2 (A2)B2
]}/

(h̄ω), (4)

and

λ2 = λ2
0J0(A2) +

√
3sη

{[
J2

1 (A1)D1 − J2
1 (A2)D2

]
− [

J2
2 (A1)D1 + J2

2 (A2)D2
]/

2
}/

(h̄ω), (5)

where A1 = aeA0/2h̄ (a is lattice constant), A2 = √
3A1, B1 =

γ1
0λ1

0, B2 = γ2
0λ2

0, C1 = γ1
0λ2

0 − γ2
0λ1

0, C2 = γ1
0γ2

0 +
λ1

0λ2
0, and D1 = (γ1

0)2 − (λ1
0)2, D2 = (γ2

0)2 − (λ2
0)2. Jm

is the first kind of Bessel function with an order of m =
0, 1, 2, which comes from the m-order VPP in Eq. (1).
For high-frequency driving, the first-order term (∼ω−1) dom-
inates the Floquet band structure so that the higher-order
terms can be neglected (Supplemental Material Fig. S2 [47])
[35,40,52].

By chiral symmetry, the effect of a left-handed
CPL (η = 1) on spin-up (s = 1) bands is the same as
that of a right-handed CPL (η = −1) on spin-down (s = −1)
bands. Thus, here we focus on the case of η = 1 and
s = 1. To illustrate photo-engineered interactions and the
resulting Floquet-kagome band structure, we choose a

FIG. 1. Photo-engineered kagome interactions and Floquet
bands. (a) Schematic illustration of lattice hopping driven by a time-
periodic CPL. γ1 (λ1), γ2 (λ2), γ3, and γ4 (λ4) represent the NN,
2NN, 3NN, and 4NN kinetic (SOC) hopping, respectively. (b) Evo-
lution of λ1, γ2, and λ2 versus laser amplitude A0 for spin-up bands in
monolayer HTT-Pt under a CPL with h̄ω = 8γ1

0 and η = 1. (c) Left
panel: Kagome bands in equilibrium. Right panel: Floquet-kagome
bands induced by a CPL with A0 = 800 V/c in (b). (d) Top panel:
The Berry curvature � for the bottom dispersive Chern band with
�/w ∼ 0.27 in the left panel of (c). The dashed lines mark the FBZ.
Bottom panel: The laser-driven � of the bottom FB with �/w ∼ 29
in the right panel of (c).

prototypical example with tight binding hopping integrals
of γ1

0 = 48 meV, λ1
0 = 0.180γ1

0, γ2
0 = 0.112γ1

0, and
λ2

0 = 0.038γ1
0, which are fitted from the first-principles band

structure of monolayer HTT-Pt (Supplemental Material Fig.
S3 and Section II in Supplemental Material [47]) [30,31,53].
Applying a CPL with h̄ω = 8.0γ1

0, γ2 decreases with the
increasing A0, as shown in Fig. 1(b). Beyond A0 = 476 V/c
(corresponding to 0.039 V/Å or 2.0 × 1010 W/cm2), γ2

is inverted from positive to negative, which is essential to
flatten the bottom Chern band (see details in Supplemental
Material Fig. S4 [47]). At the same time, both λ1 and λ2

increase with A0 [Fig. 1(b)], which is critical to increase
�/w. In sharp contrast to equilibrium kagome materials,
the Floquet-kagome hopping integrals no longer decay
exponentially with the interatomic distance and can have
different phases (signs).

The unusual photo-engineered interactions in Fig. 1(b)—
i.e., inverting the 2NN kinetic hopping and enhancing the
SOC in one spin channel locked with laser helicity—lead to
an intriguing evolution of Floquet-Kagome bands. The equi-
librium spin-up bands have a direct SOC gap � = 0.887γ1

0,
separating the bottom Chern band (C = −1) from the middle
Dirac band (C = 0) [left panel in Fig. 1(c)]. The bottom
Chern band has a sizable width w = 3.228γ1

0 and a small
flatness ratio �/w = 0.27. The CPL significantly reduces
its width, such as to w = 0.022γ1

0 with A0 = 800 V/c,
which is ∼150 times narrower than its equilibrium value,
as shown in the right panel of Fig. 1(c). Also, it becomes
well separated from the band above by a large SOC gap
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FIG. 2. Evolution of (a) spin-up band gap � and (b) flatness ratio
�/w versus laser intensity produced for HTT-Pt under CPL with
h̄ω = 8γ1

0. (c, d) Phase diagram of � and �/w in the parameter
space of h̄ω and A0. The star marks the specific case with �/w ∼ 29
shown in the right panel of Fig. 1(c), as used for the ED study.

