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Abstract
Non-Hermitian (NH) topological states, such as the doubly-degenerate nodes dubbed as
exceptional points (EPs) in Bloch band structure of 2D lattices driven by gain and loss, have
attracted much recent interest. We demonstrate theoretically that in the three-site edge-centered
lattices, i.e. the so-called line-graph lattices, such as kagome lattice which is a line graph of
hexagonal lattice, there exist three types of triply-degenerate EPs evolving intriguingly on another
set of line graphs in the reciprocal space. A single TEP (STEP) with ±1/3 topological charge moves
faithfully along the edges of reciprocal line graphs with varying gain and loss, while two STEPs
merge distinctively into one unconventional orthogonal double TEP (DTEP) with ±2/3 charge at
the vertices, which is characterized with two ordinary self-orthogonal eigenfunctions but one
surprising ‘orthogonal’ eigenfunction. Differently, in a modified line-graph lattice with an
off-edge-center site, the ordinary coalesced state of DTEPs emerges with three identical
self-orthogonal eigenfunctions. Such NH states and their evolution can be generally realized in
various artificial systems, such as photonic and sonic crystals, where light and sonic vortex beams
with different fractional twisting can be found. Our findings shed new light on fundamental
understanding of gapless topological states in NH systems in terms of creation and evolution of
high-order EPs, and open up new research directions to further link line graph and flow network
theory coupled with topological physics, especially under non-equilibrium gain/loss conditions.

1. Introduction

Non-Hermitian (NH) lattices with onsite gain and loss have been shown to exhibit various topological
phenomena. For example, in a rhombic lattice under driving, a Dirac point splits into a pair of
doubly-degenerate exceptional points (EPs), each characterized with degenerate eigenvalues and identical
self-orthogonal eigenvectors [1–7]. The topology of an EP is characterized by a nonzero topological
invariant

ν = − 1

2π

∮
EP
∇k arg [E1 (k) − E2 (k)] · dk = ±1

2
, (1)

where integration is carried out on a k-space loop enclosing the EP. E1(k) and E2(k) are two complex
eigenvalues at each k point. The invariant represents a winding number, associated with the energy
dispersion of NH band structures around the EP, i.e. the vorticity around the EP. The vorticity manifests
also a topological charge ν with the physical implication of polarization [1]. It has been demonstrated that
[2] the nonzero ν implies the existence of band degeneracy within the region enclosed by the loop, and an
EP with half topological charge ν = ±1/2 can be described by the Riemann surface f = z1/2 (z is a complex
number) with a nodal point being doubly degenerated. A pair of EPs are connected by a bulk Fermi arc
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(BFA) with the degenerate real part but nondegenerate imaginary part of eigenvalues [1], which manifests
itself in creating vortex beam with fractional charge. The EPs with higher degeneracy are used to create
vortex beam beyond ±1/2 charge for enhancing sensitivity of NH detectors [8–13]. Other gapless NH
topological states include exceptional lines, rings, and surfaces [14–22]. Furthermore, gapped NH
topological states have been demonstrated for potential applications in making robust single-color laser
based on NH Haldane cavity [23–26]. The second-order NH topological insulators can afford sound guides
in sonic crystals [27, 28]. Therefore, imposing non-Hermiticity to a Hermitian system is an effective way to
induce novel topological states, which is of both scientific and technological interests.

On the other hand, it is well recognized that all the 2D edge-center lattices can be viewed as line-graph
lattices, since they can be constructed as line graphs in mathematical graph theory. A line graph is made by
connecting the centers of edges that share a common vertex of the original graph. Interestingly, the
line-graph lattices have been shown to exhibit exotic properties associated with topology and many-body
interactions, such as magnetism and superconductivity [29–32]. One prevailing theorem is that the
topological construction of line graph underlines a necessary condition for the existence of topological flat
bands in the line-graph lattices, such as the well-known kagome lattice, where destructive interference of
lattice wavefunctions leads to formation of highly localized compact plaquette quantum states [33, 34].
Then, an intriguing question arises: what happens when non-Hermiticity is introduced in the line-graph
lattices? How the band topology will evolve with gain and loss, especially noting that an NH line graph may
be linked to a non-equilibrium flow network in graph theory.

