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It has long been noticed that special lattices contain single-electron flat bands (FB) without any dispersion. Since
the kinetic energy of electrons is quenched in the FB, this highly degenerate energy level becomes an ideal platform to
achieve strongly correlated electronic states, such as magnetism, superconductivity, and Wigner crystal. Recently, the FB
has attracted increasing interest because of the possibility to go beyond the conventional symmetry-breaking phases towards
topologically ordered phases, such as lattice versions of fractional quantum Hall states. This article reviews different aspects
of FBs in a nutshell. Starting from the standard band theory, we aim to bridge the frontier of FBs with the textbook solid-
state physics. Then, based on concrete examples, we show the common origin of FBs in terms of destructive interference,
and discuss various many-body phases associated with such a singular band structure. In the end, we demonstrate real FBs
in quantum frustrated materials and organometallic frameworks.
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1. Introduction

A central component to understand the motion of elec-
trons in a crystalline solid is the electronic band structure,
which defines the relationship between an electron’s energy
and its momentum. The electronic band theory has laid down
the theoretical foundation for electronic devices, leading to the
birth of modern information technology.

Normally, electrons in a crystal (the so-called Bloch elec-
trons) move just like free electrons, except for a different effec-
tive mass as defined by the band dispersion. In certain lattices,
the band dispersion can drastically differ from that of a free
electron. One extreme instance is the linearly dispersive bands
in a two-dimensional (2D) hexagonal lattice, which make the
Bloch electrons massless.[1,2] There can also be lattices lifting
the electrons to the other end of the mass spectrum, i.e., an ar-
bitrarily large effective mass. In 1991, Mielke[3–5] found that
a special class of lattices, mathematically known as the line
graphs, contain electronic bands which are completely flat.
The existence of flat bands (FB) was later extended to other
families of conceptual lattices.[6] Since the kinetic energy of
an electron is quenched in the FB, the Coulomb interaction be-
comes critical, giving rise to various exotic many-body states,
such as ferromagnetism,[3–7] superconductivity,[8] and Wigner
crystal.[9,10]

The Bloch electrons may additionally have an anomalous
velocity transverse to their normal motion as observed by Hall
more than a century ago, known as the (anomalous) Hall ef-
fect. Such an anomalous motion has subtle connections with
the Berry phase of the Bloch wavefunction in the momentum
space.[11] After realizing that the global configuration of the
Bloch wavefunction can be viewed as a topological structure,
the concept of topology is introduced to classify bands us-
ing the topological numbers, e.g., Chern number[12–14] and Z2

number,[15–17] which expands the band theory to new territo-
ries.

In 2011, three research groups independently proposed
the idea of introducing a nontrivial topology to the FB to
achieve strongly-correlated topological states.[18–20] This pro-
posal was motivated by an important question frequently asked
by condensed matter physicists: can the quantum Hall (QH)
effects on Landau levels (LL) be generalized to Bloch bands
in the absence of an external magnetic field. The proposed
topological FB is just like a counterpart of the LL, charac-
terized by a Chern number equal to 1.[12] It has been further
shown by numerical simulations that such FBs support QH-
like states, exhibiting not only the integer QH effects, but also
the fractional QH (FQH) effects.[20–22] More importantly, con-
sidering the energy scales in lattices, the FQH effects — such
as fractionalization and entanglement — can be realized in a
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much higher temperature in the FB than in the LL,[18] charting
a revolutionary route towards quantum computation.[23]

A few nice reviews have already been written on differ-
ent aspects of the FB, such as ferromagnetism[24] and FQH
effects.[25,26] We intend not to repeat those previous efforts.
Instead, we try to introduce this field in a nutshell from a dif-
ferent angle — starting from the standard band theory, and
then expanding discussions based on concrete examples, in-
cluding discussions on material realizations of FBs. We target
at those readers coming from different disciplines, e.g., semi-
conductor physics, materials science, or even chemistry, rather
than being experts on many-body physics or FQH physics.
We expect that this review article will provide an easy-to-
understand flavor for the basic ideas of FBs, and possibly mo-
tivate wider interests in this topic. The article is organized as
follows. Section 2 contains a survey of FB lattices. Section 3
explains the common origin of FBs in terms of the localized
eigenstates. Section 4 compares the FB with the LL. Section
5 describes various many-body phases that may emerge in the
FB systems (with interactions among electrons taken into ac-
count). Section 6 constructs the phase diagram of a practi-
cal FB system. Section 7 discusses possible material realiza-
tions of FBs. Section 8 concludes this article. We limit our
discussion to the most well-studied 2D FBs, and purposely
avoid invoking abstract mathematical derivations in this arti-
cle. With the intuitive pictures provided here, we encourage
the readers to work on more specialized literature for the rig-
orous proof.[24–26] Also, we primarily focus on realizing elec-
tronic FBs in solid-state materials using the charge degree of
freedom. The readers interested in bosonic FBs in ultracold
atom systems or magnon FBs in frustrated antiferromagnets
are referred to Refs. [27]–[30].

2. How to make a band flat?
We start from electron hopping on a general lattice

Hhop = ∑
i, j,a,b

tia, jbc†
i,ac j,b, (1)

where i and j index unit cells, a and b label different orbitals
within one unit cell, and {tia, jb} are the hopping matrix ele-
ments.

With the aid of the Bloch theorem, Hhop can be trans-
formed to the momentum space as

h𝑘 = ∑
𝑘,a,b

c†
𝑘,ahab(𝑘)c𝑘,b. (2)

Solving the eigenvalue problem of h(𝑘) gives the Bloch bands
{εn𝑘} and the Bloch states {ψn𝑘}.

