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ABSTRACT: Topological insulators (TI) are a class of
materials exhibiting unique quantum transport properties
with potential applications in spintronics and quantum
computing. To date, all of the experimentally confirmed TIs
are inorganic materials. Recent theories predicted the possible
existence of organic TIs (OTI) in two-dimensional (2D)
organometallic frameworks. However, those theoretically
proposed structures do not naturally exist and remain to be
made in experiments. Here, we identify a recently
experimentally made 2D organometallic framework, consisting
of π-conjugated nickel-bis-dithiolene with a chemical formula Ni3C12S12, which exhibits nontrivial topological states in both a
Dirac band and a flat band, therefore confirming the existence of OTI.
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The concept of topological order in condensed matter
physics provides a new perspective for understanding the

origin of different quantum phases and has generated intense
recent interest in searching for nontrivial topological materials,
so-called topological insulators (TI).1−13 The defining signature
of a two-dimensional, 2D (3D), TI is its nontrivial bulk band
topology around a global spin−orbit coupling (SOC) gap with
corresponding topological edge (surface) states within the SOC
gap. These characteristic edge (surface) states have a
topological origin, which are protected from elastic back-
scattering and localization, and hence hold potential for
applications in spintronics and quantum computation devices.
To date, all of the experimentally confirmed TIs are based on
inorganic materials.1−13 Recently, theories have predicted the
possible existence of OTI in 2D organometallic frame-
works,14−16 but those theoretically proposed structures remain
to be synthesized in the experiments.
In this work, we report the identification of nontrivial

topological states in an experimental sample of 2D organo-
metallic framework, Ni3C12S12 lattice (Figure 1), recently
synthesized by Kambe et al.17 First-principles calculations of
band structure, edge state, Chern number, and spin Hall
conductance are performed to reveal the nontrivial topology in
this lattice structure. A single-orbital tight-binding (TB) model
is also given to illustrate its SOC gap opening mechanism.
First-principles calculations are carried out within the

framework of the Perdew−Burke−Ernzerhof generalized
gradient approximation using VASP.18 All of the calculations
are performed with a plane-wave cutoff of 500 eV on the 7 × 7
× 1 Monkhorst-Pack k-point mesh. The vacuum layer is 15 Å
thick to ensure decoupling between neighboring slabs. During
structural relaxation, all atoms are relaxed until the forces are
smaller than 0.01 eV/Å.
Figure 1 shows the optimized 2D Ni3C12S12 lattice structure,

which adopts a kagome lattice. The optimized lattice constant is

found to be L = 14.63 Å, in good agreement with the
experimental value (14−15 Å).17 Figure 2a shows the band
structure of Ni3C12S12 lattice with SOC around the Fermi level.
We can clearly see that the typical kagome bands as shown
previously in a TB model,19 consisting of one flat band above
two Dirac bands (top three red bands in Figure 2a, all of the
bands are spin degenerated), which are well separated from the
other black bands. Figure 2b shows the zoom-in band
structures of the three kagome bands. The band gap of the
Dirac band is Δ1 = 13.6 meV, while the band gap between the
flat band and the top branch of the Dirac band is Δ2 = 5.8 meV.
Both Δ1 and Δ2 vanish in the absence of SOC from the first-
principles calculations.
We then checked the edge states of the Ni3C12S12 lattice,

since the existence of topological edge states is an important
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Figure 1. Atomic structure of the Ni3C12S12 lattice. The solid lines
show the unit cell, and the dashed lines outline the kagome lattice.
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signature of the 2D TIs. The edge states of the Ni3C12S12 lattice
is calculated by using the Wannier90 package,20 in which a TB
Hamiltonian in the basis of the maximally localized Wannier
functions (MLWFs) is fitted to the first-principles band
structures. Using these MLWFs, the edge Green’s function of
the semi-infinite lattice is constructed using the recursive
method,21 and the local density of state (LDOS) of the edge is
calculated. This method provides a direct connectivity between
the edge states and the bulk states. The LDOS of a semi-infinite
Ni3C12S12 lattice is shown in Figure 2c and d for spin-up and
spin-down components, respectively, where one can see the
nontrivial topological edge states that connect the bulk states
and form a 1D Dirac cone in both SOC gaps (Δ1 and Δ2). In
addition, the spin-up and spin-down edge states have inverse
group velocity, which will propagate along opposite directions
along the edge, as required for the 2D TI states.
We stress that the kagome bands of the Ni3C12S12 lattice

represent a real material system that realizes the single-orbital
TB model on a kagome lattice as proposed by Tang et al.19 The
corresponding model Hamiltonian in the reciprocal space can
be expressed as follows:

