
PHYSICAL REVIEW B 100, 085119 (2019)

Comparison of quantum spin Hall states in quasicrystals and crystals
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We theoretically study the quantum spin Hall states in an Ammann-Beenker-type octagonal quasicrystal and
a periodic snub-square crystal, both sharing the same basic building blocks. Although the bulk states show
significant differences in localization and transport properties, the topological phases manifest similarly in the
two systems. This indicates the robustness of the topological properties regardless of symmetry and periodicity.
We characterize the topological nature of the two systems with a nonzero topological invariant (spin Bott index
Bs and Z2 invariant), robust metallic edge states, and quantized conductance. In spite of some quantitative
differences, the topological phase diagram of the two systems also exhibits similar behaviors, indicating that
the topological phase transition is mainly determined by similar interactions in the two systems regardless
of their structural difference. This is also reflected by the observation that the transition point between the
normal insulator and the quantum spin Hall state in both systems follows a universal linear scaling relation
for topological phase transitions.
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I. INTRODUCTION

Quasicrystals are special states of matter that possess long-
range orientational order but no translational symmetry [1].
Without classical crystallographic restriction, quasicrystals
may exhibit rotational symmetries that are forbidden in con-
ventional crystals [2]. For example, an eightfold rotational
symmetry in octagonal quasicrystals was observed in CrNiSi,
VNiSi, and MnSiAl alloys [3–5]. Due to the lack of period-
icity, quasicrystals cannot be constructed from a single unit
cell as for periodic crystals. However, most quasicrystals can
be constructed from two or three types of elementary cells
according to certain specified matching rules. For example,
the two-dimensional (2D) octagonal quasicrystals are usually
described by the Ammann-Beenker tiling with two types of
building blocks [6–9], namely squares and 45◦ rhombi, which
can also be used to construct periodic crystals such as the
snub-square crystalline lattice [10,11].

On the other hand, quantum spin Hall (QSH) states have
been studied in various theoretical models and realistic mate-
rials in recent years [12–15]. The QSH state is manifested by
an insulating bulk and topologically protected metallic edges
with quantized conductance. In general, topological states are
insensitive to a smooth modulation of material parameters and
cannot change unless the system passes through a topological
phase transition (TPT) accompanied by an energy gap closing
and reopening process. Such robustness of electronic topol-
ogy, in principle, guarantees the existence of QSH state in
both crystals and quasicrystals regardless of lattice symmetry
and periodicity. Previously, we discovered the QSH state in a
Penrose-type pentagonal quasicrystal [16,17]. Here, we aim to
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answer the following question: is there any significant differ-
ence of QSH states in quasicrystals versus crystals, especially
when they have the same basic building blocks?

To do so, we propose the realization of the QSH state in an
octagonal quasicrystal lattice and compare it with the QSH
state in a similar crystalline lattice with the same building
blocks. The nontrivial electronic topology in the two systems
is characterized by the spin Bott index Bs and Z2 topological
invariant, respectively. Due to the bulk-edge correspondence,
robust metallic edge states and quantized conductances are
observed in both systems. Further analysis of the localiza-
tion of wave functions indicates that topologically protected
metallic edge states in both systems exhibit similar degrees of
delocalization, but bulk insulating states in quasicrystals are
much more localized than that in crystals, which give rise to a
lower bulk conductance. We also mapped out the topological
phase diagram for both systems, and we found that the critical
points of TPTs in the two systems follow a universal linear
scaling relation discovered recently [18].

II. MODEL

The octagonal quasicrystal lattice is constructed accord-
ing to the Ammann-Beenker tiling [6–9], which includes
rhombuses with 45◦ and 135◦ angles and squares as basic
building blocks [see Fig. 1(a)]. For comparison, we also
considered a periodic snub-square crystalline lattice according
to the semiregular Archimedean tiling [10,11], as shown in
Fig. 1(b). Such a snub-square structure, also known as the
snub-quadrille structure, can be constructed by applying a
snub operation to a corner-shared square tiling with a ro-
tational angle α. Here we chose α = 22.5◦ (instead of the
conventional α = 15◦) so that the basic building blocks of
both the octagonal quasicrystal and the snub-square crystal
are the same, as shown in Fig. 1. We construct real-space