As expressed by the name flat band, we aim at finding
a very singular band structure in which one or more Bloch

bands are completely dispersionless, i.e., εn𝑘 = const. A triv-
ial solution is to set tia, jb = 0, which corresponds to the iso-
lated atomic limit. Those narrow bands commonly existing
in heavy fermion compounds arise from this picture, which
is not the focus of the present article. Besides this trivial
solution, nontrivial solutions do exist, which retain the hop-
ping dynamics throughout the lattice, whereas making the
net hopping vanish. This condition is nothing but the de-
structive interference. Theoretically, one can simply obtain
one nontrivial solution by performing an adiabatic transforma-
tion h̃(𝑘) = h(𝑘)/εn𝑘.[25,26] Fourier transforming h̃(𝑘) back to
the real space then defines the new hopping matrix elements,
which creates a complete destructive interference and makes
the n-th band dispersionless. This method in principle flattens
any individual Bloch band, but usually results in long-range
hopping elements, which are unrealistic in real materials.

Is it possible to create destructive interference more natu-
rally? We review a list of approaches below.

2.1. Line graph

As pointed out by Mielke,[3–5] destructive interference is
a common feature of a special class of lattices, mathematically
known as line graphs (We will see the interference pattern ex-
plicitly in Section 3). The line graph is a specific geometry
transformation of an original lattice, which can be roughly
viewed as a bond-site exchange. Rigorously, given the original
lattice, the line graph is obtained by drawing a site for each of
the bonds in the original lattice, and then if two bonds in the
original lattice share a common site, these two corresponding
sites in the line graph are connected with a bond.

As a typical example, consider a 2D honeycomb lat-
tice. For this case, the construction of a line graph as de-
scribed above results in the geometry of corner-sharing trian-
gles (Fig. 1(a)). This lattice is commonly called the kagome
lattice, getting the name from Japanese for a basket weave pat-
tern. The Bravais lattice is hexagonal. Within one unit cell,
there are three inequivalent sites A, B, C (Fig. 1(a)). We con-
sider a single orbital on each site, i.e. a,b = A,B,C with re-
spect to Eq. (1), and set a common hopping amplitude t for all
the nearest neighbor (NN) bonds. The Bloch Hamiltonian is
then

h(𝑘) =

 0 2t cosk1 2t cosk2
2t cosk1 0 2t cosk3
2t cosk2 2t cosk3 0

 , (3)

where kn = 𝑘 · 𝑎n with the definition of 𝑎n given in
Fig. 1(a). The eigenvalues of this 3× 3 matrix form one
flat band ε1 = −2t and two dispersive bands ε2,3 = t[1±√

(4(cos2 k1 + cos2 k2 + cos2 k3)−3] (see Fig. 1(b)). The
Bloch state of the flat band is

ψ
†
FB,𝑘 = sink3c†

𝑘,A− sink2c†
𝑘,B + sink1c†

𝑘,C. (4)
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Other important examples of line graphs include the
checkerboard lattice,[19] which is transformed from the simple
square lattice. Its equivalent representation in 3D is the py-
rochlore lattice, consisting of corner-sharing tetrahedra. Many
decorated lattices can be viewed as partial line graphs by ap-
plying the transformation to one set of the sublattices.[31]

M Γ Κ Μ

a2 a3

a1

E
n
e
r
g
y

Fig. 1. (a) The kagaome lattice (black solid lines) as the line graph of
a honeycomb lattice (red dashed lines). (b) Band structure from Eq. (3)
with t = 1. (c) A localized eigenstate of the FB and the destructive
interference.

2.2. Cell construction

Another systematic way to construct FBs was proposed
by Tasaki, called the cell construction.[24] The construction
process starts from an elemental cell consisting of a single in-
ternal site and two or more external sites. These cells are then
assembled to form a lattice by sharing the external sites. For
example, let us consider the smallest cell, a triangle. A typical
2D assembly is shown in Fig. 2(a). It forms a side-centered
square (SCS) lattice just like the CuO2 plane in cuprate super-
conductors. Within one unit cell, there are two inequivalent
internal sites and one external site. We consider a single or-
bital on each site, i.e. a,b = i1, i2,e with respect to Eq. (1),
and assign two different hopping amplitudes t1 and t2 for the
hopping processes as shown in Fig. 2(a). The on-site energy
between the external and the internal sites can have a differ-
ence denoted by V . The corresponding Bloch Hamiltonian is
then

h(𝑘) =

 0 0 2t1 cosk1
0 0 2t1 cosk2

2t1 cosk1 2t1 cosk2 2Λ𝑘

 , (5)

where kn = 𝑘 ·𝑎n with the definition of 𝑎n given in Fig. 2(a),
and Λ𝑘 = t2(cos2k1 + cos2k2)+V/2. The eigenvalues of this
3×3 matrix consist of one FB ε1 = 0 and two dispersive bands

ε2,3 = Λ𝑘±
√

Λ 2
𝑘+2t2

1 (2+ cos2k1 + cos2k2) (see Fig. 2(b)).
The Bloch state of the FB takes the form

ψ
†
FB,𝑘 = cosk2c†

𝑘,i1
− cosk1c†

𝑘,i2
. (6)
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Fig. 2. (a) The side-centered square lattice (bottom) constructed by as-
sembling triangular cells (top). The shaded region in the square lattice
is a localized eigenstate of the FB. The arrows indicate the destructive
interference. (b) Band structure from Eq. (5) with t1 = 1, t2 = 0.5, and
V = 0.5.

