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Electronic structures of a diagonally striped lattice: Multiple (N − 1)-fold degenerate flat bands
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We investigate the electronic structure of an interesting two-dimensional (2D) diagonally striped lattice (DSL).
It consists of arrays of N different types of “atoms” or “molecules” with a fixed sequence in both horizontal
and vertical directions. Using a tight-binding model, we show that the DSL (N > 2) has the symmetry group
Amm2 and Pmm2, and exhibits an oscillatory metallic and insulating phases for the odd- and even- N number,
respectively. Some conventional 2D lattices, such as the Lieb lattice, can be related to the derivative DSL via
vacancy formation by removing one type of atom in every other (N − 1) row of the original DSL. Interestingly,
there are multiple (N − 1)-fold degenerate flat bands in one group of the derivative DSLs, which affords a unique
platform for studying many-body physics. In addition to atomic and molecular lattices, we suggest other artificial
DSLs, such as photonic and phononic, to be also constructed with possibly interesting properties.
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I. INTRODUCTION

Two-dimensional (2D) lattices have been an intriguing
subject, since it lays the foundation for many fields of re-
search in physics. Despite their seemingly simple structure,
they can exhibit very rich electronic properties and exotic
physical phenomena [1–3]. For instance, the fascinating Dirac
bands in honeycomb lattice of graphene [4–7] and exotic flat
bands (FBs) in Kagome and Lieb lattices [8–12] have attracted
an ever-increasing interest during the last decades. Various
quantum phenomena may be derived from electronic band
structures and interactions in 2D lattices, such as nontrivial
topology associated with Dirac bands and FBs [4,5,8,13–20],
magnetism, and superconductivity derived from many-body
interactions [21–24].

In this work, the two-dimensional diagonally striped lat-
tice (DSL) is introduced. It represents a square lattice made
of a designated pattern of N different colors, arranged in
a fixed sequence in both horizontal and vertical directions.
Alternatively, one can also view the pattern being formed by
repeatedly stacking a row of an N-color sequence but shifting
the color by one position in every row. One wonders what
would be the electronic band structure of this array if different
colors were turned into different types of atoms? For the
simplest case of N = 2, one immediately realizes that it is
simply a checkerboard lattice. But what if N > 2? And what
happens if some of the atoms in such a lattice are missing?1

*fliu@eng.utah.edu
1The idea came out during a trip by one of the authors (F.L.)

when he visited the famous historical site Mogao Caves in the
Gansu province of China. In Cave No. 204, a fresco of colored
Bodhisattva paintings attracted his attention, which consists of the
above-mentioned pattern of colors (see Fig. S1 in the Supplemental
Material) [25].

Using a tight-binding (TB) model, we have systematically
investigated the evolution of band structures of the original
and derivative (i.e., with missing rows) DSLs as a function
of N. The DSL (N > 2) has the symmetry group of Amm2
and Pmm2 for the odd- and even-N lattices, respectively. They
are found to exhibit an interesting odd-even oscillation of
metallic-insulating phase with respect to N, similar to atomic
chains due to quantum size effect [26]. For the derivative
DSL, modified by removing one type of atom in every other
(N − 1) row, when N = 2, it reduces naturally to the well-
known Lieb lattice, which is characterized with a FB crossing
the Dirac point of two Dirac bands. Interestingly, however,
multidegenerated FBs are found to persist in all the derivative
DSLs, showing a distinctive FB degeneracy of 1 for odd N but
of (N − 1) for even N. The multiple (N − 1)-fold degenerate
flat bands are especially intriguing in terms of topological and
many-body physics.

The paper is organized as follows. In Sec. II, we introduce
the DSL structure and construction of the TB model. The
electronic band structures of the original and derivative DSLs
are discussed in Sec. III. We end with a brief summary in
Sec. IV.