λ

=

±

−

−

−

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟

H

E t k t k

t k E t k

t k t k E

i

k k

k k

k k

2 cos 2 cos

2 cos 2 cos

2 cos 2 cos

2

0 cos cos

cos 0 cos

cos cos 0

0 1 1 1 2

1 1 0 1 3

1 2 1 3 0

1

1 2

1 3

2 3 (1)

where ⃑a1 = (L/2)x ̂, ⃑a2 = (L/2)[(x ̂ +√3y)̂/2], ⃑a3 = ⃑a2 − ⃑a1, kn =
⃑k · ⃑an, and L is the lattice constant. E0 is the on-site energy, t1 is
the nearest-neighbor hopping parameter, λ1 is the nearest-
neighbor intrinsic SOC, and +(−) refers to the spin-up (spin-

down) bands. The corresponding fitting parameters for the
Ni3C12S12 lattice are E0 = 0.59 eV, t1 = −0.07 eV, and λ1 =
0.0035 eV, which show very good agreement with the first-
principles results (Figure 3a). The TB model analysis indicates

that the SOC gaps (Δ1 and Δ2) in the Ni3C12S12 lattice are
opened due to the intrinsic SOC of d-orbits of Ni atoms, given
the inversion lattice symmetry that excludes the Rashba SOC
effect.
To further confirm the nontrivial topology of the Ni3C12S12

lattice, the Chern number (C) and spin Chern number (Cs) are
calculated using the Kubo formula22,23 as follows:
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where n is the band index, ψnk is the eigenstate of eigenvalue εnk
of band n, f n is the Fermi distribution function, νx/y is the
velocity operator, jx is the spin current operator defined as (szvx

Figure 2. (a) 2D band structure of Ni3C12S12 lattice along the high
symmetry directions. (b) The zoom-in kagome bands around two
SOC gaps. (c and d) The semi-infinite edge states for the spin-up and
spin-down components, respectively. Overlapping c and d would give
the 1D edge Dirac band in both SOC gaps as in Figure 4b.

Figure 3. (a) A comparison between first-principles and single-orbital
TB band structures for the flat (I) and Dirac (II and III) bands. (b)
Same as a for the quantized spin Hall conductance within the energy
window of the two SOC gaps. (c) Spin Berry curvatures in the
reciprocal space for flat (left column) and Dirac bands (right two
columns). The dashed lines mark the first Brillouin zone.
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+ vxsz)/2, and sz is the spin operator. The Chern number and
spin Chern number are defined as

= + = −↑ ↓ ↑ ↓C C C C C C
1
2

( )s
(4)

From eqs 2−4, the Chern number of each band with different
spins is calculated, as marked in Figure 3a. For both spins, the
flat band and the bottom Dirac band have a nonzero Chern
number (±1), while the top Dirac band has a zero Chern
number. Thus, within the SOC gap of Δ1 or Δ2, the Chern
number is zero, but the spin Chern number is −1, indicating
that the Ni3C12S12 lattice is topologically nontrivial.
The coexistence of two TI states, one from the Dirac band

and the other from a flat band, at different energies can
manifest in transport measurement. The spin Hall conductance
can be obtained from the spin Chern number as
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Figure 3b shows the calculated spin Hall conductance as a
function of energy using the first-principles and single-orbital
TB method, which has a quantized value (−2e/4π) within the
energy window of both SOC gaps.
We also compare the calculated spin Berry curvature in

