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Highlights

• A framework for concurrent atomistic/continuum simulation of graphene is developed.
• The TBDM is re-formulated based on the Nosé–Hoover thermostat.
• The AIREBO potential is used, which is carefully weighted in the bridging zone.
• The Q1STs solid-shell element is modified to include the energy scaling function.
• A thermodynamically rigorous high-order continuum constitutive model is parameterized.

Abstract

Recently developed three-layer-mesh bridging domain method (TBDM) enhanced the conventional bridging domain method
(BDM) by (1) mitigating the temperature cooling effect on the atoms in the bridging domain, and (2) employing a mesh-independent
physics-based discrimination between thermal and mechanical atomic motions. In this paper, we present the new enhancements
for the TBDM to achieve an appropriate framework for concurrently coupled atomistic–continuum simulation of graphene. To
capture the mechanical behavior of graphene accurately, we employed the adaptive intermolecular reactive bond order (AIREBO)
potential in the atomistic model, which is carefully weighted by the atomic energy scaling function in the bridging zone. In the
continuum model, a thermodynamically rigorous high-order continuum description, considering the symmetries of graphene, is
used which is parameterized using full molecular dynamics (MD) simulations. To accurately capture the bending behavior of
graphene, a recently developed explicit finite-deformation solid-shell element is used to discretize the continuum domain, and
its formulation is modified to include the continuum energy scaling function. To achieve realistic constant-temperature condition
(canonical ensemble), the Nosé–Hoover thermostat is used in the full MD domain and also as local thermostats in the bridging
domain. 5-value Gear predictor–corrector time integrator is implemented, which is well-suited to be used with the Nosé–Hoover
thermostat. Accordingly, the TBDM formulation is modified to work with this time integrator. Some modifications are also made
in the TBDM formulation to increase the robustness of the multiscale simulations. Finally, the effectiveness of the proposed

∗ Correspondence to: Global Engineering & Materials, Inc., 1 Airport Place, Suite 1, Princeton, NJ 08546, USA. Tel.: +1 801 831 5971; fax: +1
801 581 4816.

E-mail address: sadeghirad@gem-innovation.com (A. Sadeghirad).

http://dx.doi.org/10.1016/j.cma.2015.06.001
0045-7825/ c⃝ 2015 Elsevier B.V. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.cma.2015.06.001&domain=pdf
http://www.elsevier.com/locate/cma
http://dx.doi.org/10.1016/j.cma.2015.06.001
http://www.elsevier.com/locate/cma
mailto:sadeghirad@gem-innovation.com
http://dx.doi.org/10.1016/j.cma.2015.06.001


A. Sadeghirad et al. / Comput. Methods Appl. Mech. Engrg. 294 (2015) 278–298 279

multiscale method for graphene is demonstrated by running in-plane shear, out-of-plane bending, and nanoindentation simulations
and comparing the results with those obtained from full MD and full finite-element simulations.
c⃝ 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Two-dimensional graphene, the one-atom-thick honeycomb lattice of carbon, is the conceptual building block for
a number of carbon allotropes, e.g. graphite (three-dimensional), carbon nanotubes (one-dimensional), and bucky-
balls or spherical fullerenes (zero-dimensional) [1,2]. Until recently, graphene existed only within three-dimensional
graphite or tightly bound to another solid surface [1]. In a seminal paper in 2004 [3], it was reported that graphene
could be obtained by mechanical exfoliation, a process including directly rubbing bulk graphite onto a smooth sub-
strate [3–5]. It has been shown that graphene has many supreme properties such as extreme mechanical strength,
exceptionally high electronic and thermal conductivities, and impermeability to gases, which make it highly attractive
for numerous applications in electronics, photonics, composite materials, coating, energy generation and storage, sen-
sors, drug delivery, etc. [6]. In graphene, carbon atoms are densely packed in a regular sp2-bonded atomic hexagonal
pattern. Its robust network of sp2 bonds makes graphene the strongest material ever studied [7,8]. On the other hand,
graphene is also incredibly supple, which in combination with its electrical properties can be exploited for strain-based
graphene electronics [9,10]. Graphene thermal properties are also extraordinary: extremely high thermal conductiv-
ity [11], ∼20 times higher than that of copper, and large and negative thermal expansion coefficient [12], 5–10 times
larger than that in ordinary graphite.

Graphene production is now scaled up to centimeter [13,14] or even meter scale [15] and polycrystallinity is
unavoidable [16] in large-scale graphene films. It is well-known that the properties of polycrystalline materials are
often dominated by the size of their grains and properties of grain boundaries. For graphene, a 2D lattice, these
effects have more practical significance because even a line defect can divide and disrupt the whole crystal. Although,
atomistic numerical simulations have played an important role in fast advancing graphene research by predicting
and elucidating various properties of graphene, e.g., [17–27], modeling “full-scale” grains and their interactions
are not feasible using all-atom simulations. Our goal is to provide essential multiscale tools to investigate the
mechanical behavior of full-size graphene grains, which has significant implications in the application of large-area
polycrystalline graphene, such as for biological membranes and electronic devices. In this paper, we report on the
new enhancements for the recently developed three-layer-mesh bridging domain method (TBDM) [28] to achieve
an appropriate framework for concurrently coupled atomistic–continuum simulation of graphene. Application of the
TBDM in simulation of polycrystalline graphene will be presented in due course.

Generally, multiscale methods aim to seamlessly couple multiple models at different scales. Despite sequential
multiscale methods, which have enjoyed long-time success, e.g., [29], concurrent multiscale methods have encoun-
tered more challenges associated with energy transmission and changes in the constitutive description of a material
across the interface between different models, such as spurious wave reflection. A number of concurrent multiscale
methods have been developed so far, including the quasicontinuum method (QM) [30,31], the coarse-grained MD
method (CGMD) [32], the macroscopic-atomistic-ab initio dynamics (MAAD) method [33,34], the bridging scale
method (BSM) [35], and the bridging domain method (BDM) [36,37]. The BDM is one of the most efficient and
widely-used multiscale methods, which couples the molecular dynamics (MD) simulations with finite element (FE)
methods. In the BDM, the system is partitioned into three sub-domains: atomistic, continuum, and bridging domains.
Lagrange multipliers technique is employed to impose the displacement/velocity compatibility between atomistic and
continuum scales in the bridging domain (BD). In the BDM, the Lagrange-multipliers constraint matrix is usually
diagonalized using the row-sum technique, which is shown to be essential in eliminating spurious wave reflections at
the interface of the atomistic and continuum domains [38]. Accordingly, total Hamiltonian in the BD is divided into
three parts: the atomistic Hamiltonian, the continuum Hamiltonian, and the Hamiltonian associated with the Lagrange
multipliers. The Hamiltonian of continuum and atomistic domains are weighted by scaling factors to avoid double
counting of the Hamiltonian in the BD so the atomistic (continuum) energy is dominant near the purely atomistic
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(continuum) domain. The energy scaling provides a gradual transition from the atomistic model to the continuum
model. The BDM has been used to model cracks and defects in graphene and carbon nanotubes [39–44].