II. DIAGONALLY STRIPED LATTICE AND
TIGHT-BINDING MODEL

The DSL is constructed by shifting an array of N different
types of “atoms” or “molecules” with fixed sequence one
position to the right for each row in 2D plane, so that the
diagonal sites have the same atoms or molecules. Their lattice
structures are shown in Figs. 1(a) to 1(h) for N = 2 to 9,
respectively. Sites 1 to N are indicated by different colors
from blue to red. Since the fourfold rotational symmetry in
DSL is broken when N > 2, the primitive unit cell of DSL
is no longer a square but a rectangle, as indicated by the red
rectangles in Fig. 1. The first Brillouin zone (1st BZ) of the
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FIG. 1. The DSL structures of (a) N = 2, (b) N = 3, (c) N = 4, (d) N = 5, (e) N = 6, (f) N = 7, (g) N = 8, and (h) N = 9, respectively.
The red rectangle indicates the primitive unit cell and the dashed black square indicates the conventional unit cell. Sites 1 to N are indicated by
different colors from blue to red. (i) The first Brillouin zone of DSL.

DSL is shown in Fig. 1(i). The space groups of DSLs are listed
in Table I, which are Amm2 and Pmm2 for odd and even N
number, respectively.

We consider the TB Hamiltonian with single-orbital hop-
ping on each lattice site as

H =
∑

i

εic
†
i ci +

∑
〈i, j〉

(tc†
i c j + H.c.), (1)

where εi is the on-site energy; c†
i and ci are the creation and

annihilation operators of an electron on site i, respectively. t
represents the hopping between the nearest neighbors (NN)
〈i, j〉. Electron-electron interaction is not included. The de-
tails of TB Hamiltonians for DSL of N = 2, 3, and 4 are
provided in Appendix A.

III. BAND STRUCTURES OF DSL

In this section, we first present the band structures of the
original DSL as a function of N in Sec. III A, which show an
oscillatory metallic and insulating phases for odd and even N,
respectively. The physical origin of the odd-even oscillation
is analyzed in Sec. III B. In Sec. III C, the exceptional DSLs
with special lattice energy parameters that exhibit semimetal
phase are discussed. Lastly, we present the band structures of
the derivative DSL in Sec. III D, and discuss the origin of
multiple (N − 1)-fold degenerate FBs in Sec. III E.

A. Band structures of the original DSL

If the on-site energy of all lattice sites and the NN hopping
integrals are the same, the band structures for any DSL with
N > 1 are nothing but the folded bands of a simple square
lattice (N = 1), which will not be interesting but are shown
in Figs. 2(a) to 2(d) with N = 3, 5, 7, and 9, respectively,
as reference for comparison. Note that there is a partial FB
along Y-M and M-X at the Fermi level, which corresponds
to bands in the simple square lattice along X-Y (see
Appendix B), by unfolding the bands [27]. To dis-
tinguish the lattice sites, the on-site energy difference
is introduced. The band structures of DSL with
different on-site energies are shown in Figs. 2(e) to
2(h) for N = 3 to 9, which all exhibit a metallic
behavior.

The band structures of DSLs with even N = 2, 4, 6, and
8 are shown in Figs. 3(a) to 3(d) for the case of same on-site
energy. Note that without on-site energy difference, the unit
cells of lattices of N = 3 and 6 are the same, resulting in
the same band structure, as shown in Fig. 2(a) and Fig. 3(c).
Again, there is a partial FB along a specific k path, which is
overlapped with the k path of X-Y in the 1st BZ of the simplest
square lattice (see Appendix B). Those band structures for
different on-site energies are shown in Figs. 3(e) to 3(h),
respectively, which all exhibit an insulating behavior. There-
fore, there exists an odd-even oscillation of metallic-insulating
phases with respect to N in the original DSLs.

TABLE I. The space group of DSL of different N.

N No. Point group Hermann-Mauguin notation Schoenflies notation

1 221 4/m3̄/m Pm3̄m �cO1
h

2 123 4/m2/m2/m P4/mmm �qD1
4h

3, 5, 7, 9 38 mm2 Amm2 �b
oC14

2v

4, 6, 8 25 mm2 Pmm2 �oC1
2v
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FIG. 2. The band structures of DSL of odd N: (a) N = 3, (b) N = 5, (c) N = 7, (d) N = 9 with the same on-site energy (ε = 0), (e) N = 3
with ε1 = 0.5 ε2 = 0.0 and ε3 = −0.5t , (f) N = 5 with ε1 = 1.0 ε2 = 0.5 ε3 = 0.0 ε4 = −0.5, and ε5 = −1.0t , (g) N = 7 with ε1 = 1.0 ε2 =
0.8 ε3 = 0.5 ε4 = 0.0 ε5 = −0.5, ε6 = −0.8, and ε7 = −1.0t , and (h) N = 9 with ε1 = 1.0 ε2 = 0.8 ε3 = 0.7 ε4 = 0.5 ε5 = 0.0 ε6 = −0.5,
ε7 = −0.7, ε8 = −0.8, and ε9 = −1.0t , respectively.

