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Orbital design of flat bands in non-line-graph lattices via line-graph wave functions
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Line-graph (LG) lattices are known for having flat bands (FBs) from the destructive interference of Bloch
wave functions encoded in only lattice symmetry. Here, we develop a generic atomic/molecular orbital design
principle for FBs in non-LG lattices. Based on linear combination of atomic orbital theory, we demonstrate that
the underlying wave-function symmetry of FBs in a LG lattice can be transformed into the atomic/molecular
orbital symmetry in a non-LG lattice. We illustrate such orbital-designed topological FBs in three 2D non-LG,
square, trigonal, and hexagonal lattices, where the designed orbitals faithfully reproduce the corresponding lattice
symmetries of checkerboard, kagome, and diatomic-kagome lattices, respectively. Interestingly, systematic
design of FBs with a high Chern number is also achieved based on the same principle. Fundamentally our theory
enriches the FB physics; practically, it significantly expands the scope of FB materials, since most materials have
multiple atomic/molecular orbitals at each lattice site, rather than a single s orbital mandated in graph theory and
generic lattice models.
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I. INTRODUCTION

Electronic properties of crystals are generally determined
by four fundamental degrees of order: lattice, orbital, charge,
and spin [1]. One distinguished manifestation of lattice sym-
metry in electron band structure is topological flat band (TFB)
in line-graph (LG) lattices [2–5]. In graph theory, a LG is
made by connecting the centers of edges sharing a common
vertex of a graph. It is proved that [6–8] the Laplacian operator
of a LG is equivalent to the electronic Hamiltonian of the
corresponding LG lattice, which has ubiquitously a constant
eigenvalue, i.e., a FB. The topology of a FB hosted in a
LG lattice can be assessed by the existence of singular band
touching point with a dispersive band at a high-symmetry k
point [9–12], differing from an isolated trivial FB, such as
the one in Tasaki lattices [13–15]. When the degeneracy of
the touching point is lifted, the gapped TFB has a nonzero
Chern number [9]. Due to its quenched kinetic energy and
nontrivial topology, there exists a rich spectrum of physics
associated with TFB, such as ferromagnetism [13,16,17],
superconductivity [18–20], Wigner crystallization [21–23],
fractional quantum Hall effect [24–27], Weyl fermion [28],
and excitonic insulator [29]. Recent discovery of supercon-
ductivity in twisted bilayer graphene has further boosted the
interest in FBs [30–33].

The lattice, orbital, charge, and spin degrees of order are in-
terdependent with each other. Of particular interest here is the
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transformation between lattice and orbital symmetry. Some
generic lattice models (namely one s orbital per site), based on
LG [2–8,34–46], cell [13–15,47–49], and compact localized
state (CLS) construction [10,47,50], have been developed for
FBs [see Sec. I of Supplemental Material (SM) [51]]. Also, a
couple of specific models have been shown for FBs in non-LG
lattices [22,35,52], such as the hexagonal lattice with (px, py)
orbitals [22,53–55]. However, a generic orbital model for
TFB construction, including high Chern number FB, is still
lacking, which is important and useful since real materials
usually consist of multiple atomic/molecular orbitals on each
lattice site. In general, our understanding of fundamental rela-
tionship between lattice and orbital symmetry regarding FBs
is far from complete.

In this work, we introduce a generic orbital design principle
for TFBs, based on linear combination of atomic orbitals
(LCAO) theory, which transforms the symmetry of lattice
wave functions in LG lattice into “molecular” orbital (MO)
symmetry in non-LG lattice by a unitary transformation. Ap-
plying this principle, we predict FB lattice/orbital systems and
explain the few existing ones. It also enables a systematic
orbital design of FBs with a high Chern number in various
lattices. Using the tight-binding method, we calculate the band
structures of three most common non-LG, square, trigonal,
and hexagonal lattices, by employing the combinations of
orbitals that are symmetry transformed from a subset of lat-
tice wave functions of the LG, checkerboard, kagome, and
diatomic-kagome lattices, respectively. We are able to produce
TFBs in these lattices with all the possible orbital combina-
tions, as summarized in Table I, much beyond a few specific
cases found previously by physical intuition.
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TABLE I. Transformation from LG lattices to non-LG orbitals.