2.3. Orbital selection

In addition to designing the lattice geometry, FBs can also
be obtained by exploiting the orbital freedom. Wu et al.[9,10]

proposed a px,y-orbital counterpart of graphene (Fig. 3(a)) by
considering that each of the two sites in a honeycomb lattice
contains two orbitals px and py, i.e., a,b = pAx,pAy,pBx,pBy

with respect to Eq. (1). We will denote this lattice by XYH
in the remainder of this article. By convention, the hopping
processes between the px,y-orbitals can be classified into the
σ type (head to tail) and the π type (shoulder by shoulder).
We assume that the π-type hopping is negligible. The Bloch
Hamiltonian is written as

h(𝑘)

= tσ


0 0 3

4 (e ik1 + e ik2)
√

3
4 (e ik1 − e ik2)

0 0
√

3
4 (e ik1 − e ik2) 1

4 (e ik1 + e ik2)+ e ik3)

h.c. 0 0
0 0

 , (7)

where kn = 𝑘 · 𝑎n and the definition of 𝑎n is given in
Fig. 3(c). The eigenvalues of this 4× 4 matrix consist of
two FBs ε1,4 = ±3tσ/2 and two dispersive bands ε2,3 =

±tσ
√

3+2(cosk1 + cosk2 + cosk3)/2 (see Fig. (b)). The
Bloch states of the two FBs take the forms

ψ
†
FB,𝑘 =

1√
3
[ f ∗23(𝑘)− f ∗31(𝑘)]c

†
𝑘,pAx

− f ∗12(𝑘)c
†
𝑘,pAy

± 1√
3
[ f23(𝑘)− f31(𝑘)]c

†
𝑘,pBx
∓ f12(𝑘)c

†
𝑘,pBy

, (8)

where fnm = e ikn − e ikm .
Note that this model should not be confused with the σ

bands in graphene, where the s orbital together with the pxy

orbitals form a six-dimensional basis. Here, the s orbital is not
involved. Sun et al.[19] have made a similar proposal based on
a px,y + dx2−y2 square lattice. In general, by enforcing special
conditions for the hopping elements, a destructive interference
can be created. The concern is whether these special condi-
tions can be met in real materials.
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Fig. 3. (a) The px,y-orbital honeycomb lattice. (b) The band structure
from Eq. (7) with tσ = 1. (c) The localized eigenstate of the FB. The
electron cannot leak outside if π-type hopping is set to zero.

3. Localized eigenstates of flat bands
We have mentioned that the origin of FBs is the destruc-

tive interference. We can see this feature more clearly by con-
structing the localized eigenstates of FBs.

Firstly, note that because of the energy degeneracy, any
linear combination of the FB Bloch states is still an eigenstate.
Particularly, the Fourier transformation of the FB Bloch states
should be eigenstates. For example, let us calculate the Fourier
transformation of Eq. (4)

ψ
†
FB,𝑅 = N

∫
BZ

d𝑘e−i𝑘·𝑅
ψ

†
FB,𝑘 =

1√
6

6

∑
a=1

(−1)ac†
a, (9)

where N is a normalization constant and a runs over the six
vertices of a hexagon centered at the chosen 𝑅. As shown in
Fig. 1(c), ψFB,𝑅 takes the form of a localized hexagonal pla-
quette. The wavefunction amplitude alternates its sign around
the six vertices. Consequently, the net hopping out of the pla-
quette vanishes, because the hoppings originating from the two
adjacent vertices cancel each other. This kind of destructive
interference effectively traps the electron within the plaquette.
The electron thus appears to have a quenched kinetic energy
as dictated by the FB.

One can view ψFB,𝑅 as a Wannier-like function, but be
aware that ψFB,𝑘 given by Eq. (4) is not normalized, so the set
of {ψFB,𝑅} is neither orthogonal nor linear-independent. One
can immediately verify the following relation:

∑
𝑅

ψFB,𝑅 = 0. (10)

Considering each unit cell contains one hexagonal plaquette,
we have only (Nc − 1) independent states, where Nc is the
number of unit cells. As pointed out by Bergman et al.,[32]

two more extended eigenstates exist for the FB, which in to-
tal give Nc +1 eigenstates at the same energy. The extra state
manifests in a touching point with the dispersive band.

The self-trapped localized eigentstates are a common fea-
ture of all the FB models. The localized eigenstates of the

SCS lattice take the form of squares, as shown in Fig. 2(a).
For the XYH lattice, {ψFB,𝑅} form hexagonal plaquettes with
the p orbital aligning along the tangential direction (Fig. 3(c)).
Since we neglect the π-type hopping, this configuration pre-
vents the electron from hopping outside.

The destructive interference can be destroyed by addi-
tional hopping terms, such as the next-NN hopping for the
kagome and the SCS lattices, and the π-type hopping for the
XYH lattice, which will then result in a dispersion of the FB.
These factors should be properly taken into account for mate-
rial realizatoin.

4. Comparisons between flat band and Landau
level
Another type of “FB” that has been extensively stud-

ied since 1980s is the LL (see, for example, section 9.6 in
Ref. [33]). The LLs arise from quantized cyclotron motions of
free 2D electrons subjected to a strong perpendicular magnetic
field. They form a set of equally spaced spectrum

En = (n+
1
2
)h̄ωc, n = 0,1,2, . . . , (11)

where ωc = eB/mc is the cyclotron frequency. It is fair to
call the LL a FB, because it has a constant energy independent
of the momentum. However, the origin of flatness is differ-
ent. For a lattice FB as discussed in the previous section, the
flatness is achieved by trapping the electrons within localized
plaquettes via destructive interference. For an LL, the flatness
is achieved by the magnetic field, which traps the electrons
by driving them to do cyclotron motions. Vidal et al. intro-
duced the notation of the Aharonov–Bohm cage to describe
this effect.[34]

Nevertheless, there are interesting connections between
the localized eigenstates of FBs and the quantized cyclotron
orbitals of LLs. By choosing the symmetric gauge, the eigen-
function of the lowest Landau level has an exponentially lo-
calized form (see, for example, chapter 7 in Ref. [35])

ψLL = exp(−|𝑟|2/4l2
B), (12)

where lB = (h̄/mωc)
1/2 is the magnetic length. When trans-

lated to different centers in the plane, it picks up an additional
phase from the magnetic vector potential