� = 0.650γ1
0. Consequently, an unprecedented high value

of �/w ∼ 29 is achieved. The nonmonotonic dependence of
�/w on A0, peaking at A0 = 800 V/c for h̄ω = 8γ1

0, can be
better understood by analyzing simplified models with only
NN equilibrium hopping integrals, and evaluating the detailed
dependence of �, w, and �/w on laser-driven hopping inte-
grals (Supplemental Material Section IV and Figs. S4 and S5
[47]). The spin-down Floquet bands evolve differently—e.g.,
exhibiting bands with a high Chern number (Supplemental
Material Fig. S6 [47]). With a spontaneous Zeeman splitting
of M = –2γ1

0 induced by a partially filled FB [23,30], the
spin-up and -down Floquet bands of monolayer HTT-Pt can be
fully separated from each other (Supplemental Material Fig.
S7 [47]).

We have analyzed the laser-driven distribution of Berry
curvature (�) of the photo-flattened Chern band to identify
essential features for realizing FQHE. At equilibrium, � of
the bottom dispersive Chern band is highly localized at the
K and K ′ points of the first Brillouin zone (FBZ) [top panel
in Fig. 1(d)], which is characterized by a large mean-square
deviation of 〈(��)2 〉 = 7.2 × 10−2 [54]. Differently, � of
the ultraflat and isolated bottom Floquet-Chern band becomes
delocalized in the whole FBZ [bottom panel in Fig. 1(d)],
characterized by 〈(��)2〉 = 3.9 × 10−3. The uniform dis-
tribution of Berry curvature in a FB indicates a very short
magnetic length l on the order of lattice constant [14], in
analogy to a LL, which favors FQHE with a large excitation
gap and high temperature [8,55] (see Supplemental Material
Section V [47]).

To identify the optimal laser intensity and photon energy
for maximizing the band gap and flatness ratio, we have
mapped out � and �/w as functions of h̄ω and A0. Figure 2(a)
and (b) shows their dependence on A0 for a chosen h̄ω =
8γ1

0. A maximum �/w ∼ 29 (also a large � = 0.650γ1
0)

is reached at A0 = 800 V/c. Figure 2(c) and (d) shows the
phase diagrams of � and �/w in the parameter space of

h̄ω and A0. There exists a large experimentally accessible
parameter space to achieve a Chern FB with � > 0.54γ1

0

and �/w > 10. In general, as the photon energy increases,
the required laser intensity is stronger in order to create the
desired band structure, because of an inverse linear scaling
between the intensity of VPP and photon energy [Eq. (1)].
With h̄ω = 9.1γ1

0 and A0 = 812 V/c, a maximum �/w ∼ 43
is achieved, with a large � = 0.60γ1

0 (Supplemental Material
Fig. S8 [47]).

Next, we investigate the possible existence of FQHE and
assess its temperature in a specific material under realistic
conditions by performing a series of ED studies of a kagome
lattice with Floquet hopping parameters corresponding to
HTT-Pt under laser illumination. The many-body Hamiltonian
is Ĥ = ĤF + U

∑
〈i, j〉 n̂in̂ j , where ĤF is the HTT-Pt-specific

Floquet-kagome Hamiltonian with γ1
0 ∼ 0.048 eV, n̂ j is the

on-site particle number operator, and U ∼ 0.14 eV (3γ1
0) is

the NN Hubbard repulsion (see details in Supplemental Ma-
terial Section VI [47]). We note that in HTT-Pt, U is larger
than the single-particle band gap (�). Because the two lower
bands have, respectively, Chern number −1 and 0, any mixing
between them will not change the Chern number of the lowest
FB with band width w [19]. Hence, if U � w, interactions
dominate and partial filling of the FB leads to a strongly
correlated state, such as a FQH state. So, we exactly diag-
onalize the many-body Hamiltonian projected to the lowest
FB for a finite system with Nx × Ny unit cells (Total sites =
3 × Nx × Ny). The filling factor is equal to υ = Ne