LG lattice Non-LG orbital

Checkerboard Square (s/dz2 , p), (s/dz2 , d)
Diamond-octagon Square (s/dz2 , px , py), (dx2−y2 , px , py)
Kagome Trigonal (s/dz2 , px , py), (s/dz2 , dxy, dx2−y2 )
Diatomic-kagome Hexagonal (px , py), (dxy, dx2−y2 )

II. COMPUTATIONAL METHODS

For tight-binding model calculations, we employed the
well-known two-center bond integrals initially derived by
Slater and Koster [56]. All moment-space Hamiltonians
without spin-orbit coupling (SOC) can be found in Sec. IV
of SM [51]. Furthermore, onsite SOC (Supplemental
Table SI [51,57]) is considered to break the degeneracy
of singular touching points between the flat and disper-
sive band. For the two-dimensional systems in this work,
the orbital bases with separate spin-up and -down channels
{|o1,↑〉, . . . , |on,↑〉; |o1,↓〉, . . . , |on,↓〉} are used, so the
onsite-SOC contribution to Hamiltonian is written as λL · S =
λ
2 [Lz 0

0 −Lz
] [58] with SOC strength λ, orbital angular momen-

tum L, and spin angular momentum S, in which the matrix
Lz is derived based on Table SI. The spin-z component is
not mixed by the onsite SOC, manifesting that the z compo-
nent is still a good quantum number. For the spin-polarized
band indexed as n, Chern invariant Cn = 1

2π
∫BZ d2k�n is

calculated by integrating Berry curvature in the first Brillouin
zone (FBZ) [59]. The momentum-space Berry curvature is
�n(k) = −∑

n′ �=n
2Im〈ψnk|v̂x |ψn′k〉〈ψn′k|v̂y|ψnk〉

(En′k−Enk )2 , where v̂x and v̂y are
velocity operators along the x and y directions. The Chern
invariant is calculated for spin-up channel in this work.

III. RESULTS AND DISCUSSION

A. General formulation of orbital-design principle

We first discuss a general formulation of the orbital-
designed TFBs in non-LG lattices. Consider a LG lattice
consisting of n sites per unit cell, such as n = 2 in a checker-
board lattice (LG of square lattice) in Fig. 1 (gray dots), with
one s orbital per site (ϕs). Let us partition the LG by grouping
m sites with labels (A, B, C, · · · ) together as a “molecule”
(periodically repeated); the resulting MOs are constructed
from LCAO theory as

∅MO =
m∑

i=A,B,C,···
ciϕis, (1)

and treat the center of this molecule as one site with n MOs
in a new lattice, which will generally be a non-LG lattice.
For example, in Fig. 1(a), we choose m = n = 2, then the
new lattice is a square lattice with two MOs on each site
(blue dots). This operation transforms the lattice symmetry
of a LG checkerboard lattice into the orbital symmetry of a
non-LG square lattice. Importantly, both lattices must have the
same band structure, including the FB, because they have the
equivalent Hamiltonian by a unitary transformation between
different basis expansions for the Bloch wave functions in the

FIG. 1. (a) Illustration of lattice wave-function symmetries,
viewed on two sites (A and B, shaded) in a 1×1 checkerboard primi-
tive cell (black thin lines), to be transformed into two orbitals on one
site (blue dot) in a square lattice: |s〉 ∼ |A〉 + |B〉, |p〉 ∼ |A〉−|B〉. (b)
Same as (a) but viewed on four sites (A1, A2, B1, and B2, shaded)
in a

√
2×√

2 checkerboard supercell (black thin lines). The two
orbitals become |s〉 ∼ |A1〉 + |A2〉+|B1〉 + |B2〉, |d〉 ∼ |A1〉+|A2〉 −
|B1〉−|B2〉.

same lattice partition, the former expanded in single s orbitals
and the latter in multi-MOs. The symmetry (or type) of the
MOs is determined by coefficients ci in Eq. (1), in particular
the sign of ci on the m LG lattice sites, which can be obtained
from the nodes of Bloch wave functions at the � point. Note
that the basis transformation is independent of k points; in
other words, the Bloch states at every k point are solved with
the same s-orbital (MO) basis in the LG (non-LG) lattice. For
example, the two MOs in Fig. 1(a) have the general form of
∅1,2

MO = (ϕAs ± ϕBs)/
√

2 [see calculation results in Fig. 2(a)],
indicating one s- and one p orbital. This is different from
the k-resolved symmetry analysis of the whole-lattice Bloch
states, used to assess band topology [60,61].