2469-9950/2019/100(8)/085119(7) 085119-1 ©2019 American Physical Society

https://orcid.org/0000-0002-0283-8603
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.100.085119&domain=pdf&date_stamp=2019-08-08
https://doi.org/10.1103/PhysRevB.100.085119


HUAQING HUANG AND FENG LIU PHYSICAL REVIEW B 100, 085119 (2019)

(a) Octagonal quasicrystal (b) Snub-square crystal

α

FIG. 1. (a) A periodic approximant of the octagonal quasicrystal lattice obtained from the Ammann-Beenker tiling. (b) A snub-square
crystalline lattice based on the semiregular Archimedean tiling. The rotational angle is α = 22.5◦. The red square and yellow rhombus represent
the basic building blocks for both lattices.

tight-binding (TB) models by locating atomic orbitals on the
vertices of the tilings. Due to the same building blocks, the
first three nearest-neighbor (NN) hoppings in both lattices
are the same, which are the short diagonal of the rhombus
r0, the edge of the rhombus or square r1, and the diagonal
of the square r2, respectively. The proportions of the three

distances are r0 : r1 : r2 = 2 sin π
8 : 1 : 2 sin π

4 =
√

2 − √
2 :

1 :
√

2, respectively. For convenience, all the lengths are
measured in units of r1 in our model.

We consider a generic atomic-basis TB model with three
orbitals (s, px, py) per site [16,17,19],

H =
∑

iα

εαc†
iαciα +

∑
〈iα, jβ〉

tiα, jβc†
iαc jβ

+ iλ
∑

i

(
c†

ipy
σzcipx − c†

ipx
σzcipy

)
, (1)

where c†
iα = (c†

iα↑, c†
iα↓) are electron creation operators on the

α(= s, px, py) orbital at the ith site. εα is the on-site energy of
the α orbital. tiα, jβ = tαβ (ri j ) is the hopping integral between
α and β orbitals at the ith and jth sites, respectively. λ is
the spin-orbit coupling (SOC) strength and σz is the Pauli
matrix. The hopping integral follows the Slater-Koster (SK)
parametrization [20],

tαβ (ri j ) = SK[Vαβδ (ri j ), r̂i j], (2)

where r̂i j is the unit direction vector. The distance dependence
of the bonding parameters Vαβδ (ri j ) (δ = σ or π ) is captured
approximately by the Harrison relation [21],

Vαβδ (ri j ) = Vαβδ

γ 2

r2
i j

, (3)

where Vαβδ is a constant [22–24] and γ is a scaling factor to
uniformly tune the bonding strengths [25,26]. Since only the

band inversion between s and p states of different parities is
important for the realization of topological states, we focus
only on 2/3 filling of electron states hereafter.

III. STRUCTURAL SIMILARITY AND DIFFERENCE

We first compared the structures of the two lattices.
Although the first three NN distances in the two lattices
are the same due to the same basic building blocks, the
corresponding coordination numbers are different. For the
snub-square crystalline lattice, the coordination numbers are
z0 : z1 : z2 = 1 : 4 : 2, which can be easily counted from its
periodic unit cell. However, for the octagonal quasicrystal
lattice, we cannot directly obtain the coordination number
due to its quasiperiodicity. Instead, we generated a large
patch of the underlying pattern of the octagonal quasicrystal,
which contains more than 8119 atoms, and we calculated the
coordination numbers as z0 : z1 : z2 ≈ 1.172 : 4 : 2.485. Such
a structural difference between the octagonal quasicrystal and
the snub-square crystal gives rise to a quantitative difference
in electronic structures, as discussed later.

IV. ENERGY SPECTRUM AND REAL-SPACE
EDGE STATES

Subsequently, we studied the energy spectrum of the oc-
tagonal quasicrystal and the snub-square crystal, respectively.
The results of an octagonal quasicrystal lattice containing
1393 atoms with a periodic boundary condition (PBC) and
an open boundary condition (OBC) are shown in Fig. 2(a).
In the presence of a PBC, the system shows an energy gap,
indicating that the system is an insulator. However, there
are some eigenvalues within the gap in the presence of an
OBC, implying that the OBC system becomes metallic. We
found that the typical midgap states mainly distribute at the

