Growth Instability of Strained Film: An Elastic
Green’s Function Force Monopole Approach

Hao Hu and Feng Liu

Abstract We analyze the growth stability of an epitaxial strained film on a flat
substrate by the elastic Green’s function force monopole approach. We calculate
and compare the strain energies and growth instability of three different forms of
surface undulations: sinusoidal waviness, surface faceting and island formation.
In general, the instability occurs beyond a critical length scale, in agreement with
the conventional analysis of ATG instability based on the stress function approach.
For isotropic surface energies, the critical length scale for the island formation is the
smallest, because it offers the most effective mode of strain relaxation.
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1 Introduction

The morphology of epitaxially grown strained films has drawn much attention for
its scientific and technological importance. Development of stress in the surface of
a strained thin film can greatly change the surface morphology. Self-assembly and
self-organization of step-flow growth [1, 2], quantum dots [3-5], quantum wires
[6-8], and surface phase separation [9, 10] are all different manifestations of stress
(strain) induced surface growth instabilities. Surface stress can also lead to the
formation of a surface periodic domain structure [11, 12]. These phenomena open a
new way to synthesis of nanostructures by strain induced self-assembly.

The stability of strained film grown on a flat substrate has been studied exten-
sively, known as ATG instability [13—15], where a strained film becomes unstable
to surface undulation beyond a critical wavelength A.. The strain undulation may
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take different forms: surface reconstruction [16], stress domain formation [11, 12],
step bunching [1, 2], and 3D faceted island formation [3-5], etc. In general, the
critical wavelength ). scales with the ratio of surface energy (y) over strain energy
(Ye?, where Y is Young’s modulus, ¢ is misfit strain).

Conventionally the ATG instability is usually analyzed using the stress function
approach [12-14]. Here, we re-analyze the strained film instability using an elastic
Green’s function force monopole approach. We calculate the strain relaxation
energy in the undulated film relative to flat film in reciprocal space by Fourier
transformation [11], and derive the critical length scale (wavelength and size) for
instability. We consider three forms of surface undulation: sinusoidal waviness,
periodic facets, and array of isolated islands, and among them the island formation
is shown to have the smallest critical length scale for isotropic surface energies
because of its most effective mode of strain relaxation. The paper is organized as
the following: we introduce and detail the methodology in Sect. 2, calculate the
total energies of strained films with the three different surface profiles and analyze
their properties in Sect. 3. We conclude in Sect. 4.

2 Elastic Green’s Function Force Monopole Method
in Reciprocal Space

For a heteroepitaxially grown strained film, the surface stress of the film induced by
the misfit strain can be calculated by the strain induced bulk stress times the local
film thickness, i.e. o' = Ceh(x,y), within the shallow-angle approximation [3, 17],
where C is elastic modulus, ¢ is the misfit strain induced by lattice mismatch; these
two quantities are assumed uniform within the film; 4(x,y) is the surface height
profile function. Then, if the surface profile A(x,y) is not flat, as shown in Fig. 1, the
surface stress is non-uniform.

Fig. 1 Schematic illustration
of sinusoidal strained film on
a flat substrate
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A surface with non-uniform stress will generate a surface elastic force monopole
density, defined as [17, 18]

N
fi(F) = PR (7). (1)

where 6(r) is the surface stress tensor, the indices i and j label directions in the plane
of the surface, r = (x, y) is the position vector in the surface. Since we adopt the
shallow-angle approximation, these elastic force monopoles can be projected onto
the film surface plane, in parallel to the substrate surface plane. A homogeneous
flat strained film on a flat substrate free of defects is free of surface elastic forces,
because the surface stress is uniform, experiencing no strain relaxation.