Most of the BDM simulations to date have been done at zero temperature. Generally, multiscale simulations at finite
temperature are more challenging in comparison to those at zero temperature. Noting that the continuum models,
unlike the MD models, divide the energy into mechanical and thermal components and the system is described by
two time-dependent fields, i.e. displacement and temperature, rendering atomistic and continuum models thermally
compatible is another challenge which should be carefully addressed by the multiscale methods at finite temperature.
Some concurrent multiscale methods have already been extended for finite-temperature simulations, e.g., [45–49].
Recently, Anciaux et al. [50] analyzed the performance of the BDM at finite temperature, and revealed an artificial
cooling effect on the coupled atoms. In [28], we developed the TBDM, which enhances the conventional bridging
domain method (BDM) by (1) mitigating the temperature cooling effect on the atoms in the bridging domain, and
(2) employing a mesh-independent physics-based discrimination between thermal and mechanical atomic motions.
The former is achieved by constraining only the mechanical part of atomic motion to the FE displacements while
unconstrained thermal vibrations are thermostatted using local thermostats in the BD. The latter is achieved by using
a meso mesh, which is independent of the FE mesh, to discriminate between thermal and mechanical atomic motions.
This discrimination could be done using the conventional BDM algorithm by decomposing atomic motion into two
parts: coarse part (resolved by the FE mesh) and fine part (not resolved by the FE mesh) [51,52]. However, this
decomposition is not the best means to discriminate between thermal and mechanical motions since it is dependent to
the FE mesh. In the development of the TBDM, we employed the meso mesh, which is independent of the FE mesh,
to decompose the atomic motion into thermal and mechanical parts. The meso-mesh size is chosen in a way to resolve
all the low-frequency waves whose kinetic energies have negligible effects on temperature using a priori numerical
tests [28].

In this paper, we present the new TBDM enhancements for concurrent multiscale atomistic–continuum simulation
of graphene at finite temperature. To capture the mechanical behavior of graphene accurately, we employed the
adaptive intermolecular reactive bond order (AIREBO) potential [53] in the atomistic model. The AIREBO potential is
a sophisticated potential which is able to describe bond formation and rupture, in addition to non-bonded interactions
in condensed-phase hydrocarbon systems. This potential has widely been used in MD simulations of graphene leading
to promising results, e.g., [18–24,26]. As mentioned before, the TBDM uses energy scaling factors to avoid double
counting of the energy in the BD and to provide a gradual transition from the atomistic model to the continuum model.
Accordingly, the AIREBO potential is carefully weighted by the atomic energy scaling function in the BD. We also
need to provide a consistent continuum model with the atomistic model using the AIREBO potential. For this purpose,
a thermodynamically rigorous continuum material description [54], with a total of fourteen nonzero independent
elastic constants for nonlinear in-plane elastic behavior, is used. The continuum constitutive model, considering the
symmetries of graphene, is based on the elastic strain energy density in a Taylor series in strain truncated after the
fifth-order term. The model is parameterized using three sets of full MD simulations of graphene under uniaxial tensile
strain in armchair direction, uniaxial tensile strain in zigzag direction, and equibiaxial strain.

To model large-deformation behavior of thin plates using FE, three-dimensional solid-shell elements are attractive
since they can accurately model in-plane and out-of-plane responses of thin plates without introducing rotational
degrees of freedom. In this paper, a recently-developed explicit 8-node solid-shell element, called Q1STs [55], is used
in the continuum domain. This element is based on a reduced integration technique with hourglass control and employs
the assumed natural strain (ANS) and the enhanced assumed strain (EAS) technologies to avoid locking behaviors
[55,56]. The EAS method is included to avoid volumetric and Poisson thickness locking, and the ANS concept is
used to eliminate transverse shear and curvature thickness locking and improve the performance of the element for
very thin plates. In [55], the authors also implemented several techniques to increase the element’s efficiency and
added all the essential features for explicit FE simulation of the problems dominated by nonlinearities such as large
deformations and material nonlinearity. In the TBDM, the energy of the elements in the BD should be weighted by the
energy scaling functions. Including this function in the hourglass part of the internal force requires some analytical
calculations since in reduced integration elements the hourglass stabilization is usually integrated analytically over the
element domain. Analytical integration of the hourglass stabilization including the energy scaling function has been
done leading to the modified equations for the hourglass internal force for the Q1STs elements in the BD.

In our previous work [28], we employed the Langevin thermostat to maintain temperature in the atomistic
model but it does not sample the true canonical ensemble. In this paper, to achieve realistic constant-temperature
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Fig. 1. TBDM domain decomposition: atomistic mesh, FE mesh, and meso mesh.

condition (canonical ensemble), the Nosé–Hoover thermostat [57,58] is used in the full MD domain and also as local
thermostats in the BD. For time integration of the equations of motion (EOMs), 5-value Gear predictor–corrector time
integrator [59] is implemented, which is well-suited to be used with the Nosé–Hoover thermostat. We did not use
the velocity Verlet time integrator although it is more computationally efficient since the Nosé–Hoover thermostat
is generally not compatible with the velocity Verlet time integrator [60]. The TBDM formulation has been modified
accordingly.

In the BDM, the compatibility between atomistic and continuum domains is enforced by the Lagrange multipliers
which can be discretized in two different ways [37,43]: (1) by defining a Lagrange multiplier for each degree-of-
freedom of each atom located in the BD, which establishes a strict compatibility enforcement, and (2) by discretizing
the Lagrange multipliers using the FE mesh for a weak compatibility enforcement. The latter was used in the
development of the TBDM in [28] but our recent numerical simulations showed that the application of the strict
compatibility enforcement improves the stability of the TBDM simulations. TBDM formulation is presented using
the strict compatibility enforcement in this paper.

The outline of this paper is as follows: in Section 2, we present the TBDM formulations based on the strict
compatibility enforcement along with the modifications to adopt the 5-value Gear predictor–corrector time integrator
and the Nosé–Hoover thermostat. The Q1STs solid-shell element and the proposed modifications to include the
continuum energy scaling factor into the analytical formulations of the hourglass stabilization are discussed in
Section 3. Section 4 is dedicated to present the interatomic and continuum potentials for graphene. The strategy to
include the atomic energy scaling function in atomic force calculations based on the AIREBO potential is discussed.
Then, the high-order continuum material description for nonlinear in-plane elastic behavior of graphene and its
extension for the 3D solid-shell element are discussed and parameterized using full MD simulations. Finally, the
effectiveness of the proposed multiscale method for graphene modeling is demonstrated through some numerical
examples in Section 5, followed by some conclusions made in Section 6.