ψLL,𝑅 = exp[−|𝑟−𝑅|2/4l2
B + i(𝑧̂ ·𝑅×𝑟)]. (13)

One can view the set of {ψLL,𝑅} as a counterpart of {ψFB,𝑅}.
A subtle point is that just like Eq. (10), {ψLL,𝑅} does not form
a complete or linearly independent basis either. One can ver-
ify that on the sites of a magnetic lattice with one flux quantum
per unit cell, i.e., 𝑅 =

√
2πlB(n1,n2), {ψLL,𝑅} obeys the fol-

lowing relation:[36]

∑
𝑅

(−1)n1+n2+n1n2ψLL,𝑅 = 0. (14)
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It is known that the obstruction of constructing a com-
plete set of localized functions for the LL has a deep topologi-
cal origin.[36] If a complete set of localized functions could be
constructed, the corresponding Bloch functions

ψ𝑘 = ∑
𝑅

ψ𝑅 exp(i𝑘 ·𝑅) (15)

would be analytic and single-valued in the whole Brillouin
zone (BZ). In contrast, if we find that such a set cannot be
constructed, it indicates that the Bloch functions have singu-
larities. Usually, such singularity implies a nontrivial topology
formed by the Bloch functions, such as vortices. Mathemati-
cally, the topology of LLs is characterized by a Chern number
c = 1.[12] The definition is given by

c =
1

2π i

∫
BZ

d𝑘F12(𝑘), (16)

where the Berry curvature F12(𝑘) is given by

F12 = ∂1A2(𝑘)−∂2A1(𝑘),

Ai = 〈ψ𝑘|∂i|ψ𝑘〉, (17)

with ∂i standing for ∂/∂ki . The Chern number describes the
Berry phase accumulation, or winding of the Bloch functions
in the whole BZ, which physically manifests in the quantized
Hall conductance.

With this picture in mind, let us turn back to the FBs to
see a deeper connection between the LL and the FB in terms
of topology. First note that ψFB,𝑘 indeed contains a singular
point. It vanishes at (0,0) for the kagome lattice (Eq. (4)) and
the XYH lattice (Eq. (8)), and at (π/2,π/2) for the SCS lattice
(Eq. (6)). The 3-component Bloch functions (Eqs. (4) and (6))
can be directly visualized as vectors. It is convenient to ex-
pand them around the singular point to the first order and then
see them winding by 2π around the singular point. This can be
related to a 2π Berry phase, implying a Chern number c = 1 in
the gapless limit. Rigorously, the degeneracy between the FB
and the dispersive band hinders a well-defined Chern number,
but it is possible to open a gap at the singular point by intro-
ducing additional terms in the Hamiltonian. We will use the
XYH lattice as an example to show that by including the spin–
orbit coupling (SOC), the FB is attached with a well-defined
Chern number identical to the LL.[37–39]

The atomic form of the SOC is HSOC = λ L̂ · Ŝ, where L̂ is
the orbital angular momentum operator and Ŝ is the spin-1/2
operator. For the p orbitals, HSOC becomes

HSOC = λ (ic†
px↓

cpy↓ − ic†
pz↑

cpy↑ + c†
pz↑

cpx↓ − c†
pz↓

cpx↑

+ ic†
pz↑

cpy↓ − ic†
pz↓cpy↑ +h.c.). (18)

To further reduce HSOC into the pxy subspace, we keep the
leading terms only

HSOC = λ (ic†
px↓

cpy↓ − ic†
px↑

cpy↑)+h.c., (19)

which does not include coupling between different spin com-
ponents, so that the spin-up and spin-down spaces are inde-
pendent. For each spin subspace, HSOC in the the XYH lattice
can be written as a 4×4 matrix

H0
SOC,σ=± =±λ


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 . (20)

This SOC represents an imaginary on-site coupling at A
(B) sublattices independent of the momentum. After adding
Eq. (20) to Eq. (7), we can solve the eigenvalue problem again
and calculate the Berry curvature according to Eq. (17). The
result is shown in Fig. 4. As expected, an energy gap is cre-
ated by the SOC at the degenerate point, which also induces a
dispersion of the FB around the splitting point (Fig. 4(a)). The
Berry curvature exhibits an interesting ring pattern (Fig. 4(b)).
The integration of the Berry curvature within the BZ gives
c = 1.

E
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g
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↽/
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Fig. 4. (a) Band structures of the XYH lattice with SOC (blue solid
curves) and that without SOC (red dashed curves). The λ in Eq. (20)
is set to 0.05. (b) Berry curvature F12(𝑘) of the FB in the momentum
space.[37]

To sum up, the FB and the LL bear many similari-
ties. They are dispersionless, macroscopically degenerate, and
topologically nontrivial. It is natural to speculate that the FB
may spawn the same physics as the LL. The most interest-
ing possibility is to realize the FQH state in the FB without
the need of a strong magnetic field. Qi has recently shown
a systematic approach to construct the FQH state in the FB
under a pseudo-Coulomb interaction, which rationalizes the
speculation.[40] However, the readers should still be aware of
some critical differences. Firstly, the LLs are fully gapped
from each other, whereas the FB in the original form is de-
generate with a dispersive band at some momentum points. A
full gap is important to define a protected topology, as well
as to prevent the bands from mixing with each other when
the Coulomb interaction is included. Secondly, although the
degenerate point of the FB can be removed by certain mecha-
nisms, such as the SOC, the band flatness is inevitably affected
by creating the gap (Fig. 4(a)), which partially destroys the ki-
netic quench of electrons, unfavorable for the FQH state. Fi-
nally, the Berry curvature F12(𝑘) of the FB is centered around
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the singular point, whereas that of the LL is uniform and
featureless. The same Chern number, i.e., the integration of
F12(𝑘), only ensures that the FB and the LL can be adiabat-
ically connected at the single-electron level. However, it is
not guaranteed that the FQH state on the LL can be adiabati-
cally continued onto the FB when the real Coulomb interaction
is included. Therefore, to mimic the LL, the FB is expected
to be (i) nearly flat, (ii) well separated from the other bands,
and (iii) uniform in terms of the Berry curvature.[25] However,
these ideal conditions are usually difficult to satisfy simultane-
ously. It then relies on quantitative calculations to determine
the existence of the FQH state in the FB. As shown later in
Section 6, the FQH state appears only within a specific region
of the parameter space. This poses rather stringent criteria for
material realization.