In this article, the band structure and topology of a class of 2D NH line-graph lattices, with three sites
having gain and loss, are explored. Most strikingly, three types of triply degenerate EPs (TEPs) are found to
always exist on another set of line graphs in the reciprocal space. By continuously varying gain and loss,
single TEPs (STEPs) with ±1/3 charge move faithfully along the edges of reciprocal line graphs. When two
STEPs meet at the vertices of the reciprocal line graph, they merge distinctively into an unconventional
orthogonal double TEP (DTEP) with ±2/3 charge, featured with two identical ordinary self-orthogonal
eigenfunctions but another surprising orthogonal eigenfunction. Differently, in the modified off-center
line-graph lattices, in which one of the vertices of line graph is chosen along the edge but at an off-center
position of the original graph, an ordinary coalesced state of DTEPs appear at the vertices, with three
degenerate eigenvalues and identical self-orthogonal eigenfunctions. The intriguing evolution of TEPs in a
reciprocal line graph and the existence of orthogonal DTEP (ODTEP) signify a set of unique NH
topological properties of line-graph lattices.

2. TEPs in NH kagome lattice

We first consider a kagome lattice with gain and loss γn (n = 1, 2, 3) at nth site, as shown in figure 1(a). The
NH kagome Hamiltonian is

H = 2t

⎛
⎝ 0 cos k1 cos k2

cos k1 0 cos k3

cos k2 cos k3 0

⎞
⎠+ i

⎛
⎝γ1 0 0

0 γ2 0
0 0 γ3

⎞
⎠ , (2)

where kn = k · an, and t is the nearest-neighbor (NN) hopping integral. The balanced gain and loss γ1 = 0,
γ2 = −γ3 = γ is adopted to study the evolution of band structure. When γ = 0, the original Hermitian
kagome model exhibits two Dirac bands touched with a bottom flat band (figures 1(b) and (c)), where the
Dirac (degenerate) point at K (Γ ) is labeled as DP1 (DP2). As shown in figures 1(d) and (e), when γ

increases to 0.5t, DP1 splits into a pair of two-fold EPs (labeled as EP1), whose band shape in low energy
can be described by the complex function f = z1/2 containing all topologies of nodal points EP1
(see figure S1 (https://stacks.iop.org/NJP/23/123038/mmedia) in supplemental material). The EP1 pair, with
a topological charge ν = ±1/2 on each EP (computed by equation (1)), is connected by a BFA with the
degenerate real but nondegenerate imaginary part of eigenvalues, which illustrates the nontrivial topology
of the EPs. Meanwhile, DP2 splits into four EPs (labeled as EP2) which are connected by two crossing BFAs.

When γ increases further to 2t, EP1 (ν = −1/2) and EP2 (ν = −1/2) merge together to form a TEP
node, as shown in figures 1(f)–(h). To distinguish the exceptionality of the TEP node, we calculated the
Petermann factor [8, 35]

PFn =
〈ψL

n |ψL
n〉〈ψR

n |ψR
n 〉

|〈ψL
n |ψR

n 〉|
2 (3)

2
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Figure 1. Band evolution of the NH kagome model with balanced gain and loss γ1 = 0, γ2 =−γ3 = γ. (a) Kagome lattice with
NN vectors a1 = (1, 0)a/2, a2 = (1, √3)a/4, and a3 = a2 − a1. a is lattice constant. (b) and (c) Band structure of kagome model
with γ = 0. DP1 (blue) labels Dirac point, and DP2 (red) labels the degenerate point between Dirac and flat band. The dashed
lines in (b) show the first Brillouin zone. The band structure within the gray k-point area of (b) is shown in (c). (d) and (e) Band
structure of kagome model driven by γ = 0.5t. EP1 (EP2) labels the EP originated from DP1 (DP2). A pair of EP1 (blue dots)
and EP2 (red dots) are connected by BFAs whose k-space location is shown by blue and red lines in (d), respectively. The band in
the gray k-point area of (d) is shown in (e), where the vertical axis and surface color represent the real Re(E) and imaginary
Im(E) part of eigenvalues in unit of hopping integral t, respectively. (f)–(j) Band structure of kagome model driven by γ = 2t.
The solid gray lines in (f) show the reciprocal line-graph (kagome) lattice defined by cos k1 · cos k2 · cos k3 = 0. The k-space
location of BFAs connecting TEPs is shown by blue and red lines in (f). STEP and ODTEP are marked by round and square dots
in (f)–(i), respectively. The band structure around STEP and ODTEP are plotted in (g) and (i), respectively. (h) and (j) Show the
Petermann factor of three branches around STEP and ODTEP, respectively.

