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We develop a unified view of topological phase transitions (TPTs) in solids by revising the classical band theory with the inclusion
of topology. Reevaluating the band evolution from an “atomic crystal” (a normal insulator (NI)) to a solid crystal, such as a
semiconductor, we demonstrate that there exists ubiquitously an intermediate phase of topological insulator (TI), whose critical
transition point displays a linear scaling between electron hopping potential and average bond length, underlined by
deformation-potential theory. The validity of the scaling relation is verified in various two-dimensional (2D) lattices regardless
of lattice symmetry, periodicity, and form of electron hoppings, based on a generic tight-binding model. Significantly, this linear
scaling is shown to set an upper bound for the degree of structural disorder to destroy the topological order in a crystalline
solid, as exemplified by formation of vacancies and thermal disorder. Our work formulates a simple framework for
understanding the physical nature of TPTs with significant implications in practical applications of topological materials.

1. Introduction

Band theory is one of the most important developments of
condensed matter and material physics, which underlines
the working principle of modern electronic and optoelec-
tronic devices. It is well known that isolated atomic levels
would spread to form energy bands when atoms were
brought together to form a solid [1], which provides a general
band evolution process to understand metal, semiconductor,
and insulator states. However, this classical textbook picture
is incomplete and must be revised in light of recent emer-
gence of band topology. In general, an insulating solid is a
NI if it can be adiabatically connected (without gap closure
or band inversion) to the “atomic limit”; otherwise, it is a
TI [2]. Namely, the TPT from a NI to a TI requires a band
inversion between conduction and valence bands [3]. This
implies that ubiquitously, an intermediate TI phase should
appear during the band evolution process when the spin-
orbit coupling (SOC) effect is included. A textbook-revised
generic band evolution diagram is shown schematically in
Figure 1 (see also Figure S1 in Supplementary Materials).
Starting from the atomic limit (a NI), s and p levels are
initially separated by a trivial charge gap Δsp. The p level
splits due to SOC effect. By reducing the average bond

length (L), the orbital levels spread to form individual
bands with a finite bandwidth W. Consequently, the charge
gap reduces and closes eventually to realize an s-p band
inversion. Then, the SOC effect reopens an energy gap with
nontrivial topology, leading to a NI-to-TI TPT. Further
reducing the average bond length to overcome the SOC gap
will drive the system into a gapless phase before reaching a
semiconducting phase with strong s-p hybridization.
Therefore, a fundamental question is when and how the
TPT occur within the framework of band theory.

The study of TPT dates back to 1970s when phenomena
in quantum states of matter, such as the quantum Hall effect
[4] and superfluid phase transitions in 2D [5], were explained
using the mathematical concepts of topology [6–8]. These
pioneering works have since paved the way for the introduc-
tion of many new topological states such as quantum anom-
alous/spin Hall effects [9–11], 3D TIs [12, 13] and topological
superconductors [14], and revolutionized electron band the-
ory [15]. Generally, topological states are insensitive to a
smooth change of material parameters unless the system
passes through a TPT. So far, various TIs with different band
inversion mechanisms have been theoretically proposed
and/or experimentally verified, either periodic [16, 17] or
aperiodic [18–22]. The critical condition of TPTs is
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determined on a case-by-case basis, but there is no unified
view on the TPT among different systems. Fundamentally,
it remains unclear how a TI is nonadiabatically connected
to the “atomic limit” during the gap closure process.

It is important to recognize that conventional phase tran-
sitions, as described by Landau theory of spontaneous sym-
metry breaking, exhibit a universal scaling relation of
criticality. Differently, TPTs, involving no symmetry break-
ing, are characterized by a sudden change of topological
invariants with a continuously changing system parameter.
Thus, one does not expect a form of universality to be associ-
ated with TPTs. Surprisingly, however, we discover a linear
scaling relation between electron hopping potential and aver-
age bond length within the framework of band theory, which
is commonly applicable to TPTs in different systems albeit
with different slopes, i.e., without a universal scaling expo-
nent as for conventional phase transitions. Based on a generic
tight-binding (TB) model, we demonstrate this linear scaling
relation to define the critical TPT point from the atomic limit
to topological solid, regardless of lattice symmetry, periodic-
ity, and form of electron hopping. We validate this linear
scaling by calculating TPTs in various 2D crystalline lattices
(oblique, trigonal, square, rectangle, rhombic, etc.) as well
as quasicrystalline lattices. Furthermore, we demonstrate that
this linear scaling sets an upper bound for the degree of dis-
order to destroy the topological order in a crystal by the case
studies of vacancy formation and thermal disorder.