The elastic force monopoles, induced by a non-uniform surface stress, in turn
induce a displacement field u(r, z) in the medium, which can be expressed in terms
of elastic Green’s function ¥ x(r, z) [17, 18]:

P :/dzr/ZXij(F—;’,z)]’j (;/), )
J

Xik(r, 7) depends on the film and substrate elastic properties, Young’s modulus Y
and Poisson ratio v. Since the surface elastic forces defined in Eq. (1) only exist on
the surface plane, the surface strain relaxation energy per unit area E,; is the integral
of the force distribution multiplies the displacement over the surface [17]:

Eg=— ZLZ/erZf u; (¥,0)
N 2L2//d2’d2/zzf V1 (F=r0) 5 (7). B

where L is the system size. When we treat surface morphology of periodic
undulations with period (A, Ay), fi(r) and u(r, 0) would all be periodic functions
of (Ax, Ay), and their Fourier Transforms are:

ui () = Y ui (G) e, (4a)

G
i (F) = fo (é) oG Zfi* (G_’)e—iéﬁ’ (4b)
G G
and
w (G) = é / ad?ru; (F) e 0% (40)

51 (6) = g [adr, (F)eo". (4a)
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where §2 is the surface area of one period, G is the lattice vector in reciprocal space,
and

G = (G.,G,) = @mm/Ay,2nmw/Ay), mon=0,41,42. ... 5)

Substituting Eqs. (4) and (5) into Eq. (3), the strain relaxation energy per unit
area E,; can be expressed in reciprocal space as

Eu= —% > Zu,- (é) A (é) 6)
! G

Using the convolution theorem for Eq. (2), we obtain the Fourier Transform of
the displacement field as

w(G) =Y xi(G) f;(G). (7
J
Substituting Eq. (7) into Eq. (6), we obtain the expression of E,;:

Ea=— IV GVA] ®)
i j ¢

The elastic Green’s functions y ;(r, 0) have the following forms [19]:

1—v21 v(l +v) x2
(R

1ee (7. 0) = 7Y r xYy ¥ ©a)
o (7.0) = 1 ;sz% it f—j (9b)
Yo (7.0) = 2y (7.0) = %% (9c)
Their Fourier Transforms are
1u(G) = 1;;2% + v(lj; ») 27;?5, (10a)
10(G) = 1yu(@) = — 2T 21C:Gy (10¢)

7Y G3
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Equations (8) and (10) are valid for any kind of periodic domain structures of
a strained film surface. Particularly, for a one-dimension (1D) periodic domain
structure, Gy = 0, Egs. (8) and (10) can be simplified as [11]

1 - - 12 2mm
Eez——Eme(G) fx(G)}, Gi=—— m=0%L+2.. (D
G
> 1—v227
w(G) = —. 12
Xex(G) 7 G. (12)

For any given surface profile, we can calculate the elastic force density using
Eq. (1) and the strain relaxation energy using Eqs. (8) and (10) (or Egs. (11) and
(12) for 1D systems). Combining the strain energy with surface energy, we can
perform a thermodynamic analysis of film stability.

3 Total Energy of Strained Film with Undulated Surface

In this section, we present the properties of three 1D surface profiles of a strained
film grown on a flat substrate. The strain induced surface undulation is characterized
by a critical wavelength A.. For different surface profiles, the general scaling relation
of \. with the surface energy and strain energy is the same, but having different
geometric coefficients. We will derive the total energy for a sinusoidal film surface,
a faceted film surface and a flat surface with faceted islands in Sects. 3.1, 3.2 and
3.3, respectively.

3.1 Sinusoidal Undulated Surface

For a sinusoidal surface profile of a strained film growing on a flat substrate (Fig. 1),
the surface undulation is expressed as

2
h(x) =asin7ﬂx+h0 = asinkx + hy, (13)

where k=2 /A is the wave number. It leads to a distribution of elastic force
monopoles in the surface, which can be calculated from the differential of bulk
stress at the film surface as

f(x) = Cedh(x) = Ceak coskx, (14)
where C is the Young’s modulus and ¢ is the misfit strain, Ce is the bulk stress in

the film. To calculate the strain energy, we derive the Fourier Transform of the force
density,
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Ceak
Gy =173 O =Ek (15)

0, other

Substituting Eqgs. (15) and (12) into Eq. (11), we obtain the strain energy per unit
area:

(am)® 1—0?