for the states with eigenvalues En around the node, where n = 1, 2, 3 is band index. In equation (3), the left
eigenfunction 〈ψL

n

∣∣ and right eigenfunction
∣∣ψR

n 〉are solved from Schrödinger equations 〈ψL
n

∣∣H = 〈ψL
n

∣∣ En

and H
∣∣ψR

n〉 = En

∣∣ψR
n〉 with the NH Hamiltonian H, respectively. As shown in figure 1(h), approaching the

TEP nodal point, the factors PFn of three energy branches become divergent PFn →+∞, indicating the left
and right eigenfunctions are self-orthogonal, i.e. 〈ψL

n |ψR
n 〉 → 0. The self-orthogonality indicates that the

nodal point is an EP with triple degeneracy [8], i.e. STEP. To characterize its topology, we define the
winding number (similar to equation (1)) of eigenvalues enclosing the EP as a topological invariant

ν ′ = − 1

2π

∮
TEP

1

3
{∇k arg [+E1 (k) − E2 (k) − E3 (k)]

+∇k arg [−E1 (k) + E2 (k) − E3 (k)]

+∇k arg [−E1 (k) − E2 (k) + E3 (k)]} · dk

(4)

The STEP exhibits a fractional topological charge ν ′ = −1/3, consistent with its low-energy band shape
described by the complex function f = ±(z∗)1/3. The STEPs are connected by two BFAs originating from
the degenerate real part of eigenvalues on two lower and higher bands, respectively. Meanwhile, two EP1
(ν = +1/2) and two EP2 (ν = +1/2) merge together at M point, forming a TEP node, as shown in
figures 1(f) and (i). The node is found to have a low-energy band shape f = ±z2/3 and exhibit a topological
charge ν ′ = +2/3 which is twice of that for an STEP. Approaching the node, all three branches exhibit
divergent PF (figure 1(j)), indicating also the node is exceptional (a known signature of EPs [8]). However,
although this exceptional nodal point has three degenerate eigenvalues, surprisingly, only two
eigenfunctions are found self-orthogonal as expected, while the remaining third eigenfunction is orthogonal
to the first two. Given this unusual form of orthogonality and its doubled topological charge, the nodal
point is dubbed as ODTEP. Meanwhile, as shown in figure 1(f), the BFAs, which connect all the TEPs,
develop into a network, where the ODTEP locates at the nodes of network; the continuous BFAs for
high-order TEPs are in sharp contrast to the separate BFAs of doubly-degenerate EPs in figure 1(d).

Next, we study the evolution of TEPs by continuously varying the gain and loss. To create TEPs, the gain
and loss should satisfy

12t2 = (γ1 + γ2 + γ3)2 − 3(γ1γ2 + γ1γ3 + γ2γ3), (5)

as shown by the cylindrical surface in figure 2(a) (see details in supplemental material), in the parameter
space of γn. We first analyze the case of balanced gain and loss γ1 + γ2 + γ3 = 0. When the gain and loss
follow γ1 = t, γ2 =