B. Odd-even oscillation of metallic-insulating phases

To better understand the odd-even oscillation of metallic-
insulating phases with respect to N, we have analyzed the
wave functions at a specific k point in the lattice of N = 3

and 4. There are six bands in the primitive unit cell of
N = 3 lattice with the band index 1 to 6 from the valence
to conduction bands [see Figs. 2(a) and 2(e)]. Without on-
site energy difference, all sites contribute equally to the six

FIG. 3. The band structures of DSL of even N: (a) N = 2, (b) N = 4, (c) N = 6, (d) N = 8 with the same on-site energy (ε = 0), (e) N = 2
with ε1 = 0.5 and ε2 = −0.5t , (f) N = 4 with ε1 = 1.0 ε2 = 0.5 ε3 = −0.5, and ε4 = −1.0t , (g) N = 6 with ε1 = 1.0 ε2,3 = 0.5, ε4,5 = −0.5,
and ε6 = −1.0t , and (h) N = 8 with ε1,2 = 1.0, ε3,4 = 0.5, ε5,6 = −0.5, ε7,8 = −1.0 t , respectively.
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FIG. 4. The wave functions of DSL of N = 3 at a specific k point along �-M in Figs. 2(a) and 2(e). (a) Without on-site energy difference.
(b) Three sites with different on-site energy: ε1 = 0.5 (blue), ε2 = 0.0 (yellow), and ε3 = −0.5t (red), as indicated by the colors. The numbers
represent the band index in the band structures in Figs. 2(a) and 2(e) from valence to conduction bands. The size of the gray dot indicates the
magnitude of the wave function.

bands, as shown in Fig. 4(a), which is also indicated by
the analysis of eigenvectors in Appendix A. With on-site
energy difference, as shown in Fig. 4(b), the valence bands
(1 and 2) are predominantly contributed by the sites with
negative on-site energy of ε3 = −0.5t (red), and the con-
duction bands (5 and 6) mainly come from the sites with
positive energy of ε1 = 0.5t (blue), while the yellow sites
with ε2 = 0.0 contribute nearly equally to all bands. In N = 4
lattice, there are four bands with band index of 1 to 4 from
valence to conduction bands [see Figs. 3(b) and 3(f)]. With-
out the on-site energy difference, the wave functions of four
bands, as shown in Fig. 5(a), again show that these four sites
contribute equally to each band (see Appendix A). On the
contrary, the wave functions of the four bands in the lattice
with on-site energy difference display a distinctively different
feature, as shown in Fig. 5(b). Band No. 1 mainly comes
from the sites with negative on-site energy of ε3 = −0.5
(yellow) and ε4 = −1.0t (red), while band No. 4 is predom-
inantly contributed by the sites with positive on-site energy
of ε1 = 1.0 (blue) and ε2 = 0.5t (green). Bands No. 2 and
No. 3 mainly come from the green and yellow site with
ε2 = 0.5 and ε3 = −0.5t , respectively.

Since we are considering the situation of half filling, then
the Fermi level will be always located in the middle of the
bands under the conditions of εi + εN−i+1 = 0. Then the ori-
gin of the odd-even oscillation of metallic-insulating phase
can be easily understood by the appearance of nonbonding
state at the Fermi level, similar to the quantum size effect in
atomic chains [26]. When N is odd, there is always a nonbond-
ing state at the Fermi level, rendering the system metallic,
while when N is even, there is a gap between the bonding

valence bands and antibonding conduction bands without the
nonbonding states, rendering the system insulating or semi-
conducting. In other words, for odd N, there is always one
eigenstate of ε(N+1)/2 = 0 sitting at the Fermi level and others