2. The TBDM formulation

In the TBDM, the three-layer-mesh structure in the BD, consisting of FE, meso, and MD meshes as shown in
Fig. 1, enables decomposition of total atomic motion into three parts as [28]:

• the coarse part that is resolved by the FE mesh,
• the meso part that is resolved by the meso mesh but it is not resolved by the FE mesh, and
• the fine part that is resolved by the MD mesh but it is not resolved by the meso mesh.

diα = (diα)coarse
+ (diα)meso

+ (diα)fine , ∀α ∈ MB (1)

where diα is the total displacement of atom α in the i th direction, MB is the set of all the atoms in the BD, and
(diα)coarse, (diα)meso and (diα)fine are the coarse, meso and fine components of the atomic displacement, respectively.
Detailed formulations to calculate each component have been presented in [28]. The coarse and meso parts constitute
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the mechanical waves,

(diα)mech
= (diα)coarse

+ (diα)meso , ∀α ∈ MB (2)

which are constrained to the FE displacements using the Lagrange multipliers method, and the fine part constitutes
thermal vibrations, which are thermostatted in the BD.

Throughout this paper, X and x denote the initial and current coordinates respectively, and the Einstein notation is
employed: repeated indices indicate summation for the lower case subscripts denoting the components of the material
coordinates.

Following the use of Lagrange multipliers for compatibility enforcement between atomistic and continuum
displacements in the BD, the total Hamiltonian of the system reads [28]

H =

 
α∈M

ϑA
α

pA
iα pA

iα

2mA
α

+
ϑ V A


+

 
I,J∈S


ΩC

0

ϑC pC
i I pC

i J NI NJ

2ρ0
dΩ +


ΩC

0

ϑCW CdΩ


+ G (3)

where the first and second bracketed terms represent the atomistic and continuum Hamiltonians respectively and the
third term, G, denotes the Hamiltonian associated with the Lagrange multipliers. M and S denote the sets of all
atoms and all FE nodes respectively, ϑA

α = ϑA(Xα) is the atomic energy scaling function at the position of atom α,
ϑC

= 1−ϑA is the continuum energy scaling function, pA
iα and pC

i I denote the i th component of the linear momentum
of atom α and node I respectively, mA

α denotes the mass of atom α, ρ0 denotes the initial density of the continuum
domain, NI (X) is the FE shape function of node I , W C is the FE strain energy density discussed and parameterized
in Section 4, ϑ V A is the atomic potential after applying the energy scaling function. In this paper, we employ the
AIREBO potential, which is briefly reviewed in Section 4 along with the discussion of the strategy to include the
energy scaling function.

A cubic energy scaling function is used in this work, which has been shown to be beneficial over constant and
linear scaling functions (see e.g., [61]).

ϑA(X) =


0, in (ΩC

0 − ΩB
0 ) and on ΓC

0
rB

L |B

2 
3 − 2

rB

L |B


, in ΩB

0

1, in (ΩA
0 − ΩB

0 ) and on ΓA
0

, (4a)

ϑC(X) = 1 − ϑA(X) (4b)

where ΓC
0 is the interface between ΩB

0 and ΩC
0 − ΩA

0 , and ΓA
0 is the interface between ΩB

0 and ΩA
0 − ΩC

0 , r B is the
distance between point X inside the BD and the atomistic edge Γ A, and LB is the thickness of the BD.

The weak compatibility enforcement was used in the development of the TBDM in [28] but our recent numerical
simulations showed that the application of the strict compatibility enforcement improves the stability of the TBDM
simulations. To implement the strict compatibility enforcement between atomistic and continuum domains, a Lagrange
multiplier for each degree-of- freedom of each atom located in the BD is defined. Following this way, the Hamiltonian
associated with the Lagrange multipliers, G, is written as

G =


α∈MB

λiα


I∈SB

NIαui I − (diα)mech


, (5)

where MB and SB are the sets of the atoms and FE nodes in the BD respectively, λiα is the Lagrange multiplier
associated with the i th degree-of-freedom of atom α, NIα = NI (Xα) is the FE shape function of node I at the
position of atom α, and ui I and (diα)mech are the i th component of the displacement of node I and the mechanical
part of the displacement of atom α respectively.

Total Lagrangian of the system is obtained from Legendre transformation of the total Hamiltonian. Using
Lagrange’s equations, the equations of motion are obtained from the total Lagrangian [28,37]:

MA
α d̈iα +

int
A fiα +

Lag
A f iα = 0, ∀α ∈ M (6a)
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MC
I üi I +

int
C fi I +

Lag
C f i I = 0, ∀I ∈ S (6b)

where

MA
α = ϑA

α mA
α (7a)

MC
I =


J∈S


ΩC

0

ϑCρ0 NI NJ dΩ (7b)

Lag
A fiα =

∂G

∂ (diα)mech = −λiα (7c)

Lag
C fi I =

∂G

∂ui I
=


α∈MB

NIαλiα (7d)

and int
A fiα and int

C fi I are the internal forces associated with the atoms and nodes in the MD and FE domains respectively
after applying the energy scaling functions as discussed in Sections 3 and 4, and the Lagrange multipliers are governed
by the following equations

∂ H

∂λiα
=


I∈SB

NIαui I − (diα)mech
= 0, ∀α ∈ MB. (8)

In this paper, 5-value Gear predictor–corrector time integrator [59] is used for integration of the governing equations
since it is well-suited to be used with the Nosé–Hoover thermostat. We employed the Nosé–Hoover thermostat in the
full MD domain and also as local thermostats in the BD to achieve realistic canonical ensemble. In the following, we
present the TBDM formulation accordingly. The Gear algorithm consists of three steps for integration over one time
step: (1) the prediction step where the Taylor series is used to predict position, velocity, and higher derivatives, (2) the
evaluation step which involves the determination of forces and accelerations using the interatomic potential in MD
simulation and the potential function in the FE simulation, and (3) the correction step where the predicted values are
corrected based on the error terms obtained using the computed accelerations.

Following Hoover’s formulation [58], the constant-temperature dynamics can be obtained by rewriting the MD
equations of motion, Eq. (6a), as

ḋiα =
qiα

MA
α

, ∀α ∈ M (9a)

q̇iα = f A
iα − ζqiα, ∀α ∈ M (9b)

ζ̇ = ν2
T


T (t)

Text
− 1


(9c)

in which qiα denotes the i th component of the linear momentum of atom α, ζ denotes the frictional coefficient which
evolves in time following the deviation of instantaneous temperature T (t) from the external temperature Text, νT
denotes the thermostatting rate, and using Eqs. (6a) and (7c), f A

iα is

f A
iα = −

int
A fiα −

Lag
A f iα = −

int
A fiα + λiα. (10)

Similarly, we can rewrite the FE equations of motion, Eq. (6b), as

u̇i I =
pi I

MC
I

, ∀I ∈ S (11a)

ṗi I = f C
i I , ∀I ∈ S (11b)

in which pi I denotes the i th component of the linear momentum of node I , and using Eqs. (6b) and (7d), f C
i I is

f C
i I = −

int
C fi I −

Lag
C f i I = −

int
C fi I −


α∈MB

NIαλiα. (12)
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In the following, diα , qiα , ui I and pi I denote the vectors containing the i th component of the displacements/momenta
of atom α/node I and their time derivatives and ζ is the vector of the thermostatting rate and its time derivatives as

(diα)T
=


diα (∆t)ḋiα

(∆t)2

2
d̈iα

(∆t)3

6
d(3)

iα
(∆t)4

24
d(4)

iα


, ∀α ∈ M (13a)