5. Many-body phases
Let us now consider what will happen to the FB when

interactions are added. Since the FB contains macroscopic de-
generacy, the Coulomb interaction, even small, becomes crit-
ical. In this section, we show that various many-body phases
emerge from the FB depending on the interaction type.

5.1. Ferromagnetism

We first follow Tasaki’s approach[24] to show that ferro-
magnetism naturally arises on the FB as a consequence of the
onsite Coulomb interaction

Hint =U ∑
i,a

n̂i,a,↑n̂i,a,↓. (21)

According to the Mermin–Wagner theorem,[41] for a 2D
system there is no true long-range order at finite tempera-
ture. Hence our discussion should be constrained on finite-
size 2D lattices. The two extended eigenstates of the FB
are thus absent and all the localized states ψFB,𝑅 form a
linear-independent and complete basis to construct many-body
ground states within the FB subspace. In general, we can write
the many-body state as

ΨGS = ∑
{𝑅}{𝑅′}

f{𝑅}{𝑅′}∏
𝑅

ψ
†
FB,𝑅↓∏

𝑅′
ψ

†
FB,𝑅′↑|0〉, (22)

where {𝑅} and {𝑅′} denote the sets assigned with the down
and the up spins, respectively. The sum runs over all configu-
rations subject to an electron number Ne, and f{𝑅}{𝑅′} is the
linear combination coefficient.

Since each electron occupies one localized plaquette, an
energy cost occurs when two plaquettes carrying the oppo-
site spins touch. This means that as long as possible, we de-
mand f{𝑅}{𝑅′} = 0 if 〈ψ𝑅|ψ𝑅′〉 6= 0. For all the aforemen-
tioned FB models, we have one plaquette within each unit cell.
Hence, this no double occupancy condition can be satisfied

when Ne ≤ Nc. To ensure that any two touching plaquettes
carry the same spin, after selecting Ne plaquettes out of the
total Nc unit cells, we group touching plaquettes as clusters
Cα and assign the same spin for plaquettes within one cluster.
Accordingly, the groundstate wavefunction can be written as

ΨGS = ∑
{Cα ,σα}

f ({Cα ,σα})∏
α

∏
𝑅∈Cα

ψ
†
FB,𝑅,σα

|0〉. (23)

When Ne < Nc, ΨGS is highly degenerate. The special
case is Ne = Nc, when all the plaquettes connect into one clus-
ter. Equation (23) is then reduced to

ΨGS = ∑
σ=↑,↓

fσ ∏
𝑅

ψ
†
𝑅,σ |0〉, (24)

which represents a fully-polarized ferromagnetic state apart
from the trivial (2Smax +1)-fold degeneracy.

The FB ferromagnetism essentially arises from a perco-
lation picture. When the electron filling is beyond a critical
threshold, a unique infinite cluster forms, driving the system
from paramagnetic to ferromagnetic. Recently, Maksymenko
et al. have carefully studied this so-called Pauli-correlated per-
colation problem, revealing the details of the paramagnetic-
ferromagnetic transition.[42] In some sense, the FB ferromag-
netism is complementary to Nagaoka’s ferromagnetism.[43]

These two types of ferromagnetism push Stoner’s criterion
D(EF)U > 1 to two extreme limits: Nagaoka’s ferromag-
netism takes place with an infinitely large U , while the FB
provides an infinitely large density of states D(EF) at the Fermi
level.

5.2. Superconductivity

Since the FB gives rise to a divergence of density of states,
it is intuitive that the pairing instability will become anoma-
lous compared with the normal metal with a quadratic band
dispersion. Miyahara et al.[8] considered an attractive inter-
action in the FB. A two-band BCS mean-field study was then
performed, which showed that the BCS gap ∆(0) and the crit-
ical temperature Tc were linear to the pairing potential Vp.

A simple demonstration can be made within the single
band picture. Let us consider a BCS-type attractive potential
between the FB states

Hint =−Vp ∑
𝑘,𝑘′

ψ
†
FB,𝑘,↑ψ

†
FB,−𝑘,↓ψFB,−𝑘′,↓ψFB,𝑘′,↑, (25)

the standard mean-field gap equation is (see, for example, sec-
tion 2.2 in Ref. [44])

1
Vp

=
∫

dξ
D(ξ )√

ξ 2 +∆(T )2
tanh

√
ξ 2 +∆(T )2

2kBT
, (26)

where ξ𝑘 = ε𝑘− µ . For the FB, D(ξ ) = δ(0). Therefore, at
zero temperature, we have

∆(0) =Vp. (27)
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At Tc, we have

1
Vp

=
1

2kBTc
. (28)

In summary,

∆(0) = 2kBTc =Vp. (29)

For comparison, a normal dispersive band leads to

∆(0)∼ Tc ∼ e
− 1

D(EF)Vp . (30)

Consequently, a much higher Tc is expected in the FB.