085119-2



COMPARISON OF QUANTUM SPIN HALL STATES IN … PHYSICAL REVIEW B 100, 085119 (2019)

p

s(a) (b)

(c) (d)

latsyrc erauqs-bunSlatsyrcisauq lanogatcO

FIG. 2. Calculation of (a,c) an Ammann-Beenker-type octagonal quasicrystal lattice with 1393 atoms and (b,d) a 19 × 19 snub-square
crystalline lattice with 1444 atoms (three orbitals and two spins on each atom). The parameters used here are εs = 1.8, εp = −6.5, λ =
0.8, Vssσ = −0.4, Vspσ = 0.9, Vppσ = 1.8, Vppπ = 0.05 eV, and γ = 0.97. (a,b) Energy eigenvalues En vs the state index n. The inset of
(b) shows the band structure of the snub-square crystal. (c,d) The wave function |ψ (r)〉 = χ (r)eiφ(r) of the midgap state [marked as the green
star in (a) and (b)] is distributed on the edge of the system. The size and the color of the blobs indicate the norm |χ (r)|2 and phase φ(r) of the
wave function, respectively.

boundary of the finite sample, as shown in Fig. 2(c). More-
over, the study of other samples with different boundary
geometries indicates that these “edge states” always remain
on the boundaries (see the Supplemental Material [27]). Ap-
parently, these delocalized “edge states” within the energy gap
are different from typical bulk states, which exhibit localized
or critical characters of quasicrystals. Due to the time-reversal
symmetry, the midgap states always appear in pairs with the
same energy but opposite spin polarizations. Next, for a direct
comparison, we calculated the energy spectrum of a 19 × 19
supercell of the snub-square crystal, which is of similar size to
the octagonal quasicrystal sample discussed above. Similarly,
the PBC system of the snub-square crystal clearly shows an
energy gap, while the OBC system exhibits midgap states,
as shown in Fig. 2(b). The real-space distribution of these
midgap states also shows metallic edge-state characteristics,
which are located on the boundary of the OBC sample [see
Fig. 2(d)]. The comparable electronic structures of the octag-
onal quasicrystal and the snub-square crystal imply similar
topological states in the two systems.

V. TOPOLOGICAL INVARIANTS

To further confirm the electronic topology in the two
lattices, we calculate the Z2 topological invariant [28] for
the snub-square crystal and the spin Bott index Bs, which
is a newly defined topological invariant for QSH states in
nonperiodic systems [16,17], for the octagonal quasicrystal,
respectively. The spin Bott index Bs = 1

2 (B+ − B−) is defined
as the half-difference between the Bott indices for the spin-
up and spin-down sectors: B± = 1

2π
Im{tr[ln(V±U±V †

±U †
±)]},

where U± = P±ei2πX P± + (I − P±) and V± = P±ei2πY P± +
(I − P±) are the projected position operators, with P± being
the projectors onto the occupied states and {X,Y } are the nor-
malized coordinates defined between [0,1) [16,17]. The calcu-
lated Z2 = 1 and spin Bott index Bs = 1 indicate that the two
systems are QSH insulators. The nontrivial topological states
are attributed to the band inversion between the s-dominated
conduction state and the p-dominated valence states. Based
on a primitive-cell calculation, we obtained the band structure
of the snub-square crystal along high-symmetry paths of the
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FIG. 3. Transport simulation of an octagonal quasicrystal and a snub-square crystal. (a) Two-terminal conductance G as a function of the
Fermi energy E showing a quantized plateau in the energy gap. The inset shows the local density of states ρi(E ) at E = 0 eV [marked as
the green star in (a)] for the central part of the octagonal quasicrystal in the transport simulation, where the size of the red dot represents the
relative value of ρi(E ). (b) Participation ratio Pn of an octagonal quasicrystal and a snub-square crystal with PBCs. The blue and red dashed
lines mark the gap for the octagonal quasicrystal and the snub-square crystal, respectively.

Brillouin zone. As show in the inset of Fig. 2(b), a band
inversion occurs around the � point. Similar band inversions
also appear in the orbital-solved spectrum of the octagonal
quasicrystal [27]. According to the bulk-edge correspondence,
it is natural to expect the existence of metallic edge states for
both systems. Therefore, the nontrivial topological invariants
are consistent with the presence of bulk gap and robust edge
states, unambiguously identifying the nontrivial topological
nature of the octagonal quasicrystal and the snub-square
crystal.