(qiα)T
=


qiα (∆t)q̇iα

(∆t)2

2
q̈iα

(∆t)3

6
q(3)

iα
(∆t)4

24
q(4)

iα


, ∀α ∈ M (13b)

ζT
=


ζ (∆t)ζ̇

(∆t)2

2
ζ̈

(∆t)3

6
ζ (3) (∆t)4

24
ζ (4)


, (13c)

(ui I )
T

=


ui I (∆t)u̇i I

(∆t)2

2
üi I

(∆t)3

6
u(3)

i I
(∆t)4

24
u(4)

i I


, ∀I ∈ S (13d)

(pi I )
T

=


pi I (∆t) ṗi I

(∆t)2

2
p̈i I

(∆t)3

6
p(3)

i I
(∆t)4

24
p(4)

i I


, ∀I ∈ S. (13e)

Employing the 5-value Gear predictor–corrector time integrator, at first the predicted values at time step n + 1 are
computed as

∗dn+1
iα = CGeardn

iα, ∀α ∈ M (14a)

∗qn+1
iα = CGearqn

iα, ∀α ∈ M (14b)

∗ζ
n+1

= CGearζ n, (14c)
∗un+1

i I = CGearun
i I , ∀I ∈ S (14d)

∗pn+1
i I = CGearpn

i I , ∀I ∈ S (14e)

where ∗dn+1
iα , ∗qn+1

iα , ∗ζ n+1, ∗un+1
i I and ∗pn+1

i I are the predicted values at time step n + 1, and

CGear
≡


c00 c01 c02 c03 c04
c10 c11 c12 c13 c14
c20 c21 c22 c23 c24
c30 c31 c32 c33 c34
c40 c41 c42 c43 c44

 =


1 1 1 1 1
0 1 2 3 4
0 0 1 3 6
0 0 0 1 4
0 0 0 0 1

 . (15)

Then, the internal forces, int
A f n+1

iα and int
C f n+1

i I , at the predicted positions are calculated using the interatomic and
continuum potentials respectively, as discussed in Sections 3 and 4, and the error signals are written as

den+1
iα =


∗qn+1

iα

MA
α

−
∗ḋn+1

iα


∆t, ∀α ∈ M (16a)

qen+1
iα =


−

int
A f n+1

iα − ζ n+1∗qn+1
iα −

∗q̇n+1
iα


∆t, ∀α ∈ M − MB (16b)

qen+1
iα =

q ẽn+1
iα +


λn+1

iα − ξmeso
α


∗ḋn+1

iα

meso
∆t, ∀α ∈ MB (16c)

ζ en+1
=


ν2

T


T (tn+1)

Text
− 1


−

∗ζ̇ n+1


∆t, (16d)

uen+1
i I =


∗ pn+1

i I

MC
I

−
∗u̇n+1

i I


∆t, ∀I ∈ S (16e)

pen+1
i I =


−

int
C f n+1

i I −
∗ ṗn+1

i I


∆t, ∀I ∈ S − SB (16f)
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pen+1
i I =

−
int
C f n+1

i I −


α∈MB

NIαλn+1
iα −

∗ ṗn+1
i I

∆t, ∀I ∈ SB (16g)

where −ξmeso
α


∗ḋn+1

iα

meso
is the viscous damping term, proposed in [51,28], to effectively damp out spurious

reflections of the meso part displacements, which cannot be resolved by the FE mesh,


∗ḋn+1
iα

meso
is the meso

part of ∗ḋn+1
iα which can be calculated using the TBDM decomposition algorithm, discussed in detail in [28], and

recalling Eqs. (1) and (2) that the atomic motion is decomposed into the mechanical and fine parts in the BD, q ẽn+1
iα

is written as

q ẽn+1
iα =


q ēn+1

iα

mech
+


q ên+1

iα

fine
, ∀α ∈ MB (17)

in which


q ēn+1
iα

mech
is the mechanical part of

q ēn+1
iα =


−

int
A f n+1

iα −
∗q̇n+1

iα


∆t, ∀α ∈ MB (18)

and


q ên+1
iα

fine
is the fine part of

q ên+1
iα =


−


int
A f n+1

iα

full
− ζ n+1 ∗qn+1

iα


ϑA

α −
∗q̇n+1

iα


∆t, ∀α ∈ MB. (19)

We consider the internal atomic forces, which are scaled by the energy scaling factor, in computing


q ēn+1
iα

mech

since the mechanical part of atomic motion is used in the MD/FE compatibility condition enforcement in Eq. (8). On

the other hand, full atomic internal forces are used in computing


q ên+1
iα

fine
to not disturb thermostatting thermal

vibrations of the atoms in the BD. In Eq. (19), the term


−


int
A f n+1

iα

full
− ζ n+1 ∗qn+1

iα


is multiplied by the energy

scaling factor ϑA
α since the atomic mass MA

α in Eq. (9a) is already scaled in Eq. (7a).

At this stage of the algorithm, everything on the right-hand side of the error signal equations, Eqs. (16a)–(16g),
are known but the Lagrange multipliers λn+1

iα in qen+1
iα and pen+1

i I . For the atoms and FE nodes outside the BD,
i.e. α ∉ MB and I ∉ SB, the Lagrange-multipliers terms are not considered in Eqs. (16b) and (16f). Here, we present
the corrector step of the Gear algorithm at first and then, explain how to compute λn+1

iα using the MD/FE compatibility
condition enforcement. At the corrector step, the final values at time step n+1 are calculated based on the error signals
and the corrector coefficients as

dn+1
iα =

∗dn+1
iα +

den+1
iα EGear, ∀α ∈ M (20a)

qn+1
iα =

∗qn+1
iα +

qen+1
iα EGear, ∀α ∈ M (20b)

ζ n+1
=

∗ζ n+1
+

ζ en+1EGear, (20c)

un+1
i I =

∗un+1
i I +

uen+1
i I EGear, ∀I ∈ S (20d)

pn+1
i I =

∗pn+1
i I +

pen+1
i I EGear, ∀I ∈ S (20e)

where

EGear
≡

e0 e1 e2 e3 e4

T
=


251
720

1
11
12

1
3

1
24

T

. (21)
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By this stage, everything is updated at time step n + 1 but qn+1
iα and pn+1

i I for the atoms and FE nodes in the BD since
they depend on unknown λn+1

iα . Using Eqs. (16c), (16g), (20b) and (20e) can be rewritten as

qn+1
iα = q̃n+1

iα + λn+1
iα ∆tEGear, ∀α ∈ MB (22a)

pn+1
i I = p̃n+1

i I −


α∈MB

NIαλn+1
iα ∆tEGear, ∀I ∈ SB (22b)

where

q̃n+1
iα =

∗qn+1
iα +


q ẽn+1

iα − ξmeso
α


∗ḋn+1

iα

meso
∆t


EGear (23a)

p̃n+1
i I =

∗pn+1
i I −


int
C f n+1

i I +
∗ ṗn+1

i I


∆tEGear. (23b)

To compute λn+1
iα , the compatibility condition, Eq. (8), at time step n + 2 is enforced

I∈SB

NIαun+2
i I −


dn+2

iα

mech
= 0, ∀α ∈ MB. (24)

The compatibility condition is written at time step n + 2 since the Lagrange multipliers λn+1
iα do not affect dn+1

iα and
un+1

i I in the current time step n + 1 but they affect qn+1
iα and pn+1

i I through Eqs. (16c), (16g), (20b) and (20e), which
they finally modify dn+2

iα and un+2
i I through Eqs. (14b), (14e), (16a), (16e), (20a) and (20d) in the next time step n + 2.