2. Model

Our TBmodel consists of three orbitals (s, px, and py) per site:

H =〠
iα

εαc
†
iαciα + 〠

iα,jβ
tiα,jβc

†
iαcjβ + iλ〠

i

c†ipyσzcipx − c†ipxσzcipy

� �
,

ð1Þ

where c†iα = ðc†iα↑, c†iα↓Þ are electron creation operators on the
αð= s, px , pyÞ orbital at the i-th site and εα is the on-site energy
of the α orbital. tiα,jβ = tαβðrijÞ is the hopping integral. λ is the
SOC strength and σz is the Pauli matrix. We set a cutoff

distance rcut beyond which the hopping vanishes. Within
the cutoff, tαβðrijÞ = SK½r̂ij, VαβδðrijÞ� follows the Slater-
Koster scheme [23]. The radial dependence of the bond inte-
gral VαβδðrijÞ (with δ = σ orπ) is captured by power-law or
exponential decay functions in different materials [24, 25].
Since only the band inversion between s and p states of differ-
ent parities is important for TPT, we focus on the 2/3 filling
of electronic states hereafter (see Supplementary Materials
for details).

We define the average bond length L for a system with N
atomic sites as

L = 1
N
〠
i,jh i
rij, ð2Þ

where the summation runs over all the bonds within the cut-
off (i.e., rij < rcut). It is worth noting that this expression is
applicable to both crystalline and noncrystalline lattices, as
discussed later.

3. Linear Scaling of TPT

As shown in Figure 1, the critical point of a TPT can be
roughly determined by a critical bandwidth Wc = ð1/2Þ
ðWs +Wp − 2λÞ = Δsp − λ, which depends only on the given
atomic levels and SOC strength, independent of lattice types.
According to the deformation-potential theory [26, 27], the
energy levels under strain are expressed as

Eband ∈ij
� �

= E0 +〠
ij

dE
d∈ij

 !
∈ij+⋯, ð3Þ

where Ξv/c = dEv/c/d∈ij are the deformation potentials for
electrons in the valence and conduction bands, respectively.
Similarly, we linearize the band evolution process with the
bandwidth evolving with the average bond length as

Ws,p =W0
s,p +

dWs,p
dL

� �
L+⋯: ð4Þ

Then, the energy gap is given by

Eg = Δsp −
1
2 Ws +Wp

� �
− λ = E∞

g −
dEg

dL

� �
L+⋯, ð5Þ

where γ = dEg/dL is effectively the electron hopping potential
which is related to the band-edge deformation potentials.
Within the TB approximation, the bandwidthW of different
lattices is approximately proportional to the summation of
the nearest-neighbor hopping integrals [1], which changes
with the average bond length L in equation (2). Then, the
critical transition point Lc of TPT where the gap closes
(Eg = 0) is simply determined by

Lc ≈
E∞
g

γ
+⋯: ð6Þ
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Figure 1: Schematic illustration of TPT in band evolution diagram.
By decreasing average bond length L, the bandwidth increases
gradually and a TPT occurs at Lc, which is inversely proportional
to the electron hopping potential γ = dEg/dL.

2 Research



Namely, the critical bond length Lc is linearly propor-
tional to the reciprocal of γ. As the average bond length L is
defined within the cutoff as presented in equation (2), the
critical behavior of TPTs is mainly determined by the neigh-
boring environment due to the “nearsightedness” of
quantum-mechanical interactions [28].

4. TPTs in Crystal and Quasicrystal Lattices

To validate the above hypothesis, we first systemically calcu-
lated TPTs in various 2D periodic lattices. A trigonal lattice
with an sp basis was found previously to host TI state, such
as in Au/GaAs(111) and Bi/Si(111) systems [29, 30]. By tun-
ing the average bond length L, the trigonal lattice undergoes a
TPT between a NI and a TI state accompanied by an energy
gap closing and reopening. Figure 2(a) shows the critical
values of the TPT Lc = 3:089Å for the trigonal lattice. In
Figure 2(b), the orbital-resolved band structure indicates a
nontrivial electronic topology beyond the TPT. It exhibits a
band inversion around the Γ point between the s-orbital-
derived conduction band and the p-orbital-derived valence
band. The calculated Z2 = 1, which is obtained by directly
tracing the evolution of 1D hybrid Wannier charge center
[31], confirming the TI state in this region. Furthermore,
similar TPTs have been found in various typical 2D lattices
including oblique (monoclinic), rectangular (orthorhombic),
rhombic or centered rectangular (orthorhombic), trigonal
(hexagonal), square (tetragonal), honeycomb, Lieb, and
semiregular Archimedean lattices (see Figures S3 and S4 in
Supplementary Materials). For each lattice, we calculated
the phase evolution diagram and determined Lc.

Remarkably, we found that for more than 60 different lat-
tices, Lc exhibits a linear scaling with the reciprocal of γ,
as shown in Figure 3. Numerical fitting gives a slope of
E∞
g = 1:5 eV, which implies that equation (6) is valid

independent of specific lattice symmetries. We also check
the results using an exponentially decay function for electron
hopping, which importantly confirms that the linear scaling
is valid for different hopping potentials (i.e., materials) albeit
with a different slope (see also Figure S8 in Supplementary

Materials). Thus, it is generally applicable but without a
“universal” slope. We emphasize that the calculations cover
almost all kinds of 2D crystalline lattices with different
symmetries. More interestingly, the linear scaling is even
applicable to quasicrystal lattices, as demonstrated by
examples of Penrose-type pentagonal [20, 21] and
Ammann-Beenker-type octagonal [22] quasicrystalline
lattices, as also shown in Figure 3. This points to a general
linear scaling of TPT in all the 2D systems, regardless of
not only lattice symmetry but also periodicity.