Also, different MOs may result from partitioning different
number of m sites. For example, in Fig. 1(b), we choose
m = 2n = 4, the new lattice is again a square lattice, but the
two MOs on each site (blue dots) have s- and d symmetry,
respectively [see calculation results in Fig. 2(e)]. In doing so,
the new square lattice has a supercell size twice as large as
the original checkerboard lattice, as the two MOs are trans-
formed from four s orbitals. This indicates band folding must
accompany this basis transformation, since the band struc-
ture is independent of basis representations. Interestingly, this
would lead to multiple “folded” singular band touching points
between the flat and dispersive band, indicating the FB with a
high Chern number.

B. Square lattice

Next, we illustrate the above design principle by tight-
binding band calculations of specific examples. The checker-
board lattice, having site A and B in a unit cell, hosts a
FB touched with a dispersive band (Fig. S1 in SM [51]).
In Fig. 2(a), we plot the two eigenstates at �, ψE=−3t =

1√
2
(|A〉 + |B〉) and ψE=t = 1√

2
(|A〉 − |B〉), centered at the

middle of A and B. They may be viewed as two MOs sit-
ting on the same site in a square lattice, one with s ∼ |A〉 +
|B〉 and the other with p ∼ |A〉 − |B〉 symmetry polarized
along the diagonal direction, as shown in Figs. 2(a) and
2(b). The band structure of this square lattice is calculated,
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FIG. 2. TFB in a square lattice. (a) �-point wave functions of a checkerboard lattice (gray lines), exhibiting s- (upper) and p-orbital
symmetry (lower). Red and green dots represent, respectively, positive and negative wave-function nodes. (b) Square lattice with (s, p) orbitals.
(c) Band structure of (b) with hopping integrals in Eq. (2). (d) The CLS of FB in (b) on a square plaquette, illustrating overall zero outward
hoppings. Red, green, and gray arrows represent positive, negative, and zero hopping integrals, respectively. (e)–(h) Same as (a)–(d) with
(s, dxy) orbitals. The bands in (g) can be viewed as folded from (c); the inset of (g) shows the FBZs before (solid line) and after folding (dashed
line).

as shown in Fig. 2(c), using the following nearest-neighbor
(NN) and next-NN (NNN) hopping integrals (note: the two-
center Slater-Koster integrals [56,62] are scaled by a common
factor t),

tNN
ssσ = −tNN

spσ = −1

2
, tNN

ppσ = −tNN
ppπ , tNNN

ssσ = −1

4
,

tNNN
spσ = 1

2
√

2
, tNNN

ppσ = 1

2
. (2)

One may also partition the checkerboard lattice wave func-
tions in Fig. 2(a) differently, by grouping four instead of two
lattice sites, as illustrated in Fig. 2(e). Expanding the �-point
lattice wave functions into a four-site basis in a

√
2×√

2
checkerboard superlattice gives rise to two MOs correspond-
ing to ψE=−3t = 1

2 (|A1〉 + |A2〉 + |B1〉 + |B2〉), and ψE=t =
1
2 (|A1〉 + |A2〉 − |B1〉 − |B2〉), with s and d symmetry in a
square lattice [Figs. 2(e) and 2(f)]. This enables an alterna-
tive design of FB in a square lattice, and Fig. 2(g) shows
the resulting band structure calculated using (s, dxy)-hopping
integrals of tNN

ssσ = −tNN
ddπ = − 1

2 , tNNN
ssσ = − 1

4 , tNNN
sdσ = − 1

2
√

3
,

and tNNN
ddσ = − 1

3 .
The band structure in Fig. 2(g) is different but related to

that in Fig. 2(c) by band folding. Specifically, the bands in
Fig. 2(g), calculated from the 1×1 unit cell [solid square in
Fig. 2(f)] with a “1×1” first Brillouin zone [solid square of
inset in Fig. 2(g)], can be folded into the bands of a

√
2×√

2
cell [dashed rhombus in Fig. 2(f)] with a “ 1√

2
× 1√

2
” FBZ

[dashed rhombus of inset in Fig. 2(g)], with the M, middle
point of �-M, and X of the former folded into the �, X , and
M of the latter, respectively. The folding produces two sets of
degenerate checkerboard bands (Fig. S2) having the identical

band dispersions as in Fig. 2(c). Interestingly, this renders
the FB in Fig. 2(g) to have a Chern number of −2 for one
spin channel, as manifested by the observation of FB touched
with the dispersive band at two X points within the FBZ, as
explained below.