(
−1 +

√
15
)

t/2, γ3 = −
(
1 +

√
15
)

t/2, there exist STEPs with ν ′ = +1/3 (−1/3) on

3
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Figure 2. The evolution of TEPs in an NH kagome lattice. (a) The gain and loss γ1, γ2, γ3 for producing TEPs. The light blue
cylindrical surface and blue lines represent the gain and loss for realizing STEP and ODTEP, respectively. Balanced gain and loss
γ1 + γ2 + γ3 = 0 are identified by the red circle. (b)–(d) The k-space location and BFA (blue and red lines, evolved from
figure 1(f) by changing gain/loss) of TEPs induced by balanced gain and loss marked as A, B, and C in (a). Solid (dash) gray lines
show the reciprocal kagome lattice lines (first Brillouin zone). The circle and square dots represent STEPs and ODTEPs,
respectively. Plus and minus signs represent respectively the topological charge of TEPs: STEPs, + (−) equals to ν ′ =+1/3
(−1/3); ODTEPs, + (−) equals to ν ′ =+2/3 (−2/3).

the lines satisfying cos k2 = 0 (cos k3 = 0), where a BFA connects a pair of STEPs with opposite charge, and
the BFAs are shaped like curves which are continuous in reciprocal space (figure 2(b)). When the gain and
loss are changed to γ1 = −γ3 = 2t, γ2 = 0, the two STEPs on the lines of cos k3 = 0 merge together,
forming the ODTEP with ν ′ = −2/3 at the sites satisfying cos k1 = cos k3 = 0, where the bulk Fermi net
(BFN) appears to connect all TEPs with all the ODTEPs located at the nodes of the BFN (figure 2(c)). When
the gain and loss are further changed to γ1 = 4t/

√
3, γ2 = γ3 = −2t/

√
3, the ODTEP at cos k1 = cos k3 = 0

splits into two STEPs along the line satisfying cos k1 = 0 (figure 2(d)). Consequently, all the TEPs are
connected in the NH kagome lattice, occupying exactly all the positions in another k-space kagome lattice,
i.e. a line graph in reciprocal space with the edges defined by cos k1 · cos k2 · cos k3 = 0, that is
k · an = π

2 ·
(
2p + 1

)
with an integer p.

The unbalanced gain and loss will induce the same type of TEP evolution. To create the ODTEP at
reciprocal kagome sites (i.e. vertices of reciprocal line graphs) at cos k1 = cos k2 = 0 (cos k1 = cos k3 = 0,

cos k2 = cos k3 = 0), the required gain and loss is found to be

{
γ2 = γ1 ± 2t

γ3 = γ1 ∓ 2t

({
γ2 = γ1 ± 2t

γ3 = γ1 ± 4t
,{

γ2 = γ1 ± 4t

γ3 = γ1 ± 2t

)
, which are shown by six straight lines on the cylinder in figure 2(a). The rest of gain and

loss on the cylinder produces STEPs along the reciprocal kagome lines. Overall, the varying gain and loss
according to equation (5) will move the STEPs along the reciprocal kagome lines, and merge two STEPs
into one ODTEP at reciprocal kagome sites. Furthermore, if lattice hopping beyond NN is included, this
evolution pattern of TEPs remains intact; the only difference is that the reciprocal lattice lines become
curved (see figure S2 in supplemental material).

4
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Figure 3. The evolution of TEPs in the 2D NH line-graph lattices. (a) An arbitrary line-graph lattice (black lines) with three sites
having gain and loss γ1, γ2, and γ3, respectively. The gray dashed and red solid lines show the original lattice and primitive cell,
respectively. (b) The reciprocal line graph (black lines) of the line-graph lattice in (a), marking all the possible locations of TEPs
in k space.

3. TEPs in NH line-graph lattices

Next, we investigate whether the above TEPs and corresponding evolution exist in other related 2D crystal
lattices. For a general NH Hamiltonian

H =

⎛
⎝ 0 m1(k) m2(k)

m∗
1(k) 0 m3(k)

m∗
2(k) m∗

3(k) 0

⎞
⎠+ i

⎛
⎝γ1 0 0

0 γ2 0
0 0 γ3

⎞
⎠ , (6)

to have a TEP eigenvalue, the condition Re(m1m2
∗m3) = 0 should be satisfied (see the derivation and figure