FIG. 5. The wave functions of DSL of N = 4 at a specific k
point along �-M in Figs. 3(b) and 3(f). (a) Without on-site energy
difference. (b) Four sites with different on-site energy: ε1 = 1.0
(blue), ε2 = 0.5 (green), ε3 = −0.5 (yellow), and ε4 = −1.0t (red),
as indicated by the colors. The numbers represent the band index in
the band structures in Figs. 3(b) and 3(f) from valence to conduction
bands. The size of the gray dot indicates the magnitude of the wave
function.
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FIG. 6. The band structures of DSL: (a) N = 6 with ε1,2,3 = 0.5 and ε4,5,6 = −0.5t , (d) N = 8 with ε1,2,3,4 = 0.5 and ε5,6,7,8 = −0.5t .
(b), (f) Zoom-in band structures around the Dirac point in (a) and (d). (c), (d) Wave functions of the states marked by the green dots in (b) and
(f). (d), (h) Wave functions of the states marked by the red dots in (b) and (f). The sites with on-site energy of 0.5 and −0.5 t are represented
by the green and red colors. The size of the light gray dot indicates the magnitude of wave function.

either above or below the Fermi level; for even N, no eigen-
state has zero energy and half states above and half below the
Fermi level.

C. Semimetal phase in exceptional DSL

Interestingly, in those lattices of even N (N � 6), if the
neighboring half N sites have the same magnitude of on-site

FIG. 7. The structure of the derivative DSL of (a) N = 3, (b) N = 4, (c) N = 5, and (d) N = 6, and the corresponding band structures in
(e) to (h), respectively. All sites have the same on-site energies. The black dashed square indicates the unit cell. Site 1 to N can be distinguished
by the colors from blue to red.
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FIG. 8. Wave functions of FBs in a 2-by-2 superlattice of (a) N = 3, band index 4, (b) N = 5, band index 11, (c) N = 4, band index 6 to 8,
and (d) N = 6, band index 14 to 18. The wave functions of three FBs in lattice of N = 4: band index (e) 6, (f) 7, and (g) 8. The wave functions
of five FBs in lattice of N = 6: band index (h) 14, (i) 15, (j) 16, (k) 17, and (l) 18.

energy as the other half but have the opposite sign, i.e., εi +
εN−i+1 = 0, and |εi| = |ε j | �= 0, their band structures show a
semimetal behavior with a Dirac point, as shown in Fig. 6.
The Dirac point in the lattice of N = 6 is located along the
k path of M-X, which is originated from the partial FB in
Fig. 3(c). The wave functions of the states near the Dirac
points, as marked by the green and red dots in Fig. 6(b) for
N = 6, are shown in Figs. 6(c) and 6(d), respectively. The
dominant contribution to one set of states near the Dirac point
is from the center of the sites (green) with positive on-site
energy, and that to the other set of states is from the center
of the sites (red) with negative on-site energy. Similarly, for
N = 8, the Dirac point is located along the k path of �-Y,
which is originated from the partial FB in Fig. 3(d) as shown
in Figs. 6(e) to 6(h). Compared with the wave-function plots
(see Appendix C) of the original partial FB in Figs. 3(c) and
3(d), it indicates that the unique on-site energy pattern in this
exceptional DSL breaks the degeneracy of the original FB in
such a way that two partial FBs are tilted in opposite directions
to form the Dirac point.

D. Band structures of derivative DSL

Lastly, we discuss the electronic structures of one specific
class of derivative DSLs formed by creating vacancies. One
interesting observation is that for N = 2, by removing the

atom in the center, the DSL reduces to the well-known Lieb
lattice (see Appendix D). Systematically, one may remove
one type of atom in every other (N − 1) row of the original
DSL, as shown in Figs. 7(a) to 7(d) for N = 3, 4, 5, and 6,
respectively, to derive a series of Lieb-like lattice of different
sizes. Assuming identical on-site energy on all sites, the band
structures for lattices with N = 3 to 6 are shown in Figs. 7(e)
to 7(h). When N � 2, a global FB always exists at the Fermi
level just like the Lieb lattice. Interestingly, it is found that for
odd N, there is only one single FB; while for even N, there are
(N − 1) degenerate FBs at the Fermi level.