At each band touching point, the Berry curvature of sin-
gular Bloch wave functions of TFB diverges, in association
with the N − 1 CLSs for a finite lattice with N sites, and
two topological noncontractible loop states (NLSs), i.e., ex-
tended boundary states, in real space [9–12]. In LG lattices,
the CLS results from destructive interference (phase cancel-
lation) of lattice hopping induced solely by lattice symmetry,
as reflected by the alternating nodal signs of wave function
on an even-edged plaquette, e.g., a rhombus in a checker-
board lattice (Fig. S1). The CLS of orbital-designed FBs is
more complex, as illustrated in Fig. 2(d). The Bloch state
of FB in Fig. 2(c) is calculated as ψFB

k = i 1√
2
sin k1+k2

2 |s〉 +
cos k1

2 cos k2
2 |p〉, with k j = k · a j (a j , lattice vector; j = 1, 2),

whose Fourier transformation ψFB
R = ∫BZ dke−ik·RψFB

k pro-
duces a real-space CLS on a square plaquette centered at
R [Fig. 2(d)]. It consists of nodal wave functions of |p〉

4 ,
− |s〉

2
√

2
+ |p〉

4 , |p〉
4 , and |s〉

2
√

2
+ |p〉

4 at four vertices of the pla-
quette, respectively. Electron hoppings outward from the
CLS to its surrounding lattice sites are completely forbid-
den, which can be shown by analyzing hoppings based on
Eq. (2). For example, the hoppings to the site above site
1 come from site 1 and 2 in Fig. 2(d), which are, respec-
tively, 1

4 [ 1
2 (tNN

ppσ + tNN
ppπ ) − 1√

2
tNN
spσ ] = − t

8
√

2
and − 1

2
√

2
tNNN
ssσ +

1
4 tNNN

ppπ = t
8
√

2
, and cancel out with each other. The same is

true for all other hoppings. Likewise, the FB in sd-orbital
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FIG. 3. Dual TFBs in a square lattice. (a) Three �-point wave
functions of a diamond-octagon lattice, with s- (left), px- (middle),
and py-orbital symmetry (right), respectively. (b) Square lattice with
(s, px, py) orbitals. (c) Band structure of (b) with NN hopping inte-
grals in Eq. (3). (d) The CLS of lower (left) and upper FB (right)
in (c) on a square plaquette. Gray arrows indicate vanishing outward
hoppings.

model supports a CLS on a square plaquette with linearly
combined s- and d orbitals on its vertices [Fig. 2(h)], whose
outward hoppings also vanish (see details in Sec. II of SM
[51]). Thus, the orbital symmetry in a non-LG lattice plays the
role of lattice symmetry in a LG lattice in conditioning the de-
structive interference of Bloch states to form a CLS. Besides
the localized CLSs, the extended FB NLSs exist (see details
in Sec. III of SM [51]), indicating the nontrivial topology of
the orbital-designed FBs [9–12].

In real materials, there are usually multiple atomic/
molecular orbitals on each lattice site contributing to the
bands near Fermi level. In the proposed lattice-orbital trans-
formation, the number of sites in the LG lattice equals the
number of orbitals in the non-LG lattice per unit- or supercell.
So, to design FB with more than two orbitals in a square
lattice, one may find another LG lattice, instead of checker-
board lattice, with more sites per cell. One such choice is the
diamond-octagon (diatomic-checkerboard) lattice, the LG of
Lieb lattice [43]. This leads to dual TFBs in a square lattice.
Without losing generality, let us first choose three orbitals
(s, px, py) [Figs. 3(a) and 3(b)], and the following NN hop-
ping integrals:

tssσ = −1

8
, tppσ = 1

4
, tspσ = 1

4
√

2
. (3)

The resulting band structure consists of two FBs touched
with one dispersive band in between [Fig. 3(c)]. They cor-
respond exactly to the top three bands of diamond-octagon
lattice (Fig. S3), whose lattice wave functions at � indeed
display the s, px, and py orbital symmetry, respectively, as
shown in Fig. 3(a), following our design principle.

The CLS is analyzed to understand how the kinetic
energy of the dual TFBs is quenched. As illustrated in
Fig. 3(d), the lower FB supports a CLS on a square plaquette
with bonding nodal wave functions |s〉 + 1√

2
(|px〉 − |py〉),

|s〉− 1√
2
(|px〉 + |py〉), |s〉 + 1√

2
(−|px〉 + |py〉), and |s〉 +

1√
2
(|px〉 + |py〉) at four vertices, respectively, while the

upper-FB CLS consists of four antibonding vertex states.
Based on Eq. (3), both CLSs have vanishing outward
hoppings. For example, the one from site 1 to the site
above is (tssσ + tspσ ) − 1√

2
(−tspσ + tppσ ) = 0 (see others and

topological NLSs in Secs. II and III of SM [51], respectively).
It once again confirms that the orbital symmetry underlines
the destructive interference of Bloch wave functions for our
theoretically designed TFBs.