S3 in supplemental material); meanwhile, the balanced gain and loss must satisfy γ1γ2 + γ1γ3 + γ2γ3 +

|m1|2 + |m2|2 + |m3|2 = 0, and γ1|m3|2 + γ2|m2|2 + γ3|m1|2 + γ1γ2γ3 = 0. Similar to the TEPs satisfying
cos k1 · cos k2 · cos k3 = 0 in the kagome lattice, for the three eigenvalues to stay along the reciprocal lattice
lines in k space, the relation Re(m1m2

∗m3) ∝ cos k1 · cos k2 · cos k3 is required, which has an obvious
solution of m1 ∝ cos k1, m2 ∝ cos k2, and m3 ∝ cos k3. This indicates that the lattice is generally a line graph
of any hexagonal parallelogons (hexagons with parallel sides), which represents actually an edge-center
lattice, in which m1 = 2t1 cos k1, m2 = 2t2 cos k2 and m3 = 2t3 cos k3, with hopping integrals t1 (t2, t3)
between site 1 and 2 (1 and 3, 2 and 3), as shown in figure 3(a). Thus, all the line-graph lattices with gain
and loss, at least of this class, support TEPs which are located on another reciprocal line graph in k space
(figure 3(b)). Varying gain and loss will effectively induce a transition from one ODTEP at a reciprocal
line-graph lattice site to two STEPs on the neighboring reciprocal lattice lines, and vice versa.

Next, to further examine the robustness of the above line-graph TEPs, we relax the condition of
constructing line graphs. A change is made to construct a modified line-graph 2D lattice with one off-center
site: instead of choosing edge centers of the original graph as vertices of the line graph, we choose some
off-edge-center points as the vertices, to form a 2D lattice with one site deviating from the center of ‘edge’,
as shown in figure 4(a). The vectors between NN sites are b1 = −a1, b2 �= −a2, and b3 �= −a3, and the
corresponding Hamiltonian is

H =

⎛
⎜⎝ 0 2t1 cos k1 t2 eik2 + t2

′ eik2
′

2t1 cos k1 0 t3 eik3 + t3
′ eik3

′

t2 e−ik2 + t2
′ e−ik2

′
t3 e−ik3 + t3

′ e−ik3
′

0

⎞
⎟⎠+ i

⎛
⎝γ1 0 0

γ2 0
0 0 γ3

⎞
⎠ , (7)

where kn = k · an, kn
′ = k · bn, and tn (tn

′) is hopping integral along an (bn). Based on Re(m1m2
∗m3) = 0,

the presence of TEPs requires Re
[

(2t1 cos k1)
(

t2 e−ik2 + t′2 e−ik′2
)(

t3 eik3 + t′3 eik′3
)]

= 0, which depends on

hopping integrals.
To show TEPs, a specific model is arbitrarily chosen with lattice vectors a = (1, 0)a,

b = 2
3 (cos 75◦, sin 75◦) a and the NN vector b2 = −2a2, and hopping integrals have an exponential decay

with distance tn = t1 exp
(

|a1|−|an|
|a1|

)
. STEPs are found to exist on the k-space lines satisfying cos k1 = 0, or

Re
[(

t2 e−ik2 + t′2 e−ik′2
)(

t3 eik3 + t′3 eik′3
)]

= 0. Compared with reciprocal line-graph TEP paths in NH

5
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Figure 4. TEPs in a 2D NH modified line-graph lattice with an off-center site. (a) An arbitrary off-center lattice with three sites
having gain and loss γ1, γ2, and γ3, respectively. Site 3 deviates from the edge center. The primitive cell is shown by the red
parallelogram. (b) The blue curves represent all possible locations of TEPs, forming the modified reciprocal line graph. (c) The
band structure of conventional self-orthogonal DTEP with divergent PF (d) at the vertex kD =

(
π, −π

tan 75 ◦
)

in (b). The color in
(c) denotes the imaginary part of eigenvalues.

line-graph lattices (figure 3(b)), the TEP path here is modified due to the off-center position for one of the
lattice sites (figure 4(b)), which breaks down the intersection condition of cos k2 = cos k3 = 0, preventing
two STEPs from merging into one ODTEP. Other crossing points along the TEP paths still exist to support

