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ABSTRACT: The Hofstadter butterfly spectrum for Landau
levels in a two-dimensional periodic lattice is a rare example
exhibiting fractal properties in a truly quantum system.
However, the observation of this physical phenomenon in a
conventional material will require a magnetic field strength
several orders of magnitude larger than what can be produced
in a modern laboratory. It turns out that for a specific range of
rotational angles twisted bilayer graphene serves as a special
system with a fractal energy spectrum under laboratory
accessible magnetic field strengths. This unique feature arises
from an intriguing electronic structure induced by the
interlayer coupling. Using a recursive tight-binding method,
we systematically map out the spectra of these Landau levels as a function of the rotational angle. Our results give a complete
description of LLs in twisted bilayer graphene for both commensurate and incommensurate rotational angles and provide
quantitative predictions of magnetic field strengths for observing the fractal spectra in these graphene systems.
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The unique chiral nature of quasiparticles in graphene with
a linear dispersion (massless Dirac fermions) results in a

novel quantum Hall effect1−3 that distinguishes this atomically
thin two-dimensional (2D) material from conventional 2D
electronic systems. The corresponding Landau levels (LLs) in
single-layer graphene are unevenly spaced in energy and
proportional to the square root of magnetic field and the LL
index n. In bilayer graphene, the two atomic layers can be
stacked together in many different ways, and a rotation away
from the usual Bernal AB stacking by a finite angle will induce a
moire ́ pattern4 and modifications of various physical properties.
As will be discussed in this Letter, the interlayer coupling will
give rise to intriguing changes in the LL spectra that have never
been observed in other 2D electronic systems. We will address
the evolution of the LLs as a function of the twist angle and the
emergence of fractal-like LL spectra in a certain angular range
induced by interlayer coupling. Quantitative results will be
presented based on tight-binding (TB) calculations that
provide an accurate description of the features in the electronic
structure of twisted bilayer graphene (TBG) over the entire
angular range.
Theoretical interest in TBG5−14 was motivated by the

unexpected experimental observation of quasi-ordered non-
Bernal stacking sequences with different twist angles in the
growth of epitaxial graphene on the C-face of SiC.15 TBG was
also observed in the graphene systems grown by the chemical
vapor deposition (CVD) method on transition metals.16−20 In
these twisted bilayers, the Dirac cones from each layer are

rotated by the same angle θ in momentum space with respect
to each other. Interlayer interaction induces coupling between
these two sets of linear bands, giving rise to the van Hove
singularity near the M point.21 First-principles6,7 and tight-
binding (TB)5,8 calculations have concluded that for a large
range of twist angles (larger than 3°) TBG preserves linear
bands with a renormalized Fermi velocity that decreases with
decreasing twist angle as a result of the interlayer coupling.
Recent scanning tunneling microscope (STM) measurements
have confirmed this velocity renormalization,22 although STM
measurements on epitaxial graphene layers grown on SiC only
found Fermi velocity values close to that of single-layer
graphene.23 For twist angles smaller than 3°, the two sets of
Dirac cones get close enough to each other that interlayer
coupling flattens the linear energy bands and moves the van
Hove singularities closer to the Fermi level. This gives rise to a
complex band structure around the Fermi level. An increase in
localization of the Dirac fermions was suggested both
theoretically7 and experimentally22 for this range of small
twist angles.
The large-scale moire ́ pattern introduces new features in the

energy spectrum of TBG under magnetic field. It is well-known
that the presence of a periodic potential will modify the free-
electron LLs and give rise to fractal-like energy spectra.
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Although the so-called Hofstadter butterfly spectrum has been
theoretically proposed in 1976,24 its experimental realization in
a natural system has remained elusive because the required
experimental magnetic field is too high (∼105 T) for a typical
lattice constant of 0.1 nm. One way to circumvent this difficulty
was to construct artificial superlattice to increase the lattice
constant.25 Since there exist superlattices of large lattice
constants in TBG that can be tuned by varying the twist
angle, this is therefore an opportunity to observe the Hofstadter
butterfly in a natural system for the first time.
The analysis of the magneto-electronic spectra has been