Eq=—(Ce)’-
: (Ce) A 7Y

(16)

On the other hand, the surface undulation will increase surface energy. As shown
in Fig. 1, the surface energy per period of a flat surface is E,® =y\. The surface
energy per period of a sinusoidal surface can be expressed as

A
Es=y-l=y- [ J14h2(x)dx 17
s =y 14 /O (x)dx (17)

Since we adopt a shallow-angle approximation and only consider the critical
wavelength in this subsection, we will neglect the surface energy anisotropy effect
for simplicity. (The surface energy anisotropy effect would not affect the qualitative
results, but change the coefficients). Then substituting Eq. (13) into Eq. (17) and
assuming that a < A, we have

2.2
ES:)/(/\—}—aﬂ). (18)

A

And the increase of surface energy is

2.2
AES:ES—E?:)/-G;. (19)
The total energy per period is then
2.2 1 — 2
E=AE +E =y - —(Ce)’- (an)?  — (20)
A 7Y

Notice that for a sufficiently large A, E becomes negative, which implies that
there exists a critical wavelength A, beyond which the undulated surface is always
more stable than the flat surface. The critical wavelength A, obtained by using the
condition £ =0 is

Ae = =, 21

where E; = (1—v2)(Ce?)/( Y) represents the unit strain energy.
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Fig. 2 Schematic illustration z
of faceted strained film on a A
flat substrate

3.2 Faceted Surface

For a faceted surface profile, as shown in Fig. 2, we can do the same analysis as in
Sect. 3.1. The surface undulation is expressed as

(4b/A)x + ho,x € [0,4/4]
h(x) = < (—=4b/A)x +2a + ho,x € [A/4,31/4] . (22)
(4b/A)x —4a + ho, x € [31/4,A]
The force monopole distribution is
tgf,x €10,A1/4]
f(x)=Ce-q —tgh,x €[A/4,31/4]. (23)
tgh,x € [30/4, 1]

The Fourier transformation of the force density is

1 [* : Cetgd 1 (4=D)"V2 m—odd
£(G) =~ f FleiOay = €88 L) HED o
AJo A mk |0, m—even
The strain relaxation energy is then
7(Ce)’tg?or 1 —12
Ey=— (Corrg 62 ¢(3), (25)

472 Yy
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where {(3) is the Riemann zeta function, defined by
1
L= (26)
k=1

and {(3) = 1.2020569032.. ...
The increase of surface energy is

A 2
AE,=E,—E'=y-4. (Z) +bh2—y 7. 27)

We also use the assumption that b < A, but in this case, the surface contact angle
of the facet is usually constant for a specific system, so we use 0 as the variable
instead of b (b = \tgb/4):

AE; = yAtg?0/2. (28)
The surface total energy per period is then

7A%(Ce)* - £B3)ig?0 117

E = AE, + E,; = yAig?0/2 — ,
S+ Z V g / 47{2 .7TY

(29)

and the critical wavelength is

_2n’ y
75(3) E;’

(30)

c

Note that in the above derivation, we neglect the corner effect.