Nx×Ny
, where

Ne is the number of electrons in the system. Under periodic
boundary conditions, we implement translational symmetries
and diagonalize the Hamiltonian in each momentum sector
q = (2πkx/Lx, 2πky/Ly), with kx and ky being the integers.

For comparison, we first calculated the energy spectra for
the one-third filling of a 4 × 6 system for the equilibrium
lattice, as shown in Fig. 3(a). There is no clear gap or the
celebrated 3-fold degeneracy of a ground state [17–22], or
any other identifiable signature of a one-third FQH state. This
indicates that HTT-Pt by itself does not support FQHE. We
then calculated the energy spectra for the Floquet lattices with
different laser energies and intensities. One typical example is
shown in Fig. 3(b) with h̄ω = 8.0γ1

0, A0 = 800 V/c. One no-
tices a clear gap separating the 3-fold degenerate ground-state
manifold from the excited states. Due to finite size effects, the
degeneracy of the ground state is slightly lifted, but the energy
spread is much smaller than the gap. Also, if one state in the
ground-state manifold lies in the momentum sector (k1, k2),
the next state can be always found at (k1 + Ne, k2 + Ne) [mod-
ulo (Nx, Ny)]. This correlation implies that the ground state has
a nontrivial topology [18,20]. The key features of finite gap
and ground-state degeneracy have been checked for conver-
gence with respect to system size (see Supplemental Material
Fig. S9 [47]).

To ascertain further that the ground state is nontrivial, we
also calculated the spectral flow [Fig. 3(c)] under a twisted
boundary condition that is equivalent to the insertion of
magnetic flux. According to Laughlin’s gauge argument, if
one adiabatically inserts three quantum fluxes into the one-
third-filling FQH state, the states should evolve back to their
original configuration [2]. This can be clearly seen in Fig. 3(c)
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FIG. 3. ED solution of the Floquet FB-FHQE in HTT-Pt at U =
3γ1

0. (a) Low-energy spectrum of Ne = 8 electrons in the equilibrium
lattice with 4 × 6 kagome unit cells. (b) Low-energy spectrum of
Ne = 8 electrons in the same lattice as in (a) driven by CPL with
A0 = 800 V/c, h̄ω = 8γ1

0. (c) Spectral flow spectrum: evolution
of (b) under the flux insertion along y direction. (d) Tempera-
ture estimated by the many-body gap of the one-third FQH state
versus A0.

for the three states in the ground-state manifold. There is no
mixing between them and the excited states throughout the
flux insertion. Thus, these states share a total Chern number
of 1, giving a quantized Hall conductance of σH = 1

3
e2

h [56].
The many-body gap is �ED ∼ 6 meV [Fig. 3(b)], as cal-

culated for the Floquet-kagome lattice using h̄ω = 8.0γ1
0,

A0 = 800 V/c, and U = 3γ1
0. Taking this �ED as a rough

estimate of critical temperature (Tc) for FB-FQHE, we obtain
Tc ∼70 K [14,47]. In Fig. 3(d), we show that Tc increases
monotonically with the increasing laser amplitude. We have
calculated �ED as a function U at a fixed laser intensity of
A0 = 800 V/c (i.e., fixed lattice hopping) and found �ED =
0.042 U (Supplemental Material Fig. S10 [47]), which is
qualitatively the same but quantitatively about half of the em-
pirical formula �FQHE = 0.09 U [14] for LLs. In addition, we
calculated �ED as a function of kinetic lattice hopping (γ1) for
constant U and found �ED = 0.03 (γ1

0)2/γ1 (Supplemental
Material Fig. S10 [47]). This leads to a combined expression,
�ED = 0.01(U/γ1)γ1

0, showing the dependence of �ED on
both U and γ1. It points to the apparent difference between
FB-FQHE and LL-FQHE, as the former arises from a lattice
system while the latter is lattice free.