Using Eqs. (20a), (20d) and (21), dn+2
iα and un+2

i I are calculated in time step n + 2 as

dn+2
iα =

∗dn+2
iα +

den+2
iα e0, ∀α ∈ MB (25a)

un+2
i I =

∗un+2
i I +

uen+2
i I e0, ∀I ∈ SB. (25b)

By substituting den+2
iα , uen+2

i I from Eqs. (16a), (16e), (25a) and (25b) can be rewritten as

dn+2
iα =

∗dn+2
iα + e0


∗qn+2

iα

MA
α

−
∗ḋn+2

iα


∆t, ∀α ∈ MB (26a)

un+2
i I =

∗un+2
i I + e0


∗ pn+2

i I

MC
I

−
∗u̇n+2

i I


∆t, ∀I ∈ SB. (26b)

After calculating ∗dn+2
iα , ∗ḋn+2

iα , ∗qn+2
iα , ∗un+2

i I , ∗u̇n+2
i I , and ∗ pn+2

i I using Eqs. (14a), (14b), (14d), (14e), (15), (26a) and
(26b) read

dn+2
iα =

4
g=0

c0g
(∆t)g

g!


d(g)

iα

n+1
+ e0

∆t

MA
α

4
g=0

c0g
(∆t)g

g!


q(g)

iα

n+1
− e0

4
g=0

c1g
(∆t)g

g!


d(g)

iα

n+1
(27a)

un+2
i I =

4
g=0

c0g
(∆t)g

g!


u(g)

i I

n+1
+ e0

∆t

MC
I

4
g=0

c0g
(∆t)g

g!


p(g)

i I

n+1
− e0

4
g=0

c1g
(∆t)g

g!


u(g)

i I

n+1
. (27b)

In Eqs. (27a) and (27b),


q(g)
iα

n+1
and


p(g)

i I

n+1
can be substituted from Eqs. (22a) and (22b):

dn+2
iα =

4
g=0

c0g
(∆t)g

g!


d(g)

iα

n+1
+ e0

∆t

MA
α

4
g=0

c0g
(∆t)g

g!


q̃(g)

iα

n+1
+ λn+1

iα ∆teg



− e0

4
g=0

c1g
(∆t)g

g!


d(g)

iα

n+1
(28a)
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un+2
i I =

4
g=0

c0g
(∆t)g

g!


u(g)

i I

n+1
+ e0

∆t

MC
I

4
g=0

c0g
(∆t)g

g!

 p̃(g)
i I

n+1
−


α∈MB

NIαλn+1
iα ∆teg


− e0

4
g=0

c1g
(∆t)g

g!


u(g)

i I

n+1
. (28b)

In the TBDM, the compatibility condition between the continuum displacement, un+2
i I , and the mechanical part of

the atomic displacement,


dn+2
iα

mech
, is enforced.


dn+2

iα

mech
is obtained from total atomic displacement dn+2

iα ,

Eq. (28b), using the decomposition procedure discussed in detail in the original TBDM development [28]. In the

decomposition of dn+2
iα , we assume that


λn+1

iα

mech
= λn+1

iα since the thermal part of the atomic motion should not

be disturbed by the Lagrange multipliers. By substituting


dn+2
iα

mech
and un+2

i I into Eq. (24), and solving that for

λn+1
iα , the following equation in matrix form is obtained

Ai
nB

A×nB
A
Λi

nB
A×1

= Bi
nB

A×1
, i = 1, 2, 3 (29)

where nB
A is the number of atoms in the BD and

Ai
αβ =


I∈SB


e0

MC
I

4
g=0

c0g
(∆t)g+2

g!
eg


NIα NIβ +

e0

MA
α

4
g=0

c0g
(∆t)g+2

g!
egδαβ (30a)

Λi
β = λn+1

iβ (30b)

Bi
α =


I∈SB

NIα


4

g=0

c0g
(∆t)g

g!


u(g)

i I

n+1
+

e0

MC
I

4
g=0

c0g
(∆t)g+1

g!


p̃(g)

i I

n+1

− e0

4
g=0

c1g
(∆t)g

g!


u(g)

i I

n+1


−

4
g=0

c0g
(∆t)g

g!


d(g)

iα

n+1
mech

−
e0

MA
α

4
g=0

c0g
(∆t)g+1

g!


q̃(g)

iα

n+1
mech

+ e0

4
g=0

c1g
(∆t)g

g!


d(g)

iα

n+1
mech

(30c)

where δαβ is the Kronecker delta. Eq. (29) can be used to compute λn+1
iα at time step n + 1 since all other terms are

now known at this time step. After computing λn+1
iα , qn+1

iα and pn+1
i I are updated using Eqs. (22a) and (22b).

3. Weighting the Q1STs solid-shell element

To model large-deformation response of graphene, we employed a recently-developed explicit solid-shell element
(Q1STs) [55]. In this section, we explain how to include the TBDM energy scaling function in the element formulation.
In the Q1STs element formulation, the ANS concept is used to cure the transverse shear and curvature thickness
locking and the EAS technology with only one enhanced degree-of-freedom is used to avoid volumetric and
Poisson thickness locking. Consequently, the total Green–Lagrange strain tensor is decomposed into two parts: the
displacement-based or compatible part (Ec) and the enhanced strain part (Ee)

E = Ec + Ee. (31)

In this section, strain tensor is also indicated using the matrix (Voigt) notation by Ê = [E11 E22 E22 Γ12 Γ23 Γ13]
T and

ˆE = [Eξξ Eηη Eζ ζ Γξη Γηζ Γξζ ]
T, which represent the Cartesian and covariant components of the strain respectively.

These two representations of strain are connected to via Ê = T ˆE where T is the 6×6 transformation matrix discussed
in detail in [56].
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The enhanced strain part is given as [55,56]

Êe = T0
[0 0 ζ 0 0 0]

TWe (32)

in which T0 is the transformation matrix evaluated at the center of the element and We denotes the single enhanced
degree-of-freedom. Using this equation, the enhanced strain in thickness direction depends linearly on ζ , which is
important to eliminate volumetric and Poisson thickness locking.

According to the strain decomposition in Eq. (31), the two equations of weak form read [55]
Ω0

S(E) : δEcdΩ +


Ω0

ρ0ü.δudΩ + gext = 0 (33a)
Ω0

S(E) : δEedΩ = 0 (33b)

in which Ω0 is the initial configuration, S is the second Piola–Kirchhoff stress tensor, ρ0 is the initial density, and u is
the displacement vector.