The diamond-octagon lattice has total four sites per unit
cell and hence four bands; the wave function of the fourth
bottom isolated band has the dx2−y2 symmetry (Fig. S3). It
can be shown that by changing the sign of lattice hopping
integrals, the position of s- and dx2−y2 band is interchangeable.
Consequently, an alternative design of the top three bands
with dual FBs is to use (dx2−y2 , px, py) in place of (s, px,
py) orbitals in a square lattice (Fig. S4), as found previously
[35]. One may also include four orbitals (s, px, py, dx2−y2 ) in a
square lattice, which produces two sets of checkerboard bands
of opposite chirality (Fig. S5). They are dubbed as yin-yang
checkerboard bands, in analogy to the yin-yang kagome bands
[41]. The above hopping integrals in square lattice produce
a perfect FB, same as in the corresponding LG lattice with
ideal hopping integrals. Ideally, specific interorbital hopping
integrals are assumed in the non-LG lattices to produce FBs
with perfect flatness, same as in the corresponding LG lattice
with ideal hopping integrals. Usually, a small deviation from
ideal hopping conditions in either LG or non-LG lattices leads
to finite dispersion of FBs, but without changing the physics
qualitatively (Ref. [64]; Fig. S6).

In the present study, we focus on the LG of bipartite lattices
whose FB is singularly touched with a dispersive band, and
hence topologically nontrivial [9–12], while the LG of nonbi-
partite lattices have an isolated FB that is topologically fragile
[4,8,36]. Each singular band touching point can be viewed as
a Berry flux center, in analogy to Dirac/Weyl point [9,63],
contributing to an integer Chern number of ±1. This can be
clearly illustrated by evaluating evolution of band structure
and Berry curvature � of FB as a function of increasing
SOC strength, as shown in Fig. 4 for the case of sp2 square
lattice as an example. One sees that with a diminishing SOC
[Fig. 4(a)] towards zero, � vanishes everywhere except for
around the � point where it diverges going to infinity on a
tiny small circle. With the increasing SOC, the distribution of
� gradually broadens around � on a band of ring. In all cases,
integration of � over the FBZ gives a Chern number of 1.
Indeed, this is confirmed by adding SOC to open a gap, and
calculating the FB Chern number in all the lattices considered
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FIG. 4. SOC-induced evolution of band structure and Berry curvature � of TFB in sp2 square lattice with hopping parameters of Eq. (3).
The strength of onsite SOC is (a) λ = 10−6t ; the inset shows a 100×magnification of the tiny circle around �, (b) λ = 10−4t , (c) λ = 10−2t ,
and (d) λ = 5×10−2t . The calculated � is for upper TFB, in units of a2 (a is lattice constant).

(Fig. S7). Each singular band touching point contributes a
Chern number of +1 or −1; therefore, the proposed orbital
design provides also an effective way to realize high Chern
number FBs by introducing multiple band-touching points as
shown in Fig. 2(g) [see also Fig. 5(f) below].

C. Trigonal lattice

Next, we demonstrate existence of TFB in a trigo-
nal lattice, by orbital design from a kagome lattice (LG
of hexagonal lattice). Kagome lattices have three �-point
eigenstates of 1√

3
(|A〉 + |B〉 + |C〉), 1√

2
(−|A〉 + |B〉), and

1√
6
(−|A〉 − |B〉 + 2|C〉) at E = −4t , 2t , and 2t [Fig. 5(a)],

which have the s, px, and py orbital symmetry, respectively.
So, using three orbitals (s, px, py) on each site [Fig. 5(b)] and
the following NN hopping integrals:

tssσ = −2

3
, tppσ = 1, tppπ = −1

3
, tspσ =

√
2

3
, (4)

a FB appears to touch with two Dirac bands [Fig. 5(c)], similar
to kagome bands (Fig. S8). Since the lattice-orbital transfor-
mation has three lattice sites transformed into three orbitals in
the same unit cell, there is no band folding.