DTEPs, which are located at the sites satisfying kx =
(
2q + 1

)
π, and ky =

(3–4 cos 75◦)kx+3(2p+1)π
4 sin 75◦ with

integers p and q. As an example, a specific gain and loss is applied to create the DTEP at kD =
(
π, −π

tan 75 ◦
)
,

as shown in figures 4(c) and (d). The PF of three branches becomes divergent when approaching the kD

point. Most noticeably, different from that in NH line-graph lattices, all three states associated with two
merged STEPs are self-orthogonal, showing an ordinary coalesced state of eigenfunctions. The resulting
nodal point has also a topological charge ν ′ = ±2/3. Thus, it is actually a conventional self-ODTEP. One
finds that although a perfect reciprocal line-graph TEP path is absent in the 2D lattice with an off-center
site, there exists still a modified TEP line-graph path supporting STEPs and self-ODTEPs.

Finally, we discuss some physical phenomena and potential applications related to EPs, in particular the
high-order TEPs and their evolution in NH line-graph lattices of this work. The singularity and topology of
EPs in the parameter or momentum space give rise to rich physical phenomena, which have broad
implications, especially in various artificial systems including microwave and optical cavities, photonic and
acoustic lattices, etc. For example, the eigenvalue spectrum around doubly-degenerate EPs with
deviation/perturbation δk is E ∼ (δk)1/2, which is in stark contrast to the common spectrum E ∼ (δk)1 or
E ∼ (δk)2 around a degenerate point in Hermitian systems. Given that (δk)1/2 � (δk)1 � (δk)2 for small
|δk| � 1, the sensing response based on the perturbation away from an EP is greatly enhanced compared to
that of Hermitian systems. One manifestation is the enhanced Sagnac effect (i.e. phase difference) between
clockwise and counter-clockwise propagating light waves, which has been used to fabricate ultrasensitive
gyroscope for the measurement of rotations [5, 6, 36, 37], and ultrasensitive optical microcavity for
single-particle detection [38–40]. Furthermore, the sensitivity can be further boosted by higher-order EPs
[8, 9] beyond the doubly degeneracy, such as the TEPs we studied here. Another interesting aspect of EPs is
that it carries fractional charge, which is of general interest in entanglement of quantum states, relating to

6
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Table 1. TEPs in 2D line-graph lattices with three sites having gain and loss.

Topology STEP (±1/3) ODTEP (±2/3) Self-orthogonal DETP (±2/3)
lattice

Line-graph � � —
Modified line-graph � — �

fractional statistics. A doubly-degenerate EP is known to carry ±1/2 charge, which produces a half-twisted
vector-vortex beam with a half-charge polarization [1, 2, 41]. The EPs found here in the NH kagome
(i.e. line-graph) lattice can have different degrees of degeneracy, and hence can carry different fractional
charges including ±1/3 and ±2/3 charge etc., which are expected to result in different degrees of beam
twisting and fractional polarization.

In general, EPs have been shown to support many underlying physical phenomena, including the
unidirectional transmission or reflection [42–44], topological energy transfer between different modes
[45, 46], loss-induced transparency [47], lasers with reversed pump dependence or single-mode operation
[48–50]. Our findings of TEPs in the new line-graph lattices, having different fractional charges, and their
intriguing evolutions will certainly enrich their physical phenomena and potential applications, especially in
photonics, acoustics and elastic metamaterials.

4. Conclusion

In conclusion, 2D NH line-graph lattices with three sites having gain and loss are demonstrated to support
three types of TEPs (see table 1). Interestingly, all the TEPs are located on a reciprocal line graph. STEPs
with ±1/3 topological charge move along the reciprocal lattice lines with varying gain and loss, while an
intriguing form of ODTEPs with topological charge ±2/3 appear at the reciprocal line-graph vertices by
merging two STEPs. In contrast, the conventional self-ODTEP with three coalesced states appear in the 2D
NH off-center line-graph lattices. These findings not only enrich the topological states in NH systems which
may exhibit novel physical properties in realistic setups, but also point to new research directions to further
link graph theory with topological physics, especially under non-equilibrium conditions.
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