performed9 for TBG using a continuum model to describe the
interlayer interaction, and it was concluded that fractal butterfly
spectra emerge at laboratory accessible magnetic field strengths.
More recently, the energy spectra for a few selected
commensurate angles were reported based on a TB calculation
with a low-energy approximation,26 and similar conclusions
were drawn. The interlayer coupling in TBG affects the energy
bands in an essential way leading to velocity renormalization
and the presence of van Hove singularities, which is more than
a simple creation of the moire ́ pattern or a simple introduction
of a periodic potential. In particular, for small twist angles the
low-energy bands have quite complex characteristics. Our
motivation is to accurately map out the complete LL spectra of
TBGs as a function of the twist angle, irrespective of their
commensuration. Although TBG forms a 2D crystal only at a
discrete set of commensurate twist angles, the complete
evolution of LLs as a function of the twist angle including
incommensurate angles is of fundamental interest. In addition,
the Bloch theorem does not apply to incommensurate angles;
so direct band-structure calculations are not feasible. For
incommensurate twist angles or small commensurate angles
where the periodicity becomes quite large, it is a great challenge
to carry out the calculations for these LLs. In this Letter, we
report computational results of LL spectra in TBG using a real-
space recursive TB method with parameters determined by
first-principles calculations. We have quantitatively identified
three distinct regimes in TBG where the behavior of the LL

spectra exhibits characteristics associated with the Bernal
bilayer, the Hofstadter butterfly, and a single layer, respectively.
Our results give a complete description of LL spectra in TBG
and provide a prediction of magnetic field strengths for
observing the fractal spectra in the experiment. Comparing to
previous studies, we have not only included small angles less
than 1° but also extended the analysis of TBG to
incommensurate angles, which gives a better perspective of
the LL physics in TBG.
In TBG, the upper layer is rotated relative to the lower one

by an angle θ with θ = 0° corresponding to the Bernal-stacked
bilayer graphene. The twist angle could be either commensu-
rate or incommensurate. Following the definition by Shallcross
et al.,6 a commensurate angle can be defined by θ = cos−1((3q2

− p2)/(3q2 + p2)), where p and q are integers. By symmetry, we
only need to consider the twist angles within the range of 0−
30°. We model TBG in a perpendicular magnetic field by the
full TB Hamiltonian27
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where tμl,νj is the hopping parameter, and μ and ν (l and j) are
the layer (atomic) indices. The magnetic field B is introduced

by means of the Peierls substitution ⇀A = (0,Bx). Only pz
orbitals are considered, because we are interested in LLs close
to the Fermi level.28,29 For a finite twist angle, the closest atom
in the other layer will not be directly on top of each other. We
have used a cutoff distance of 7 Å for the interlayer interaction.
The TB parameters are obtained by fitting to energy bands
generated from first-principles calculations7 (see Figure S1 in
Supporting Information) and follow the form of

Figure 1. Landau-level spectra for twisted bilayer graphene at three commensurate angles representing three ranges of the twist angle θ. (a) θ =
0.069° for the Bernal-bilayer regime 0.0−0.3°, (b) θ = 1.444° for the regime 0.3−3.0°, and (c) θ = 7.565° for the effectively “single layer” regime
(3.0−30.0°). The corresponding electronic bands in these ranges are shown below each spectrum with θ = 0.0, 1.538, and 7.341°, respectively. The
band structures for all the commensurate angles are obtained by diagonalization of the unit-cell Hamiltonian in reciprocal space with periodic
boundary condition.
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where a = 1.42 Å is the intralayer C−C separation, and c = 3.35
Å is the interlayer distance. γ1 = −2.7 eV (γ2 = 0.48 eV) is the
nearest-neighbor intralayer (interlayer) hopping energy, and λ1
= 3.15 (λ2 = 7.42) is the intralayer (interlayer) interaction
decay constant. The on-site energy is set to zero on all atoms.
The LLs, represented by the local density of states (LDOS), are
obtained by numerically solving eq 1 using the Lanczos
recursive method30 (see Supporting Information). Graphene
sheets as large as of 140 nm × 140 nm in size containing over
one million atoms are used to ensure that the calculated results
are converged with negligible boundary effects.
Figure 1 provides a quick overview of the LL spectra in TBG