Similar to the design of high Chern number FB in square
lattice [Figs. 2(g) vs 2(c)], instead of three sites (nodal points),
one may consider the symmetry of kagome lattice wave
functions partitioned on 12 nodal points in a 2×2 supercell
[Fig. 5(d)], leading to three (s, dxy, dx2−y2 ) orbitals in a trig-
onal lattice. Correspondingly, using (s, dxy, dx2−y2 ) basis in a
1×1 trigonal unit cell [Fig. 5(e)] and NN hopping integrals

tssσ = − 2
3 , tddσ = − 4

9 , tddπ = 1, and tsdσ = −
√

8
27 , we obtain

a band structure exhibiting a FB touched with Dirac bands

[Fig. 5(f)], but different from the apparent look of kagome
bands (Fig. S8). This is because they are unfolded from four
sets of degenerate kagome bands appearing as if in a 2×2
supercell with a 1

2 × 1
2 FBZ [four dashed hexagons in the inset

of Fig. 5(f)], with the �, K , and M of the former unfolded from
the �, K , and � of the latter, respectively. Accordingly, there
are four singular band-touching points, one at � and three at
M in the FBZ, with the former contributing a Chern number
of +1 and the latter −3, adding to a net FB Chern number of
−2 (Fig. S7). The FB CLS in a trigonal lattice is on a hexagon
plaquette, with outward hopping all canceled out by orbital
symmetry (Fig. S9).

D. Hexagonal lattice

Lastly, we discuss the design of FBs in a hexagonal
lattice with site A and B, where an already-known or-
bital basis is (px, py) with the hopping integral tppσ = 2

3
[22]. The four �-point eigenstates are −|A : px〉 + |B : px〉,
|A : py〉 − |B : py〉, |A : px〉+ |B : px〉, and |A : py〉 + |B : py〉,
which have the same symmetry of diatomic-kagome lat-
tice wave functions (Figs. S10 and S11), noticing that the
diatomic-kagome lattice is a generalized LG (i.e., two copies
of LG) of hexagonal lattice. So, it again conforms to our
generic orbital-design principle.

Furthermore, other orbital bases for TFBs in hexagonal
lattice can be designed. As shown in Figs. 6(a) and 6(b), using
(dxy, dx2−y2 ) orbitals on each site, and a NN hopping integral
tddσ = − 8

9 , two FBs sandwiching two Dirac bands are ob-
tained [Fig. 6(c)]. The doubly degenerate �-point eigenstates
are −|A : dxy〉 − |B : dxy〉 and |A : dx2−y2〉 + |B : dx2−y2〉 (|A :
dxy〉 − |B : dxy〉 and |A : dx2−y2〉 − |B : dx2−y2〉), respectively,
having the same symmetries as those of diatomic-kagome
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FIG. 5. TFB in a trigonal lattice. (a) Three �-point wave func-
tions of a kagome lattice, with s- (left), px- (middle), and py-orbital
symmetry (right), respectively. (b) Trigonal lattice with (s, px, py)
orbitals. (c) Band structure of (b) with NN hopping integrals in
Eq. (4). (d)–(f) Same as (a)–(c) with (s, dxy, dx2−y2 ) orbitals. The
bands in (f) can be viewed as folded from (c); the inset of (f) shows
the FBZs before and after folding.

lattice �-point wave functions in Fig. 6(a). Adding another
s orbital leads to yin-yang kagome bands (Fig. S12), as found
previously [41].

IV. CONCLUSION

We have developed a generic orbital-design principle for
FBs, including high Chern number FBs, in non-LG lattices

FIG. 6. Dual TFBs in a hexagonal lattice. (a) Four �-point wave
functions of a diatomic-kagome lattice, all with d-orbital symmetry.
(b) Hexagonal lattice with (dxy, dx2−y2 ) orbitals on site A and B.
(c) Band structure of (b) with a NN hopping integral tddσ = − 8

9 .

via LG lattice wave functions, as summarized in Table I, for
all possible orbital combinations. Importantly, the required
hopping conditions are generally achievable in real materi-
als, and some of the proposed designs have already been
shown in real materials [41,52–55,64,65]. Also, more strict
hopping conditions can be met by designing artificial lattice
systems, where photonic and phonic FBs can be created in the
non-LG lattices. Generally, the implementation of the design
principle is more flexible with molecular than atomic orbitals.
For example, the frontier MOs of a triangular graphene flake
have the pz, (px, py) and (s, px, py) symmetry, respectively,
with a side length of 2, 3, and 4 benzene rings [41]. One
may also generalize the design principle to three-dimensional
lattices.

Note added in proof. We became aware of a recent related
work discussing construction of FBs from CLS with multiple
touching points [66].
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