This element requires only one integration point within the shell plane and at least two integration points in the
thickness direction. Consequently, all integration points are located on the normal through the center of the element.
Following this way, the compatible Green–Lagrange strain can be decomposed into two parts:

Êc = Ê∗
c + Êhg

c (34)

where Ê∗
c is the physical part related to the integration points and Êhg

c is the hourglass part which is part of the hourglass
stabilization. The hourglass stabilization is used to guarantee the correct rank of the element stiffness matrix and to
prevent spurious deformation patterns. This part should be modeled as efficiently as possible.

Taylor expansion of Êc is used in this element to reduce the numerical effort:

Ê∗
c = Ê0

c + ζ Êς
c + ζ 2Êζ ζ

c (35a)

Êhg
c = ξ Êξ

c + ηÊη
c + ξηÊξη

c + ηζ Êηζ
c + ξζ Êξζ

c (35b)

in which Êξ
c , Êη

c , Êς
c , Êξη

c , Êηζ
c , Êξζ

c , and Êζ ζ
c are the derivatives of the compatible strain with respect to the natural

coordinates for which more details can be found in [56].
To simplify the weak form integrals, Eqs. (33a) and (33b), a Taylor expansion of the stress field with respect to

the normal through the center of the element is carried out. This expansion, after some modifications, leads to the
following decomposition [55,56]

Ŝ = Ŝ∗
+ Ŝhg

= Ŝ∗
+ ĈhgÊhg

c (36)

in which the stress Ŝ∗ evaluated at the normal through the center of the element and Ĉhg
= µ

hg
effÎ

dev where µ
hg
eff is the

artificial hourglass shear modulus and Îdev represents the Voigt notation of the fourth order tensor Idev
= I−(1/3)J⊗J.

I and J are the fourth and second order identity tensors, respectively. Ĉhg has deviatoric character to eliminate
volumetric locking in the hourglass stabilization.

Finally, the hourglass part of the internal force vector at the element level can be written as [55,56]

Rhg
u =

 1

−1

 1

−1

 1

−1
Bhg

c ĈhgÊhg
c J0dξdηdζ (37)

where 6 × 24 matrix Bhg
c is the B-matrix (strain–displacement matrix) corresponding to the hourglass part and similar

to Eq. (35b) can be written as

Bhg
c = ξBξ

c + ηBη
c + ξηBξη

c + ηζBηζ
c + ξζBξζ

c . (38)

To seek efficiency, in reduced integration elements the hourglass stabilization is usually integrated analytically over the
element domain, which is done in this element formulation by working with integrands which represent polynomials.
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Fig. 2. Sixteen sampling points in each element used in describing the continuum scaling functions in terms of the natural coordinate system of
the element.

For this purpose, a polynomial approximation of the inverse Jacobian matrix is also used in the element formulation.
Finally, the hourglass internal force vector at the element level can be calculated in closed-form as

Rhg
u =

8
3

J0Bξ
c ĈhgÊξ

c +
8
3

J0Bη
c ĈhgÊη

c +
8
9

J0Bηζ
c ĈhgÊηζ

c +
8
9

J0Bξζ
c ĈhgÊξζ

c . (39)

More details about the element formulation can be found in [55,56].
In the TBDM, the energy of the elements in the BD should be weighted by the energy scaling functions. So, we

need to multiply the integrands in the weak form, Eq. (33a), with the continuum energy scaling function which is
trivial for all the terms except the hourglass part of the internal energy. Including the scaling function in the hourglass
part of the internal force requires re-calculating the closed-form of the hourglass internal force vector. The continuum
energy scaling function, Eq. (4b), is a 3rd order polynomial with respect to the Cartesian coordinates but we need
to describe the function with respect to the natural coordinate system in order to calculate Rhg

u analytically. For this
purpose, we propose to compute the values of the scaling functions at the sixteen sampling points in each element,
shown in Fig. 2, and then interpolate the scaling function based on the values at the sampling points using the 3rd
order Lagrangian shape functions, which ensures that the exact 3rd order scaling function is reproduced. The Cartesian
coordinate of the sixteen sampling points can be easily computed by interpolating the positions of the element corner
nodes using the FE shape functions. Then, the energy scaling function can be computed at these points using Eq. (4b).
Finally, the energy scaling function in terms of the natural coordinates of the element is obtained by interpolating its
values at the sampling points.

ϑC(ξ, η) =

4
i=1

4
j=1

ϕL
i j (ξ, η)ϑC

i j , (40)

where ϕL
i j (ξ, η) are the Lagrange shape functions defined as

ϕL
i j (ξ, η) =

 4
p=1
p≠i

ξp − ξ

ξp − ξi


 4

q=1
q≠ j

ηq − η

ηq − η j

 . (41)

The hourglass internal force is re-calculated by including ϑC(ξ, η) in the integrand in Eq. (37):

ϑ Rhg
u =

 1

−1

 1

−1

 1

−1
ϑC(ξ, η)Bhg

c ĈhgÊhg
c J0dξdηdζ, (42)

which leads to the following closed-form equation

ϑ Rhg
u = λ1 J0Bξ

c ĈhgÊξ
c + λ2 J0Bη

c ĈhgÊη
c + λ3 J0


Bξ

c ĈhgÊη
c + Bη

c ĈhgÊξ
c


+ λ4 J0Bξζ

c ĈhgÊξζ
c + λ5 J0Bηζ

c ĈhgÊηζ
c + λ6 J0


Bξζ

c ĈhgÊηζ
c + Bηζ

c ĈhgÊξζ
c


(43)
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where
λ1
λ2
λ3
λ4
λ5
λ6

 =
1

5400

×


495 405 405 495 1485 1215 1215 1485 1485 1215 1215 1485 495 405 405 495
495 1485 1485 495 405 1215 1215 405 405 1215 1215 405 495 1485 1485 495
363 891 −891 −363 891 2187 −2187 −891 −891 −2187 2187 891 −363 −891 891 363
165 135 135 165 495 405 405 495 495 405 405 495 165 135 135 165
165 495 495 165 135 405 405 135 135 405 405 135 165 495 495 165
121 297 −297 −121 297 729 −729 −297 −297 −729 729 297 −121 −297 297 121

ϑ (44a)

ϑ =

ϑC

11 ϑC
21 ϑC

31 ϑC
41 ϑC

12 ϑC
22 ϑC

32 ϑC
42 ϑC

13 ϑC
23 ϑC

33 ϑC
43 ϑC

14 ϑC
24 ϑC

34 ϑC
44

T
. (44b)

4. Atomic and continuum potentials and parameterization

4.1. The AIREBO potential

The AIREBO potential [53] has widely been used in MD simulations of graphene, e.g., [12–17,19], capturing
the mechanical behavior of graphene accurately. We also employed the AIREBO potential in the atomistic model in
the TBDM simulations of graphene. The AIREBO potential is based on the reactive empirical bond-order (REBO)
potential [62–64] with two additions: the dispersion and intermolecular repulsion interactions via a Lennard-Jones
(LJ) 12-6 potential and a torsional potential which is dependent on dihedral angles:

EAIREBO
=

1
2


α∈M


β∈M
β≠α

EREBO
αβ + ELJ

αβ +


γ∈M
γ ≠α,β


η∈M

η≠α,β,γ

ETorsion
αβγ η

 , (45)

which are discussed in detail in [53]. All the parameters of the AIREBO potential are also given in [53]. To avoid
the nonphysical part in the tensile fracture process, we set the cutoff parameter to be 2.0 Å for the REBO part, as
suggested by [65].