as a function of the twist angle. As the twist angle increases, the
features of the LLs can be classified into three distinct groups:
(1) the “quasi-Bernal” regime from 0 to 0.3°, where the LLs
display the strongly coupled Bernal bilayer behavior; (2) the
“intermediate” regime from 0.3 to 3°, where the LLs are
characterized by a complex fractal-like spectrum similar to the
so-called Hofstadter butterfly; (3) the “monolayer” regime from
3 to 30°, where the LLs display an effective single-layer
behavior. In Figure 1, three representative LL spectra at
commensurate angles of θ = 0.069°, θ = 1.444°, and θ = 7.565°
are shown to illustrate the typical features in each regime. For
comparison, representative band dispersions at θ = 0.0, 1.538,
and 7.341° are also shown in the lower panels. (Note that the

van Hove singularities near M are within 0.1 eV around the
Fermi level for 1.538°.) A detailed evolution of the LL
spectrum as a function of the twist angle over all three regimes
is shown in the movie provided in Supporting Information.
We find that the energy values of the LLs in each regime are

almost independent of the location. In addition, similar features
are present for close-by commensurate and incommensurate
angles. Figure 2a,b illustrates the real-space moire ́ patterns of
TBG at two different twist angles, one is commensurate [θ =
2.472°, Figure 2a] and the other incommensurate [θ = 2°,
Figure 2b]. The former has a large unit cell with a cell area of
∼28 nm2. In both cases, regions with atomic stacking patterns
of the AA and AB/BA type can be identified. AA represents the
local region where the atoms in the upper layer lie directly
above those in the lower layer while AB/BA presents the region
where the Bernal stacking is found locally. We show the LLs for
these two angles with magnetic field B = 10 T in Figure 2c,d
along the line as marked in Figure 2a,b, respectively.
The first feature noted in Figure 2 is that for both twist

angles where the energy positions of the LLs are independent
of the spatial location, as shown in Figure 2c,d. This can be
understood in terms of the averaging effect within the magnetic
length (l = (ℏ/eB)1/2 ∼ 8 nm for 10T), which is much larger
than the graphene lattice constant. Second, the intensity
variation of the LDOS is smooth and weakly dependent on the
location in the AA region, while in the AB/BA region the
LDOS oscillates with the location. This can be understood as a
structural effect in that the local atomic environment
(coordination) of the A and B sublattices is the same in the
AA region but different in the AB/BA region. In other words,
the local structure of TBG noticeably affects the wave function
distribution but not the energy positions of the LLs. In the

Figure 2. (a) Moire ́ patterns in twisted bilayer graphene with (a) a commensurate angle θ = 2.472° and (b) an incommensurate angle θ = 2°. AA
and AB/BA denote different local stacking arrangements. (c,d) The Landau levels (local density of states) at B = 10 T as a function of location along
the lines in (a) and (b), respectively.
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following, we simply present the LDOS of the LLs as a function
of twist angle at one location in TBG.
The electronic structure of TBG with small twist angles (0−

0.3°) has not been studied previously except for θ = 0° (Bernal
stacking), because the unit cell is very large in this regime. Our
calculated low-energy LLs can be described by the formula for
Bernal-stacked bilayer graphene31 with a renormalized Fermi
velocity (νF), as shown in Figure 3a. As the twist angle
increases, νF slightly decreases. The variation is smooth through
both commensurate and incommensurate angles.
For large twist angles (3−30°), the LLs behave like those in

single-layer graphene and can be described by a renormalized
νF using the monolayer formula,31 as shown in Figure 3b. As
the twist angle increases, νF rapidly increases initially, and then
slowly approaches the value of monolayer graphene at and
beyond ∼15°. The smooth νF variation shown in Figure 3b

includes both commensurate and incommensurate angles. The
effective interlayer coupling becomes weaker as the twist angle
increases, consistent with the perturbation theory of Lopes dos
Santos et al.5 and experimental observations.22