VI. TRANSPORT PROPERTIES

To verify the metallic feature of the edge states, we studied
the transport properties of the two systems based on the
nonequilibrium Green’s function method [29–31]. As shown
in Fig. 3(a), the two-terminal charge conductance shows a
clear quantized plateau at G = 2e2/h within the gap region for
both the octagonal quasicrystal and the snub-square crystal,
which resembles that of the QSH state in a graphene lattice
as predicted by Kane and Mele [32]. Remarkably, the local
density of state of the central quasicrystal at E = 0 eV [see the
inset of Fig. 3(a)] is mainly distributed on two open side edges
of the quasicrystal, indicating that the conductive channels
are mainly contributed by the topologically protected edge
states. It is worth noting that there are also quantized plateaus
outside the gap (in the bulk region) for the snub-square crystal.
This is because the same periodic snub-square crystal is used
for the left and right leads and the central part in the trans-
port simulation (see the Supplemental Material [27]). Due to
the periodic structure of the transport simulation setup, no
scatting occurs within the ballistic transport approximation.
Hence, the quantized conductance actually provides the upper
bound of the conductance at the ideal situation without any
scatterings. Such quantized plateaus, which are different from
the topologically protected quantized conductance within the
gap region, can be destroyed by impurity, vacancy scattering,
or contact resistance, thus they are not robust.

Another important point is that the conductance of the
octagonal quasicrystal is much smaller than that of the peri-
odic snub-square crystal outside the gap region. This actually
indicates that the octagonal quasicrystal is a weak metal com-
pared with the snub-square crystal. The low conductance of
quasicrystals is also consistent with previous studies [33,34].
Generally speaking, the transport properties are dramatically
affected by the localization of the wave functions. Due to the
critical behavior (power-law decay) of bulk wave functions
in quasicrystals [35–38], it is expected that the weak-metallic
characteristic is a quite universal property of quasicrystals.

VII. LOCALIZATION OF WAVE FUNCTIONS

To compare the localization of wave functions in the oc-
tagonal quasicrystal and the snub-square crystal, we calculate
the participation ratio Pn of each state in both systems. The
participation ratio is given by [39]

Pn =
(∑N

i |〈i|ψn〉|2
)2

N
∑N

i |〈i|ψn〉|4
, (4)

where |i〉 is the ith local orbital basis. As shown in Fig. 3(b),
the participation ratio Pn of most wave functions in the oc-
tagonal quasicrystal is much smaller than that of the Bloch
states in the snub-square crystal. This is because the Bloch
states in periodic lattices are modulated plane waves that
are extended throughout the whole system, while the critical
states in quasicrystals are generically found to be localized
with algebraic spatial decay [40–42]. The significant dif-
ference in the participation ratio Pn is also consistent with
the weak-metallic behavior of the octagonal quasicrystal in
the electronic transport discussed above. Interestingly, the
participation ratios of the topological edge states in both
systems are very close, which is roughly proportional to the
perimeter/area ratio of the sample [see Figs. 2(c) and 2(d)]
[27]. Due to the 1D feature of the edge states, we further
calculated the Thouless exponent (Lyapunov coefficient) l (Ei )
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FIG. 4. (a,b) Topological phase diagram for (a) the octagonal quasicrystal and (b) the snub-square crystal in the parameter space of energy
difference � = εs − εp and SOC strength λ. The color represents the size of the bulk energy gap. (c,d) Energy gap Eg and topological invariant
(Z2 invariant or spin Bott index Bs) as a function of bonding strength scale γ for (c) the octagonal quasicrystal and (d) the snub-square crystal.
A TPT between a normal insulator (NI) and a QSH insulator is clearly visible.

[43–47] for edge states in both systems,

l (Ei ) =
∫

dE ′ρ(E ′) ln |E ′ − Ei| = 1

N − 1

∑
j 
=i

ln |Ej − Ei|,

(5)
where ρ(E ′) is the density of states. The Thouless exponent
l (E ) is proportional to the inverse of the localization length
of states in 1D systems, i.e., l (E ) ∼ 1/ξ . The calculated l (Ei )
are almost the same for the topological edge states in the two
lattices, indicating a similar decay length of topological edge
states in both systems. Therefore, QSH states in quasicrystals
and crystals manifest similarly, even though their bulk states
are significantly different.