E. Multiple (N − 1)-fold degenerate flat bands

To better understand the FB in the derivative DSL of large
N > 2, we have calculated the analytical solutions of the
eigenstates of the derivative DSLs of N = 3 and 4, with the
focus on zero eigenvalue and the corresponding eigenvectors
(see Appendix E). The wave functions of FBs at a specific
k point (0,1) are shown in Fig. 8. All the sites contributing
to the FB locate along the diagonal chains of equal spacing.
In the lattices of N = 3 and 5, only one FB at the Fermi level,
the wave-function plots indicate the electronic states form-
ing the FB are coming from the diagonal sites, as indicated
by the thick blue lines in Figs. 8(a) and 8(b). In lattices of
N = 4 and 6, there are three and five FBs at the Fermi level,
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respectively. The wave functions of the multidegenerated FBs
are shown in Figs. 8(c) and 8(d), which are contributed from
the sites in an alternating pattern in the same row. The wave
functions for each individual FB are also shown in Figs. 8(e)
to 8(g) with band index 6 to 8 for the case of N = 4, and
Figs. 8(h) to 8(l) with band index 14 to 18 for N = 6. It shows
that the FB states for even N are also contributed from the
diagonal sites, same as the case of odd N, as indicated by the
thick blue lines in Figs. 8(c) and 8(d).

In the unit cell of the lattice of odd N, there is only
one equal-spaced chain forming by the diagonal sites, while
in contrast, there are (N − 1) such chains in the lattice of
even N. Interestingly, the degeneracy of FBs equals to the
number of equal-spaced chains in all the lattices with ei-
ther odd or even N. The condition to have the FB with
(N − 1) degeneracy in the lattice of N = 4 is (ε2 + ε4) = 2ε3;
ε1 can be any value since site 1 (blue) has no contribu-
tion to FBs. In order to have the FB located at the Fermi
level, ε3 is set to 0. For odd N = 3, the FB locates at the
Fermi level with the conditions of (ε1 + ε3) = 2ε2 and ε2 = 0.
The conditions to have FBs become even more complicated
in the derivative DSL of large N, which are not discussed
here.

For comparison, the single-degenerated FB in the orig-
inal and extended Lieb [28–30] lattices is relatively well
understood, while the origin of multidegenerated FBs in the
derivative DSLs we found here is less clear. Usually, the
flat band is characterized with a compact localized real-space
wave function on a plaquette as shown for Kagome and Lieb
lattices [11,31]; however, we have not been able to construct
such wave functions for the derivative DSLs for N > 3. There-
fore, the underlying formation mechanism as well as physical
properties of the multidegenerated FBs in the derivative DSLs
remain to be further explored. We also note that beyond the
atomic and molecular lattices, other artificial, such as photonic
and phononic, DSLs may also be constructed with possibly
interesting properties. For example, the photonic derivative
DSL can be constructed to achieve the localized FB states,
which have been observed in both photonic Lieb and Kagome
lattices formed by an array of optical waveguides [32–35].
In the photonic DSL, the sites can be replaced by the optical
waveguides. The on-site energy can be tuned by the refractive
index or the radius of the waveguides.

IV. CONCLUSION

In conclusion, we have introduced a class of 2D lattices,
the DSL. Using the tight-binding model, we have investigated
systematically the electronic band structures of DSLs as a
function of lattice size. They are found to exhibit an oscil-
latory metallic and insulating phases for odd- and even N

FIG. 9. (a) The simple square lattice. The dashed square indi-
cates the unit cell. The NN hopping is indicated by t . (b) The first
Brillouin zone of square lattice. (c) The band structure of the simple
square lattice.

number of lattice periodicity, respectively. Dirac bands may
exist in some exceptional DSLs having special symmetry of
on-site-energy patterns, while flat bands with distinctive de-
generacy may exist in one class of derivative DSLs formed by
removing one type of atom in every other (N − 1) row of the
original DSL. The finding of multiple (N − 1)-fold flat bands
in derivative DSLs is highly intriguing, which will likely draw
immediate attention especially from the field of many-body
physics.
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APPENDIX A: TB HAMILTONIANS FOR DSLS
OF N = 2, 3, and 4

The TB Hamiltonian for DSL of N = 2 is

H =
(

ε1 2t (cos kx + cos ky)
2t (cos kx + cos ky) ε2

)
, (A1)

which gives two bands

E1,2(�k) = 1

2
(ε1+ε2 ±

√
(ε1−ε2)2 + 16t2(cos kx + cos ky)2).