In the following, we discuss the procedure of weighting the AIREBO potential based on the TBDM energy scaling
function in the BD. All the terms in the AIREBO potential can be written as functions of xαβ = xβ − xα for
∀α, β ∈ M where xα is the position vector of atom α. Consequently, the internal force of atom α can be calculated
as

int
A f̃α = −

∂ EAIREBO

∂xα

= −


β∈M
β≠α


∂ EAIREBO

∂xαβ


∂xαβ

∂xα


=


β∈M
β≠α

∂ EAIREBO

∂xαβ

. (46)

To include the energy scaling function into the atomic internal forces, Eq. (46) is rewritten as

int
Afα =


β∈M
β≠α


ϑα + ϑβ

2


∂ EAIREBO

∂xαβ

(47)

in which ϑα and ϑβ are the values of the atomic energy scaling function at the positions of atoms α and β respectively.
The procedure to calculate the internal forces, considering the energy scaling function, is quite straightforward
although it requires a lot of calculations to derive the internal force formulations for the AIREBO potential.

4.2. The continuum constitutive model for graphene

To obtain a seamless coupling between the MD and FE domains, we need to provide a consistent continuum
constitutive model with the atomistic model using the AIREBO potential. For this purpose, a thermodynamically
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Fig. 3. The NVT ensemble of 1560 atoms with periodic boundary conditions in full MD simulations to parameterize the continuum constitutive
model of graphene.

rigorous constitutive model [54], has been parameterized using full MD simulations of graphene with the AIREBO
potential. The constitutive model is derived based on the elastic strain energy density in a Taylor series of strain
truncated after the fifth-order term. The model contains fourteen nonzero independent elastic constants, C11, C12,
C111, C112, C222, C1111, C1112, C1122, C2222, C11111, C11112, C11122, C12222, and C22222, to describe nonlinear in-
plane elastic behavior of graphene in terms of 2nd Piola–Kirchhoff stress and Lagrangian strain, considering all the
lattice symmetries. The details of the model can be found in [54].

In this section, we present the parameterization of the constitutive model based on three sets of full MD simulations
of graphene with the AIREBO potential under (1) uniaxial tensile strain in armchair direction, (2) uniaxial tensile
strain in zigzag direction, and (2) equibiaxial tensile strain. In the numerical simulations, an NVT ensemble of 1560
atoms with periodic boundary conditions, as shown in Fig. 3, is considered. To extract the stress–strain curves, we ran
the model under different prescribed values for nominal strain components εxx and εyy . After applying the strain, the
model is run for 1,000,000 steps using the Nosé–Hoover thermostat at 300 K. The time step was chosen as ∆t = 0.1 fs
and the potential energy is averaged over last 50 ps of each simulation. Also, the average temperature and the variance
of the temperature are computed at this time period to make sure a true canonical ensemble is reproduced. Finally,
all the simulations are repeated using the large-scale atomic/molecular massively parallel simulator (LAMMPS)
[66,67] to verify our implemented MD algorithms. To apply the prescribed strain and compute the resultant stress, the
following definitions of nominal strain and stress are used:

εxx =
lx − l0

x

l0
x

, εyy =
ly − l0

y

l0
y

(48a)

σxx =
1

V 0

∂ EAIREBO

∂εxx
, σyy =

1

V 0

∂ EAIREBO

∂εyy
(48b)

where l0
x and l0

y are the initial lengths of the domain in x and y directions, lx and ly are the strained lengths of
the domain, and V 0

= l0
x l0

y t is the initial volume of the domain. Thickness t = 3.354 Å is commonly assumed
for graphene, which is the experimentally measured interlayer spacing in graphite [68]. The nominal stress versus
nominal strain curves obtained from the full MD simulations using our code and the LAMMPS code are presented in
Fig. 4. Young’s modulus and Poisson’s ratio of graphene from our code are obtained as Y = 981 GPa and ν = 0.221
respectively and Y = 978 GPa and ν = 0.219 are the values obtained from LAMMPS, which are in a good agreement
with each other and also with other experimental and theoretical predictions, e.g., [7,18]. Finally, fourteen unknown
constants of the continuum constitutive model are calculated by fitting the constitutive model to the full MD results in
terms of 2nd Piola–Kirchhoff stress and Lagrangian strain, which are presented in Table 1.

The parameterized constitutive model is used in the FE model in our multiscale simulations. Since solid shell
elements are used in the FE model, a 3D constitutive model is needed. The parameterized 2D constitutive model
can be extended to 3D by simply assuming linear behavior between stress and strain components in the out-of-plane
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Fig. 4. The nominal stress versus nominal strain curves for graphene obtained from the full MD simulations using our code and the LAMMPS
code and from fitting the continuum constitutive model: (a) uniaxial strain in armchair direction, (b) uniaxial strain in zigzag direction, and (c)
equibiaxial strain tests.

Table 1
Constants of the continuum constitutive model for graphene (GPa).

C11 = 1077.7 C111 = −12014.3 C1111 = 117896.1 C11111 = −661019.7
C12 = 237.2 C112 = −1866.9 C1112 = 5565.1 C11112 = 0.0

C222 = −11579.7 C1122 = 31600.6 C11122 = −96331.9
C2222 = 202041.9 C12222 = 764027.4

C22222 = −2787895.0

direction and considering the same elastic constants for them as those already parameterized for in-plane behavior:

S33 = C11 E33, S13 =
C11 − C12

2
E13, S23 =

C11 − C12

2
E23. (49)

Since graphene sheets are very thin and the effects of these stress and strain components are trivial in our multiscale
simulations, the above-mentioned assumptions are accurate enough.

Finally, we need to discuss about the appropriate value for the graphene thickness to get accurate predictions of
graphene bending behavior. There is an ambiguity in defining the thickness of graphene sheets. In the above, we used
the experimentally measured interlayer spacing in graphite, t = 3.354 Å, [68]. However, the more appropriate value
of the thickness in mechanical modeling of graphene has been derived from first-principles and MD calculations of
carbon nanotubes under pressure [69] and in-plane and bending constants of the single-layer graphene [70], which
lead to the thickness of t ≈ 0.8 Å.

5. Numerical examples

In this section, behavior of graphene under in-plane shear, out-of-plane bending, and nanoindentation is
investigated using the proposed multiscale method. The obtained results are compared with those obtained from full
MD and full FE simulations to demonstrate the effectiveness of the TBDM. Through the first two numerical examples,
i.e. the shear test and the out-of-plane bending test, we demonstrate that the TBDM is accurate in modeling in-plane
and out-of-plane behavior of graphene. We also ran the uniaxial and biaxial tension tests using the TBDM and the
obtained results were in good agreement with those obtained from full MD [18] and full FE simulations but we do not
present the results here for the sake of brevity.