Figure 3c, showing very good agreement between the first-
principles method and the single-orbital TB model. The spin
Berry curvature of the flat band is mainly around the Γ point
(Figure 3c, left column), while that of the Dirac bands is
around the K point (Figure 3c, right two columns). This again
confirms that the Ni3C12S12 lattice represents a real organo-
metallic lattice to realize the original kagome model proposed
by Tang et al.,19 which has an interesting flat band with nonzero
Chern number. By including many-body interactions in such
nontrivial flat band, the fractional quantum Hall effect can also
be realized.24

One distinct advantage of organic topological materials is
their high tunability by using different metal atoms and
molecular ligands. In addition to examining the experimentally
made Ni3C12S12 lattice, we also tested the Au3C12S12 lattice by
replacing Ni with Au to demonstrate the tunability of such
lattices. The optimized lattice constant of Au3C12S12 lattice is
found to be L = 15.09 Å. Its band structure with SOC and semi-
infinite edge states are shown in Figure 4a and b, respectively.
Overall, the band structure and topology of the Au3C12S12
lattice are physically same as those of the Ni3C12S12 lattice,
except that the Fermi level is now located in between the flat

band and the Dirac point and the SOC gaps are larger with Δ1
= 22.7 meV and Δ2 = 9.5 meV.
We note that the Fermi level is not in the SOC gaps in both

lattices, so doping is needed. This requires doping one electron
(or one hole) per unit cell in the Au3C12S12 lattice and two (or
four) electrons in the Ni3C12S12 lattice, respectively, which
corresponds to a doping concentration of ∼5 × 1013 cm−2 to
∼2 × 1014 cm−2. In our first-principles calculations, the doping
effect can be studied by removing (or adding) electrons from
(or to) the lattice, and meanwhile adding a homogeneous
background charge of opposite sign to maintain the system
charge neutrality, as done before for other proposed OTIs.14 In
experiments, the doping effect can be achieved by the
electrostatic gating. Recent experiment has demonstrated that
the doping concentration in graphene can be achieved up to 4
× 1014 cm−2 for both electrons and holes by using a solid
polymer electrolyte gate.25

Our predicted 2D OTI would offer several advantages over
their inorganic counterparts. First, they should be less sensitive
against oxidation, which would strongly simplify the device
fabrication. Furthermore, the possibility to implement a wide
variety of metal ions and organic ligands will enable specific
tailoring of the electronic properties of OTI. Our recent work
has already demonstrate such possibility to tune an OTI made
of Bi2C18H12 lattice into a magnetic OTI by substituting Bi with
Mn atoms, and a quantum anomalous Hall effect having an odd
Chern number is shown to be realizable in this magnetic OTI.16

Therefore, it is reasonable to anticipate similar magnetic OTIs
to be realized in the Ni3C12S12 lattice by substituting Ni with
other transition metal elements with large exchange energy.
In conclusion, using first-principles calculations, we identify a

real OTI material in a recent experimentally synthesized 2D
organometallic framework, which provides a viable approach for
searching new TIs in organic materials. We envision that more
OTIs will be discovered in the future, which will greatly
broaden the scientific and technological impact of TIs.

■ AUTHOR INFORMATION

Corresponding Author
*E-mail: fliu@eng.utah.edu.

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

This work was supported by NSF-MRSEC (Grant No. DMR-
1121252). N.H.S. was supported by US DOE-BES (grant no.
DE-FG02-04ER46148). Z.F.W. acknowledges additional sup-
port from ARL (Cooperative agreement no. W911NF-12-2-
0023). We thank the CHPC at University of Utah and NERSC
for providing the computing resources.

■ REFERENCES
(1) Hasan, M. Z.; Kane, C. L. Rev. Mod. Phys. 2010, 82, 3045.
(2) Qi, X.-L.; Zhang, S.-C. Rev. Mod. Phys. 2011, 83, 1057.
(3) Kane, C. L.; Mele, E. J. Phys. Rev. Lett. 2005, 95, 226801.
(4) Fu, L.; Kane, C. L. Phys. Rev. B 2007, 76, 045302.
(5) Bernevig, B. A.; Hughes, T. L.; Zhang, S.-C. Science 2006, 314,
1757.
(6) König, M.; Wiedmann, S.; Brüne, C.; Roth, A.; Buhmann, H.;
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