5.3. Wigner crystal

Recall Eq. (22). For low electron filling without per-
colation, the ground-state configuration will be fixed by the
Coulomb interaction between distant sites. One can imagine
that the occupied plaquettes should form special patterns in or-
der to lower the interaction energy as much as possible. This is
nothing but the Wigner crystal phase, which comes out when
the potential energy dominates the kinetic energy. The FB is
a natural platform to realize the Wigner crystal, because the
kinetic energy is fully quenched. Wu and Das Sarma have sys-
tematically studied the XYH lattice for various Wigner crys-
talline orders at different filling numbers.[9] For a simple ex-
ample, consider an NN Coulomb interaction in the kagome
lattice

Hint =U ′ ∑
〈ia, jb〉

n̂ian̂ jb, (31)

where the summation runs over NN sites. The ground-state
configuration of plaquettes without costing the NN Coulomb
potential is depicted in Fig. 5 corresponding to the filling
Ne/Nc = 1/3.

Fig. 5. The Wigner crystal phase in kagome lattice corresponding to the
filling Ne/Nc = 1/3.

5.4. FQH state

The FQH state on the LL is an important theme of modern
condensed matter physics, which exhibits unusual features,
such as fractionalization and entanglement, without any classi-
cal analogue.[45] In Section 4, we have compared the FB with
the LL in detail. If a similar state in the FB exists, the fea-
tures of the FQH state should be reproduced. Regnault and
Bernevig[22] have suggested a comprehensive set of evidences
accessible by numerical calculations to justify the FQH state
in the FB. We summarize these evidences as follows.

Fractional Hall conductance For a 1/n-filled FB, the
FQH state, if it exists, features a Hall conductance equal
to 1/n conductance quantum. The many-body Hall con-
ductance can be obtained by observing the evolution of the
lowest-lying n-fold degenerate many-body energy levels un-
der twisted boundary conditions.[46] The levels evolve within
the n-fold multiplet as the twisted phase increases, with a pe-
riodicity in 2nπ to give the 1/n quantized Hall conductance.
The Hall conductance can also be calculated from the many-
body Chern number.

Fractionalized excitations The quasiparticle excitations
of an FQH state are very unique in the sense that they carry
a fractional charge and exhibit the fractional statistics. The
fractionally charged quasiparticles usually obey the gener-
alized Pauli exclusion principle,[47,48] which places strong
constraints on the precise number of low-lying excitation
states.[49] Numerically, the excitations can be introduced by
changing the number of electrons in the system. The existence
of an FQH state in the FB can be justified by counting whether
the total number of low-energy states in this excited system
agrees with the exclusion principle.

Entanglement A fundamental difference between the
FQH state and the other many-body states mentioned in this
section is the electron correlation. The many-body wavefunc-
tion ΨGS of the states discussed in Sections 5.1, 5.2, and 5.3
can all be written as a direct product of single-electron states
(see Eq. (24) for example), whereas ΨGS of an FQH state is
highly entangled.[50] Numerically, the entanglement is shown
by firstly constructing the density matrix ρ̂ = |ΨGS〉〈ΨGS|.
Then, the electrons are divided into two partitions A and B,
and the degrees of freedom of partition B are traced out, leav-
ing a reduced density matrix ρ̂A = TrB ρ̂ . The reduced density
matrix captures various properties of the ground-state entan-
glement, such as the entanglement spectrum[51] and the entan-
glement entropy.[52]

6. Phase diagram: a case study
The variety of possible phases implies a rich phase dia-

gram in the FB. Intuitively, ferromagnetism can be achieved
most conveniently because it relies on the strongest on-site
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Coulomb repulsion. The BCS-type superconductivity requires
an effective attractive interaction, which can be sought in ma-
terials with considerable electron–phonon coupling. There is
competition between the Wigner crystal and the FQH state in
the FB, just like in the LL. When the FB is not exactly dis-
persionless, e.g., the case of Fig. 4, the electrons may take
advantage of the band dispersion by condensing into a triv-
ial Fermi liquid. The many-body states survive only when the
Coulomb interaction dominates the band dispersion. However,
if the Coulomb interaction is larger than the band gap, addi-
tional dispersive bands will be mixed, which also destroys the
FB physics.

To see this competition quantitatively, let us calculate an
example.[53] We will consider the XYH lattice. The single-
electron part of the Hamiltonian is given by Eq. (7) + Eq. (20).
For simplicity, we assume that ferromagnetism presents as the
result of the on-site Coulomb interaction. Thus the spin-up and
spin-down components are separated, and we focus on one of
the spin components. This assumption effectively reduces the
problem into a spinless one. The remaining Coulomb interac-
tion up to NN then consists of

Hint = U0 ∑
i

n̂i,px n̂i,py +U1 ∑
〈i, j〉,α

n̂i,px n̂ j,px

+U ′1 ∑
〈i, j〉

n̂i,px n̂ j,py . (32)

Note that for convenience of writing the interaction terms, the
index here is slightly different from Eq. (1). Namely, i and j
label the sites instead of the unit cells.

We consider a finite-size lattice with the bottom FB 1/3
filled, e.g., Nc = 4× 6 = 24 and Ne = 8. Note that the XYH
model has the particle–hole symmetry, so this filling can also
be considered as the top FB being 1/3 empty. Since the Hilbert
space is finite, we can numerically diagonalize the many-body
Hamiltonian to obtain the eigenvalues and eigenstates, which
is known as the exact diagonalization (ED) technique.

U1

U
1′

Fig. 6. Phase diagram including FQH state, Wigner crystal state,
and Fermi liquid in the U1–U ′1 plane at 1/3 filling with system size
Nc = 4× 6. The dashed, dotted, and dashed-dotted lines represent the
phase boundaries for U0 = 0.3,0.4,0.5, respectively.[53]

Obviously, the electronic property is a function of U0, U1,
and U ′1. Based on the ED results, a phase diagram is con-
structed (Fig. 6). Three phases, including FQH state, Wigner
crystal, and Fermi liquid, appear at different regions of the
parameter space. The FQH state reigns when U ′1 dominates.
For small U ′1, the ground state is at first a Fermi liquid, and
then it evolves into a Wigner crystal at sufficiently large U1.
In addition, if U0 increases, the phase boundaries shift toward
the larger value of U1. It is interesting to notice that differ-
ent interaction terms play very different roles in defining the
many-body ground state, which provides a useful guidance to
target a specific phase in real materials.