(A2)

The TB Hamiltonian for DSL of N = 3 without on-site energy difference is

H = t ∗

⎛
⎜⎜⎜⎜⎜⎜⎝

0 e−ik1 + e−ik2 0 0 0 eik1 + eik2

eik1 + eik2 0 e−ik1 + e−ik2 0 0 0
0 eik1 + eik2 0 e−ik1 + e−ik2 0 0
0 0 eik1 + eik2 0 e−ik1 + e−ik2 0
0 0 0 eik1 + eik2 0 e−ik1 + e−ik2

e−ik1 + e−ik2 0 0 0 eik1 + eik2 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (A3)
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FIG. 10. The wave functions of the partial FB in DSL of N = 6 along M-X in Fig. 3(c) [(a) to (c)] and N = 8 along the k path of �-Y in
Fig. 3(d) [(d) to (e)] with band index 3 (a), 4 (b), and all FBs (c); 4 (d), 5 (e), and all FBs (f). The size of the gray dot indicates the magnitude
of the wave function. The neighboring half N sites are indicated by the green or red colors, respectively.

Here, kn = �k · −→an , and −→a1 = (x̂ + ŷ), −→a2 = (−x̂ + ŷ). The six eigenvalues are

E1,2(�k) = ±t (1 + eik1+ik2 )(e−ik1 + e−ik2 ); and E3,4,5,6(�k) = ±1

2
t (e−ik1 + e−ik2 )(1 + eik1+ik2 ±

√
3
√

−1 + 2eik1+ik2 − e2ik1+2ik2 ).

(A4)

Note that the eigenvectors corresponding to E1,2 are (1, 1, 1, 1, 1, 1)T and (−1, 1,−1, 1,−1, 1)T , which means the
eigenstates are contributed equally by each sites, as shown in Fig. 4(a). The other eigenvectors are too complicated to be
listed.

The TB Hamiltonian for DSL of N = 4 without on-site energy difference is

H = t ∗

⎛
⎜⎜⎜⎝

0 e−ik1 + e−ik2 0 eik1 + eik2

eik1 + eik2 0 e−ik1 + e−ik2 0
0 eik1 + eik2 0 e−ik1 + e−ik2

e−ik1 + e−ik2 0 eik1 + eik2 0

⎞
⎟⎟⎟⎠, (A5)

which gives four bands,

E1,2(�k) = ±t (e−ik1 + e−ik2 )(1 + eik1+ik2 ); and E3,4(�k) = ±it (e−ik1 + e−ik2 )(eik1+ik2 − 1). (A6)

The corresponding eigenvectors are (1, 1, 1, 1)T ,
(−1, 1,−1, 1)T , (−i,−1, i, 1)T , and (i,−1,−i, 1)T , which
means the eigenstates are contributed equally by each site,
as shown in Fig. 5(a). With on-site energy difference, the
analytical solutions to eigenvalues and eigenvectors are
complicated and are not listed.

APPENDIX B: SQUARE LATTICE AND BAND STRUCTURE

The eigenvalue for the simple square lattice [Fig. 9(a)] is
E (�k) = 2t (cos kx + cos ky). Here, kx,y = �k · −→ax,y, and −→ax = x̂,−→ay = ŷ. The band structure is shown in Fig. 9(c), in which
there is a partial flat band along the k path of X-Y with
kx and ky satisfying the phase cancellation condition of
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FIG. 11. (a) The Lieb lattice. The dashed square indicates the
unit cell. (b) The band structure of Lieb lattice.

|kx ± ky| = π . Then it can be derived that cos ky = − cos kx,
which leads to the partial FB along X-Y.