In concurrent multiscale methods, the highly-nonlinear critical zones are usually modeled using MD and the rest
of the problem domain is modeled using FE. In the third example, i.e. the nanoindentation example, the part of the
graphene sheet beneath the indenter and a region around that is anticipated to undergo highly-nonlinear deformations
and finally be fractured. We take the advantage of the TBDM by modeling this critical zone and the indenter using
MD while the rest of the sheet is modeled using FE.

5.1. In-plane shear test

To evaluate the effectiveness of the implemented TBDM for modeling in-plane behavior of graphene, a graphene
sheet of size 203 × 203 nm is simulated under in-plane shear strain. The multiscale model, containing 5858 atoms



A. Sadeghirad et al. / Comput. Methods Appl. Mech. Engrg. 294 (2015) 278–298 293

Fig. 5. The multiscale model of the graphene sheet in the in-plane shear test.

Fig. 6. (a) A snapshot of the TBDM simulation of the shear test at nominal shear strain of γxy = 0.1. (b) Time histories of the shear force at the
top edge of the graphene sheet obtained from the TBDM, full FE, and full MD simulations.

and 84 elements, is shown in Fig. 5. As shown in this figure, displacement boundary conditions are assumed
for all four edges of the sheet. Since graphene is a thin membrane structure, it is subject to wrinkling under in-
plane compression [20,71] and shear deformations [21,72]. Wrinkles affect the mechanical behavior of graphene.
In this example, we prevent the formation of wrinkles by constraining the z-component displacement to zero. Our
numerical simulations showed that this constraint does not have any noticeable side effects, such as large temperature
fluctuation.

The multiscale model is equilibrated for 50 ps at 300 K and then, a simple-shear loading in the armchair direction
with displacement control is applied at a strain rate of 0.002/ps. The top edge of the graphene sheet moves to the right
while the bottom edge is fixed. The time step was chosen as ∆t = 0.1 fs. A snapshot of the TBDM simulation at
nominal shear strain of γxy = 0.1 is shown in Fig. 6a. Fig. 6b depicts time histories of the shear force at the top edge
of the graphene sheet obtained from the TBDM, full FE, and full MD simulations, which shows that the results are in
very good agreement.

5.2. Out-of-plane bending test

In this example, out-of-plane bending behavior of graphene is simulated using the TBDM. The multiscale model
in this test is the same as that in the previous example (Fig. 5). The left edge of the graphene sheet is fixed while
the other three edges have the rolling boundary conditions. The model is equilibrated for 50 ps at 300 K before an
out-of-plane force of 10 eV/Å in the–z direction is applied at the right edge of the sheet. The bending test is also run
using full MD and full FE simulations. Three contour plots of the simulations at t = 62 ps are shown in Fig. 7, which
are colored based on the out-of-plane deflections of the graphene sheet. Also, time histories of the deflection of the
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Fig. 7. Contour plots of the TBDM, full FE, and full MD simulations of the bending test at t = 62 ps: (a) TBDM simulation, (b) full FE simulation
and (c) full MD simulation. The contour plots are colored based on the out-of-plane deflection values.

Fig. 8. Time histories of the deflection of the right-hand edge of the graphene sheet obtained from the TBDM, full FE, and full MD simulations.

Fig. 9. The multiscale model of nanoindentation of the graphene sheet using a diamond indenter.

right-hand edge of the graphene sheet obtained from these simulations are depicted in Fig. 8 which shows that the
results obtained from the TBDM are in good agreement with those obtained from full MD and full FE simulations.

5.3. Nanoindentation of graphene using a diamond indenter

In this example, nanoindentation of a clamped rectangular graphene sheet using a diamond indenter is simulated
using the TBDM. The multiscale model of graphene, shown in Fig. 9, consists of 5858 atoms and 84 elements, and
the indenter is modeled as a diamond hemisphere, consisting of 148 atoms. At first, the model is equilibrated for 50
ps at 300 K and then, the indenter is introduced 10 nm above the sheet and moves downward at a speed of 0.1 nm/ps.
As a reference solution, similar simulation is done using fully atomistic model consisting of 19,912 atoms.

Two snapshots of the TBDM and full MD simulations at t = 72 ps are shown in Fig. 10. The indenter is not
shown in these snapshots for more clarity. Fig. 11 depicts two contour plots of the simulations, colored based on the
out-of-plane deflections of the graphene sheet. Also, load–displacement curves obtained from these simulations are
depicted in Fig. 12. In this figure, each data point is obtained by averaging over 1000 time steps. Figs. 10–12 show that
the results obtained from the TBDM and full MD simulations are in very good agreement. For clarity, the indenter is
not shown in these snapshots.
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Fig. 10. Snapshots of the TBDM and full MD simulations of graphene nanoindentation at t = 72 ps: (a) TBDM simulation and (b) full MD
simulation.

Fig. 11. Contour plots of the TBDM and full MD simulations of graphene nanoindentation at t = 72 ps: (a) TBDM simulation and (b) full MD
simulation. The contour plots are colored based on the out-of-plane deflection values.

Fig. 12. Load–displacement curves obtained from the TBDM and full MD simulations of graphene nanoindentation.

6. Conclusions

The new enhancements for the TBDM to achieve an appropriate framework for concurrently coupled
atomistic–continuum simulation of graphene were presented. The AIREBO potential and a thermodynamically
rigorous high-order continuum constitutive model were used to describe the mechanical behavior of graphene in MD
and FE domains respectively. The AIREBO potential was carefully weighted in the bridging zone and the continuum
constitutive model was parameterized using full MD simulations. The Q1STs solid shell element is used in the FE
model to accurately capture the bending behavior and its formulation was modified to include the energy scaling
function in the bridging zone. The Nosé–Hoover thermostat and 5-value Gear predictor–corrector time integrator
were used in this implementation of the TBDM and all the formulations are modified accordingly. Also, the strict
compatibility enforcement between the atomistic and continuum domains is applied to increase the robustness of the
multiscale simulations.

Shear and bending tests are run using the TBDM and the obtained results are compared with those obtained from
full MD and full FE simulations to demonstrate the effectiveness of the TBDM in modeling in-plane and out-of-plane
behavior of graphene. Also, nanoindentation of a graphene sheet was simulated using the TBDM in which the indenter
and the highly-nonlinear zone of the sheet beneath the indenter were modeled atomistically while the rest of the sheet
was modeled using continuum finite elements. The obtained multiscale results were compared to those obtained from
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the full MD simulation showing that the TBDM models the nanoindentation of graphene without the need of all-atom
modeling.

We provided the essential numerical tools to investigate mechanical responses of large-scale graphene sheets in
this paper. We will present application of the TBDM in simulation of full-size graphene grains and their interactions,
which has significant implications in the application of large-area polycrystalline graphene such as for biological
membranes and electronic devices, in due course.
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