It is helpful to see how the ED results dictate the FQH
features as described in Section 5.4. Figure 7(a) shows the
low-energy spectrum obtained from the ED, which can be con-
sidered as a many-body counterpart of the single-electron band
structure. The periodic boundary condition is employed

Ψ{𝑟i +Nc1(2)𝑅1(2)}=Ψ{𝑟i}, (33)

where 𝑅1(2) is the primitive vector of the unit cell. With this
translational symmetry, two good integer quantum numbers
(k1,k2) can be defined to reduce the Hamiltonian into specific
momentum sectors 𝑞 = (2πk1/Nc1 ,2πk2/Nc2). The horizon-
tal axis of Fig. 7(a) denotes different momentum sectors. The
energy spectrum shows two necessary features of a 1/3-FQH
state. One is a three-fold degeneracy of the lowest energy lev-
els; the other is a clear gap between this three-fold multiplet
and the other levels. Both of these two features are absent for
a Fermi liquid. Furthermore, figure 7(b) shows the evolution
of the three-fold multiplet under twisted boundary conditions

Ψ{𝑟i +Nc1(2)𝑅1(2)}= e iθ1(2)Ψ{𝑟i}. (34)

The three states are found to evolve into each other with level
crossing and to keep being separated from the other levels
when θ2 increases. Eventually, they evolve back to the ini-
tial configuration when θ2 = 6π . This behavior indicates that
the quantized Hall conductance is σH = 1

3 e2/h. Note that al-
though a Wigner cyrstal may have a similar energy spectrum
as the FQH state, i.e., degeneracy and gap, the spectral flow is
different. The FQH state and the Wigner crystal can be further
differentiated by the charge density distribution.

By adding one hole into the system, the quasi-hole ex-
citation spectrum (Fig. 7(c)) reviews the fractional exclusion
statistics. An energy gap is clearly visible in Fig. 7(c). Accord-
ing to the generalized Pauli principle of 1/3-Laughlin state,
the total number of states below the gap is given by[22,47]

N = Nc
(Nc−2Ne−1)!
Ne!(Nc−3Ne)!

. (35)

For Nc = 25 and Ne = 8, equation (35) gives N = 25. It is
straightforward to check that there are indeed 25 states below
the gap in Fig. 7(c).
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In the end, following Regnault and Bernevig’s recipe,[22]

we partition the electrons and calculate the reduced density
matrix ρ̂A based on the ground-state wavefunction. If we de-
fine an entanglement Hamiltonian HA, we may write ρ̂A =

e−HA , and the set of eigenvalues of HA constitutes the entan-
glement spectrum of the ground state. A clear entanglement
gap is observed in the spectrum (Fig. 7(d)), which is a typical
signature of the FQH state. Also the counting of states below
the gap satisfies the fractional statistics. All these numerical
evidences confirm the existence of the FQH state in the FB.

Ne/

Ne/

k1⇁N1k2

k1⇁N1k2

θ2/2π

θ2/2π

E
n
↩

E


E
n
↩

E


E
n
↩

E


E
n

ξ i
 ↼

N
A
/


↽

Fig. 7. (a) Low-energy spectra for Nc = 4× 6, Ne = 8 and Nc =
5× 6, Ne = 10. (b) Evolution of the three-fold degenerate ground
state under twisted boundary conditions. (c) Low-energy spectrum for
Nc = 5×5, Ne = 8, i.e., one electron less than the 1/3 filling. (d) Par-
ticle entanglement spectrum for Nc = 4×6, Ne = 8.[53]

7. Material realization
The primary challenge to reproduce the FB in real ma-

terials is the degree of flatness, because the destructive in-
terference can be easily destroyed in real materials by addi-
tional hopping processes as well as hybridization with other
orbitals. In addition, even if a FB exists, it remains uncertain
whether the Fermi level happens to be around it. For complex
structures, there is no straightforward way to determine ei-
ther of these two factors. Therefore, in general, first-principles
calculations[54] are inevitable to identify possible candidates.
In this section, we mention two promising directions for first-
principles exploration. One is to search among the existing

quantum frustrated materials. These materials were previously
synthesized to access the quantum spin liquid state, but bear
many similarities to the FB models. The other direction is to
design organometallic frameworks thanks to the advances of
nanotechnology and organic chemistry.

7.1. Existing quantum frustrated materials

An increasing number of quantum frustrated materials
have been synthesized and measured, aiming at discovering
the long-pursued quantum spin liquid state.[55,56] From the as-
pect of material science, it is interesting to notice that many
of these materials have the exact lattice and/or orbital required
by the FB models. For example, in Section 2.1, we have dis-
cussed that the kagome lattice is a typical line graph to obtain
the FB. In the field of quantum spin liquid, it is also widely
used as the prototypical lattice to create spin frustration. In
experiment, families of kagome antiferromagnets are known,
such as jarosites, SCGO(x), volborthite, and herbertsmithite
(see Ref. [57] and the references therein). The question is then
whether we can look for FBs in these existing materials.

M G K M L A H L

E
↩
E
F
/
e
V

(a) (b)

(c)

Fig. 8. (a) Side view and (b) top view of the atomic structure of Cu(1,
3-bdc). The white numbers on Cu atoms label the three inequivalent
sites of a kagome plane. (c) First-principles band structure (within the
spinless local density approximation) of Cu(1, 3-bdc).