APPENDIX C: WAVE FUNCTION OF PARTIAL FLAT BAND

In the band structure of lattice of N = 6 without on-
site energy difference, there is a partial FB with degeneracy
of 2 along M-X in Fig. 3(c). The band index for FBs are
3 and 4. The corresponding wave functions are shown in
Figs. 10(a) and 10(b), respectively. One FB is contributed
by half N sites, and the other FB is contributed by the
other half N sites. Overall, all the sites contribute equally
to the FBs, as indicated by the wave function in Fig. 10(c).
Figures 10(d) to 10(f) illustrate the wave functions of the
partial FB in the lattice of N = 8 along the k path of �-
Y in Fig. 3(d). The same finding is obtained as that for
N = 8.

APPENDIX D: LIEB LATTICE AND BAND STRUCTURE

The Lieb lattice is shown in Fig. 11(a), which is the derivative DSL of N = 2. The corner and edge sites are indicated by the
red and blue colors. Without on-site energy difference of corner and edge sites, the band structure of a Lieb lattice features Dirac
cones intersected by a flat band, as shown in Fig. 11(b).

APPENDIX E: TB HAMILTONIANS FOR DERIVATIVE DSLs

The Hamiltonian for derivative DSL of N = 3 without on-site energy difference is

H = t ∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 eikx e−ikx eiky 0 e−iky 0
e−ikx 0 eikx 0 0 0 e−iky

eikx e−ikx 0 0 eiky 0 0
e−iky 0 0 0 e−ikx eiky 0

0 0 e−iky eikx 0 0 0
eiky 0 0 e−iky 0 0 eikx

0 eiky 0 0 0 e−ikx 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (E1)

Here, kx,y = �k · −→ax,y, and −→ax = x̂, −→ay = ŷ. It has one eigenvalue which equals to 0, and the corresponding eigenvector is,

�0
(�k) = Norm(−eikx−iky 0 0 0 ei2kx−i2ky 0 1)

T
. (E2)

Norm is the normalization factor.
The Hamiltonian for derivative DSL of N = 4 without on-site energy difference is

H = t ∗

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 eikx 0 e−ikx eiky 0 0 0 0 0 e−iky 0 0
e−ikx 0 e−ikx 0 0 0 0 0 0 0 0 e−iky 0
0 e−ikx 0 eikx 0 eiky 0 0 0 0 0 0 e−iky

eikx 0 e−ikx 0 0 0 eiky 0 0 0 0 0 0
e−iky 0 0 0 0 0 e−ikx eiky 0 0 0 0 0
0 0 e−iky 0 0 0 eikx 0 0 0 0 0 0
0 0 0 e−iky e−ikx e−ikx 0 0 0 eiky 0 0 0
0 0 0 0 eiky 0 0 0 eikx e−ikx eiky 0 0
0 0 0 0 0 0 0 e−ikx 0 0 0 eiky 0
0 0 0 0 0 0 e−iky eikx 0 0 0 0 0
eiky 0 0 0 0 0 0 e−iky 0 0 0 eikx 0
0 eiky 0 0 0 0 0 0 e−iky 0 e−ikx 0 eikx

0 0 eiky 0 0 0 0 0 0 0 0 e−ikx 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (E3)
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FIG. 12. The blue sites contributed to the FBs in a 2-by-2 super lattice of (a) N = 3, (b)–(d) N = 4. The black network indicates the
derivative DSL.

which gives three eigenvalues that equal to 0, and the corresponding eigenvectors are

�0,1
(�k) = Norm(0 0 0 −eikx−iky 0 e2ikx−2iky 0 0 −e−ikx+iky 0 1 0 0)

T
,

�0,2
(�k) = Norm(0 −eikx−iky 0 e3ikx−iky 0 −e4ikx−2iky 0 0 0 0 0 0 1)

T
,

and �0,3
(�k) = Norm(0 0 0 e2iky −e−ikx+iky −eikx+iky 0 0 0 1 0 0 0)

T
. (E4)

The FB of N = 3 lattice is only contributed by the diagonal sites of equal spacing. Similarly, the diagonal sites of N = 4
lattice contribute to one FB, while the other two FBs come from the four windmill-shaped sites, which also locate along the
equal-spaced chains, as shown in Fig. 12.
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