3.3 Isolated Faceted Island

For a faceted island grown on a flat substrate, as shown in Fig. 3, the surface profile
can be expressed as

0,x € [-A/2, —s]

, —s5,0
hx) = (a/s)x +a,x € [-s,0] 1)

(—a/s)x +a,x €[0,s]
0,x € [s,1/2]
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Fig. 3 Schematic illustration z
of periodic SK-grown faceted A
island on a flat substrate
2s
~ /) Tr—.1 la
X
) fi

where a is the height of the island, and s is length of the island, a = s*tgf. The force
monopoles are only distributed on the surface of island,

0,x € [-A/2,5]
tgh,x € [—s,0]
f(x)=Ce- . (32)
—tgh,x €[0,s]
0,x €[s,A/2]
The Fourier transform of the force monopole density is
4Cetgd i . ,Gys
76 = == s’ (33)
The strain relaxation energy is then
-2 n?
_ 2 2,2 4, 2
E,=—(Ce)- =l |:4ln2s tg°0 — ﬁs tg 9:|. (34)

To obtain Eq. (34), we assume s < A, which means the island-island distance is
much larger than the island size, to differentiate from the case of a faceted surface
in Sect. 3.2. The first term in Eq. (34) is the strain relaxation energy of an isolated
island; the second term, which is proportional to (1/0)%, comes from the interaction
between islands, indicating that islands interact with each other like two elastic force
dipoles [9]. The higher order terms are neglected.

The surface energy increases by

AE; = ystg?6. (35)
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The total energy per period is then

2 2, 2 21_”2 ”242 21_2
E =ystg 0 —4In2s°tg“0(Ce)"- —— + ——=s"tg"0(Ce)" -
nY 32

(36)

If we neglect the third term in Eq. (36), i.e., the dipolar island-island interaction,
it reduces to the energy of an isolated island on the surface. Then, there is no
critical wavelength involved. But there is a critical island size, defining the smallest
stable island size beyond which the island will keep growing [4]. The critical size is
calculated as

1y
Se = —.
4In2 E;

(37)

Inclusion of the repulsive island-island interaction (third term in Eq. (36)) would
increase the critical island size, and also prevent the further growth of the island
after nucleation favoring formation of islands with uniform size [19].

From Eqgs. (21), (30) and (37) we can see that the critical length scale for different
surface profiles has the same scaling dependence on the ratio of surface energy
(y) over strain energy (Ej), but different coefficients. The critical wavelength of
sinusoidal undulation has a coefficient 1, and that of a faceted undulation has a
coefficient 2 2/7¢(3), larger than 1. If we assume that the surface energy is isotropic
and neglect corner effects of facets, the faceted surface will have a larger critical
wavelength than that of a sinusoidal surface undulation. The coefficient for the
critical island of an isolated island is the smallest [1/(4In2)], because the island
formation is the most effective mode of strain relaxation with the largest undulation
magnitude for the same film volume.

In our analysis, we neglect the surface energy anisotropy effect, so that the
surface energy and strain relaxation energy of a sinusoidal film are both proportional
to the square of the undulation amplitude. If taking the surface energy anisotropy
into account, the form of strain relaxation energy remains the same, but the surface
energy is more complicated and increases much faster than the second-order power
dependence on undulation amplitude. Then for a given wavelength, when the
magnitude of the surface undulation is very small, the sinusoidal surface is more
stable; but the faceted surface and the isolated faceted islands become more stable
when surface the undulation becomes larger. This suggests that the surface may first
undulated by forming stepped mounds in a sinusoidal profile. As the mounds grow
higher, they transform into faceted islands as observed in some experiments and
explained theoretically before [20, 21].

4 Conclusion

In conclusion, we perform a thermodynamic analysis for the strained film grown
on a flat substrate, using a Green’s function force monopole approach in reciprocal
space. Our results agree generally with the previous work based on a stress function
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approach. We compared three different surface undulations: sinusoidal waviness,
surface faceting and island formation. The critical length scale for the strain induced
instability has the same linear dependence on the ratio of surface energy and strain
energy, but different geometric coefficients. Among them, the isolated islands have
the smallest critical length scale without consideration of surface energy anisotropy,
because it offers the most effective mode of strain relaxation. Inclusion of surface
energy anisotropy, however, may favor surface sinusoidal undulations first, followed
by surface faceting or faceted island formation, as observed in some systems. We
are extending our approach to non-flat substrate surfaces.
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