Most interestingly, the LLs in the “intermediate” regime with
the twist angles ranging from 0.3 to 3° display a fractal-like
pattern similar to the Hofstadter butterfly, as shown in Figure 4.
The Hofstadter butterfly spectra occur in both Bernal bilayer32

and monolayer33 graphene under very high, experimentally
inaccessible field. In contrast, the Hofstadter butterfly spectra in
the “intermediate” regime of TBG are apparent at a much
smaller field of less than 30 T. As the twist angle increases, the
spectrum evolution is continuous going through both
commensurate and incommensurate angles as shown in Figure
4 and in the movie provided in Supporting Information. The
robustness of the Hofstadter butterfly spectra irrespective of the

Figure 3. Renormalization of the Fermi velocity as a function of the twist angle in (a) the quasi-Bernal (small θ) regime and (b) the effective
“monolayer” regime. The velocities have the same meaning in both the quasi-Bernal and effective “monolayer” regimes, but are determined
differently by their corresponding LL formulas for Bernal bilayer and monolayer graphene, respectively, as given in ref 31.

Figure 4. Hofstadter butterfly spectra of twisted bilayer graphene in the intermediate-coupling regime at a few selected twist angles. (a)
Commensurate angle θ = 1.067°, (b) incommensurate angle θ = 1.3°, (c) commensurate angle θ = 1.872°, and (d) incommensurate angle θ = 2.5°.
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twist angle type should facilitate its experimental observation.
Our study shows that the Hofstadter butterfly spectra can also
occur in a nonperiodic lattice. In this “intermediate” regime, no
simple scaling law is found for the spectra, and the variation is
not periodic in B because of the band structure effect. However,
the spectral evolution with the twist angle can be qualitatively
understood in the following way. As the twist angle increases,
the fractal pattern expands in the E axis reflecting an increase of
the “renormalized Fermi velocity” (toward the single layer
value), while the pattern moves toward larger B fields due to
the decrease in unit cell size, so that a larger field is required to
yield the same magnetic flux (φ). The spatial location
independence of the LL spectrum also suggests that the
Hofstadter butterfly spectrum can be detected by a local probe
such as scanning tunneling spectroscopy as an alternative to
transport experiment.
Being a coupled two-layer system, TBG differs from

conventional nanofabricated superlattices. If the unit cell size
were the only factor that determines the magnitude of B for the
occurrence of the Hofstadter butterfly spectra, namely, the
larger the superlattice is, the smaller the required B will be, the
Hofstadter butterfly would have occurred at even smaller B for
angles below 0.3° where the unit cell size is huge. On the
contrary, our results show that the Hofstadter butterfly
spectrum only occurs in the “intermediate” regime. This
indicates that the interlayer coupling plays a crucial role in the
formation of Hofstadter butterfly spectra in TBG. Laissardier̀e7

and Morell8 showed that for small twist angles (<3°), the bands
of TBG near the Fermi level become flat (see Figure 1b) and
the electronic states become localized. This special feature
resulting from the interlayer coupling seems to also affect the
properties of the LLs in the presence of magnetic field.
In summary, we have carried out tight-binding calculations to

map out the Landau level spectra in twisted bilayer graphene as
a function of the rotational angle and identified three regimes of
different features. At large twist angles (>3°), the coupling is
the weakest, and the Landau levels are similar to that of single-
layer graphene. At small twist angles (<0.3°), the coupling is
the strongest, and the Landau level spectra resemble that of a
Bernal-stacked bilayer. At the intermediate twist angles (0.3−
3°), the electronic energy bands contain flat localized states
near Fermi level, and the Landau levels exhibit Hofstadter
butterfly fractal features under laboratory-accessible magnetic
field strengths. These features are present for both
commensurate and incommensurate angles and are believed
to arise from the interlayer coupling.
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