As an example, figure 8(a) shows the crystal structure and
the first-principles bands of Cu(1,3-bdc) recently synthesized
to achieve the quantum spin liquid state.[58] The key struc-
tural feature is that the Cu atoms form layered kagome lat-
tices (Fig. 8(b)). Its single-electron band around the Fermi
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level evidently reproduces Fig. 1(b) upside down, i.e., a nega-
tive t. The FB above the Fermi level is nearly completely flat.
The reason is that around the Fermi level, there is effectively
one dx2−y2 orbital per Cu site, which is well separated from
the other atomic orbitals due to the crystal field splitting. For
other quantum frustrated materials containing the kagome lat-
tice, the flatness could be much worse because of complicated
orbital degrees of freedom. The main concern, however, is that
Cu(1, 3-bdc), like many other quantum frustrated materials, is
in the Mott insulating regime, which corresponds to the half
filling and a sufficiently large U . Strictly speaking, the band
picture becomes invalid. It requires significant doping to tune
the material away from the Mott insulating phase, and to shift
the Fermi level close to the FB.

An alternative way is to achieve a magnon FB in these
materials, which acts as a bosonic version of the electronic
FB. Considering that the mapping from the Hubbard model to
the Heisenberg spin model retains the structure of the hopping
matrix {tia, jb}, the magnon FB is naturally expected. Specifi-
cally, it has been proposed that by fully polarizing the ground
state with an external magnetic field, the low-energy magnetic
excitation can be described by a boson field with the same
hopping processes as the electron, which in the end produces
a magnon FB.[59,60]

7.2. Organometallic frameworks

Advances on synthetic chemistry and nanotechnology
have shown the potential in producing complex lattices.[61,62]

Recent experiments using the substrate-mediated self-
assembly have successfully fabricated 2D organometallic
frameworks with different lattice symmetries. These covalent
organic frameworks are also found to exhibit remarkable ther-
mal stability. Based on first-principles calculations, we have
predicted topological band structures in many organometallic
frameworks containing heavy metal atoms.[37,63–65]

To design an organometallic framework containing FBs,
the basic strategy is to first identify proper molecular building
blocks, and then link these blocks into the correct lattice geom-
etry required by the FB model. The stability of the designed
structure should be carefully examined, e.g., by first-principles
lattice relaxation and phonon calculations.

In 2013, we proposed a first-principles design to repro-
duce Eq. (7) in a 2D indium-phenylene organometallic frame-
work (IPOF).[37] The building block is the triphenyl-indium
In(C6H5)3, a common indium compound.[66] The In atoms are
linked by the phenylenes into a hexagonal lattice (Fig. 9(a)).
The resulting electronic band structure and wavefunction are
summarized in Fig. 9(b). The top FB lies right below the Fermi
level. After including SOC in the calculation, the FBs become
separated from the dispersive bands as predicted by the model
study (Fig. 10(a)).

E
↩
E
F
/
e
V

(a)

(b)

M Γ Κ Μ

Fig. 9. (a) The atomic structure of IPOF. (b) Band structure without
SOC from first-principles calculation (blue solid curves) and model
Hamiltonian Eq. (7) (red dashed curves). Insets are the wavefunction
isosurfaces of two states denoted by arrows.[37]

The FB ferromagnetism is shown within the first-
principles formalism by manually reducing the number of
valence electrons in the unit cell while maintaining the
charge neutrality with compensating homogeneous back-
ground charge. This makes the top FB partially filled. Calcu-
lations reveal a spontaneous spin polarization. Figures 10(b)
and 10(c) show the band structure of this ferromagnetic ground
state under doping. The spin-up and the spin-down bands
are separated, with the Fermi level shifting below the topmost
spin-polarized FB.

The topology of the topmost spin-polarized FB is exam-
ined by directly calculating its Chern number based on its
DFT wavefunctions and edge property. The distribution of the
Berry curvature is shown in Fig. 10(d), in good agreement with
Fig. 4(b). The integration of the Berry curvature in the whole
Brillouin zone gives c = 1. Both the band structure and the
Berry curvature can be nicely fitted to the XYH model. The
first-principles results quantify several key energy scales asso-
ciated with the FB. The results for IPOF are summarized in Ta-
ble 1. It is worth mentioning that first-principles calculations
have also revealed the existence of FBs as described by Eq. (3)
in an experimentally made organometallic framework.[64,67]
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Fig. 10. (a) Band structure with SOC. (b) Band structure with SOC when doping one hole into the unit cell. The solid (blue) curves
are the DFT results. The dashed (red) curves are from model Hamiltonian Eq. (7)+Eq. (20). (c) Zoomed-in band plot around the Fermi
level. (d) Berry curvature F12(𝑘) of the FB in IPOF from first-principles calculation.[37]

Table 1. Energy scales associated with the FB in IPOF.

Property Symbol Value/meV Ref.
Band width W 60 Fig. 10(c)

Spin splitting U 100 Fig. 10(b)
Energy gap ∆ 12

dir 90 Fig. 10(c)
∆ 12

ind 30 Fig. 10(c)
∆ 14 1400 Fig. 10(a)

8. Summary and outlook
Whenever an unconventional band structure is brought

out from a conceptual model into a real-world material, a
wide range of technological innovations will be triggered.
The well-known examples are graphene[1,2] and topological
insulators,[16,17] whose band structures are featured with a
linear dispersion and a nontrivial topology, respectively. In
this article, we have reviewed the fascinating idea of FB,
which combines together an unusual dispersion and a non-
trivial topology, leading to even more exotic physics. The
current studies have sketched a blueprint, butgreater efforts
are required to build the mansion. Theoretically, it is worth
exploring other possibilities in the FB, such as higher Chern
numbers,[68–70] other classes of topologies,[71,72] and higher
dimensions.[73,74] On the other hand, there is high demand for
schemes that utilize the FB for practical applications. In the
context of either spintronics or quantum computing, detailed
discussions on characterizing and manipulating the electrons

in the FB are still lacking. After all, the central task is un-
doubtedly to discover FBs in real materials, which may rely
on close collaborations with chemists and material scientists.
By bringing together researchers working on diverse aspects,
a fruitful journey is expected to reach this romantic flatland.
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