VIII. TOPOLOGICAL PHASE DIAGRAM

One of the essential conditions to achieve the QSH state
is the band inversion between conduction and valence states,
which enables the TPT between a normal insulator (NI) and

a QSH insulator. Typically, one can realize the band inversion
by tuning the on-site energy difference � = εs − εp, the SOC
strength λ, and the bonding strength γ [14,15]. According
to the universal linear scaling of TPT we derived recently
[18], the critical transition point is roughly determined by the
condition

� − λ ∝
(γ

L

)2
. (6)

Here L is the average bond length of a given lattice, defined as

1

L2
= 1

2

∑
i

zi

r2
i

, (7)

where the summation runs over all the bonds within the cutoff
rcut. Based on the coordination number zi and bond length ri

listed above, one can easily obtain Locta = 0.525 and Lsnub =
0.546 (in units of r1) for the octagonal quasicrystal and
the snub-square crystal, respectively. The topological phase
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diagrams of the two lattices should be related to each other
according to the relation Eq. (6).

We studied the topological phase diagram in the �-λ plane
at a fixed γ for both lattices. As shown in Figs. 4(a) and 4(b),
the NI and QSH states are separated by a line of zero-energy
gap in both systems. By tracing the evolution of topological
invariants for the two systems, it is found that there is a sharp
jump in the topological invariant across the phase boundary,
indicating the occurrence of a TPT. Interestingly, the linear
lines of the energy gap closing in the two systems exhibit a
similar slope but different intercepts,

� = λ + δc. (8)

Such a linear behavior agrees with the critical condition
Eq. (6) with given γ and L in the two systems, respectively.
Moreover, according to the critical condition, the intercepts δc

of the two lattices are related by

δocta
c

δsnub
c

=
(

Lsnub

Locta

)2

. (9)

Based on the numerical calculations, we obtained δocta
c ≈

9.67 eV and δsnub
c ≈ 8.93 eV, which satisfy the relation in

Eq. (9).
Furthermore, we investigated the phase evolution with the

increasing bonding strength γ at given � and λ. As shown
in Figs. 4(c) and 4(d), the energy gap decreases to zero
and reopens with increasing γ in both systems, which is
associated with a TPT from a NI to a QSH state. Apparently,
a band inversion occurs at the critical transition point where
γ octa

c = 0.883 and γ snub
c = 0.916 (in unit of r1) for the two

systems, respectively. According to the critical condition (6),
it is straightforward to find that these critical values obey the
following relation:

γ snub
c

γ octa
c

= Lsnub

Locta
. (10)

Therefore, although the two systems show some quantitative
difference in the TPT due to the structural difference, they are,
in fact, related by a simple critical condition (6). The above

connection of TPTs in between quasicrystals and crystals is
not only valid for the two specific cases in this work, but it
is expected to be a general phenomenon for other quasicrys-
talline, crystalline, and even disordered systems [18]. Gener-
ally, the QSH state can appear in quasicrystals of different
local isomorphism (LI) classes, however the critical point of
TPT varies with the LI classes. Because different LI classes
have the same symmetry and fundamental repeating units but
different space-filling arrangements of repeating units [48],
the local distribution of vertex environment and hence the
average bond length varies with LI classes [49].

IX. CONCLUSION

We have proposed the realization of the QSH state in an
Ammann-Beenker-type octagonal quasicrystal and compared
it with the QSH state in a periodic snub-square crystal.
Although the two systems are different in symmetry and
periodicity, they share the same building blocks. Based on
a generic TB model, we discover that even though the bulk
wave functions of the two systems are significantly different,
the existence of topological states is robust regardless of
symmetry and periodicity. The topological manifestations of
QSH states, such as robust edge states, topological invariant,
and quantized conductance in the quasicrystal and crystal,
are very similar. We also compared the topological phase
diagrams of the two systems and found that the critical points
of TPTs in both systems can be described by a universal
relation. Our findings not only provide a better understanding
of the compatibility of general critical states in quasicrystals
with extended topological states, but also significantly ease
the practical fabrication of topological materials without a
stringent requirement for structural control.
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