In addition, we have verified the fractional exclusion statis-
tics in the Floquet FB, which is another key characteristic of
the FQH state in LLs [57]. In Fig. 4(a), we show the calculated
quasihole excitation spectrum for the case of Fig. 3(b). This
is done by keeping Ne fixed and by varying Nx and/or Ny

to introduce a hole. The counting of the number of states
below the gap in the quasihole spectrum must correspond to
the counting given by the (1,3)-admissible rule based on the
generalized Pauli principle [21],

NNe
FQH = NxNy

(NxNy − 2Ne − 1)!

Ne!(NxNy − 3Ne)!
. (6)

FIG. 4. Fractional statistics for the one-third FQH state as in
Fig. 3. (a) Low-energy spectrum of eight electrons in the cluster
with 5 × 5 kagome cells (equivalent to quasihole excitation of eight
electrons in 4 × 6 Kagome cells). (b) PES probing a group of NA = 3
electrons in Fig. 3(b).

As an example, we performed this calculation for eight elec-
trons in a 5 × 5 lattice. The number of states below the gap is
25, in exact agreement with the (1,3)-admissible rule.

Moreover, to rule out other possible ground states, such as
the Wigner crystal state, we calculated the particle-cut entan-
glement spectrum (PES). By partitioning Ne into two groups
of NA and NB, and tracing out the degrees of freedom for NB,
we calculate the reduced density matrix ρA = TrB

∑
i |φi〉〈φi|,

where the sum is over the three states in the ground-state
manifold and |φi〉 is their respective many-body wavefunc-
tions. The eigenvalues of this matrix are given by e−ξ [21,58],
and the entanglement energy levels ξ can then be displayed
in groups labeled by the momentum (k1, k2) of NA particles.
In Fig. 4(b), we plot the PES for NA = 3 in a 4 × 6 lattice.
A clear entanglement gap can be seen, and the number of
states below the gap matches exactly the quasihole counting
for three particles in a 4 × 6 lattice, indicating a FQH state
[21,22,58]. Besides A0 = 800 V/c, the one-third fractional
Hall conductance and key characteristics of the predicted
FQHE are also demonstrated for other laser amplitudes (see
Supplemental Material Figs. S11 and S12 [47]).

To facilitate a direct comparison with experimental mea-
surement of Floquet states [34,36,59–61], we simulated time-
and angle-resolved photo-electron spectroscopy, by adopt-
ing the experimental pump-probe scheme (see Supplemental
Material Section VII and Fig. S13 [47]). The simulation
shows there are ∼5% electrons photo-excited from the bot-
tom Floquet FB (Supplemental Material Fig. S13 [47]) to
form Floquet dressed states through VPPs, which would re-
sult in a conductivity plateau of IQHE deviating from an
exact integer (similar to that in Floquet graphene [36]), when
the Fermi level lies in the gap above the bottom Floquet
FB. Interestingly, however, this may not affect the FQHE
measurement, because FQHE corresponds to the many-body
ground state that occurs at exact one-third FB occupation,
usually achieved by gating to tune the chemical potential.
The laser intensity and energy for achieving reasonably large
�/w corresponds to an electric field of ∼1 × 108 V/m, in the
same range as experiments where the materials remain stable
[34,36,59–61].

In summary, we have carried out a comprehensive study of
FQHE in topological FB in specific materials under realistic
conditions, by combining single-particle Floquet band the-
ory with exact diagonalization of a many-body Hamiltonian.
We conclude that the naturally existing electronic materials
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are unlikely to support the FQHE because of a FB flatness
ratio that is too small. We propose one viable approach to
increase the flatness ratio is by Floquet band engineering via
photo-inverted lattice hopping coupled with photo-enhanced
SOC interaction. Using monolayer HTT-Pt as a prototypical
example, we show that a Floquet-kagome lattice may exhibit
a one-third-filling FB-FQHE above the liquid nitrogen tem-
perature.
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