5. TPTs in Crystals with Disorder

As the definition of γ and L is the same for both crystalline
and noncrystalline systems, one expects the linear scaling to
be also applicable to define TPT in crystals with disorder. It
is well known that the conducting edge state of a TI is distin-
guished from a normal metallic state by topological protec-
tion, so that the former is robust against nonmagnetic
“edge” disorder (defects or impurities). It is rooted in the
bulk-boundary correspondence of a TI phase, as edge disor-
der cannot destroy bulk band topology. However, if bulk dis-
orders occurred in a TI, bulk band topology and hence
topological edge state could be destroyed. Thus, an intriguing
and practically useful question is how robust a TI can be
against bulk disorder. Below we will answer this question
by applying the linear scaling of TPT to 2D crystals with
two kinds of possible bulk disorder, formation of vacancies
and thermal displacements.

We again considered a trigonal lattice with random
vacancies in a wide range of concentration η (see
Figure 4(a) for example) and studied the TPT induced by
decreasing L. As shown in Figure 4(b), TPTs between NI
and TI states may occur for different vacancy concentration,
and the critical point Lcdecreases with increasing η. Corre-
spondingly, the region of the TI phase becomes smaller with
increasing η and eventually disappears beyond a critically
large ηc. Figure 4(c) shows the phase diagram in the L − η
parameter space. Apparently, the NI and TI phases are
divided by a curve of zero energy gap. In order to confirm
the TPT, we calculated the spin Bott index, a topological
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Figure 2: TPT in a trigonal lattice. The parameters used here are εs = 0:18, εp = −0:65, λ = 0:08, Vssσ = −0:04, Vspσ = 0:09, Vppσ = 0:18, and
Vppπ = 0:005 eV at lattice constant a = 1Å. The color of dots represents the relative weight of s and p orbitals. (a) Energy gap Eg and Z2
index versus average bond length L. A TPT between a NI and a TI is clearly visible. (b) Band structure of the trigonal lattice at the TI phase.
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invariant we developed recently for TI systems with disorder
[20–22]. It is found that there is a concomitant sharp jump in
the spin Bott index Bs across the phase boundary, confirming
a TPT.

In addition, there is a large region of parameters in η and
γ where the system is gapless, as shown in Figure 4(c). An
important point is that there is a critical vacancy concentra-
tion ηc below which a TI phase can only exist. The TI region
shrinks and disappears at ηc ≈ 0:2, which defines an upper
bound for TPT in a 2D trigonal lattice with vacancies. This
is expected to be a general phenomenon although the precise
value of ηc depends on specific model parameters. For η < ηc,
the system is driven from a NI into a gapless phase through
the intermediate TI region with the decreasing L, while for
η > ηc, there is no TI region no matter how small L is. We also
investigated the samples with different sizes and found simi-
lar phase transitions. This confirms the applicability of the
linear scaling of TPT in the thermodynamic limit of infinite
lattice size.

We next investigate the effect of thermal disorder in
destroying the topological phase in a 2D crystal. Due to ther-

mal fluctuation, the interatomic distance rij varies locally,
which broadens the discrete peaks of the radial distribu-
tion function. It is noted that the melting transition from
perfect crystalline to paracrystalline [32] and amorphous
lattices [33] with increasing thermal fluctuation can be
complicated. As an illustrative example, we adopted the
quasilattice model [33] which assumes that the atomic dis-
placements (u) away from their equilibrium positions follow
a Gaussian distribution:

p uð Þ = 1ffiffiffiffiffiffiffiffiffiffi
2πσ2

p exp −
u2

2σ2

� �
: ð7Þ

The mean-squared displacement σ2, which represents the
strength of thermal fluctuation, is approximately propor-
tional to temperature σ2 ∝ kBT according to the compress-
ibility equation [34, 35]. By increasing temperature T , the
lattice transforms from a crystal to an amorphous gradually.
We studied the TPT in trigonal lattices with thermal
fluctuation-induced bond disorder (see Figure 4(d)). As
shown in Figure 4(e), the energy gaps Eg for the TI region
decrease and eventually disappear with increasing σ, indicat-
ing that the thermal disorder can actually destroy the non-
trivial topology. Surprisingly, Lc of TPT increases with
increasing σ. Figure 4(f) shows the phase diagram of the
thermal disorder system in the L-σ parameter space. The
NI and TI states are separated by a curve of zero energy
gap. In strongly disordered region, i.e., σ > 0:15 which repre-
sents an upper bound of thermal disorder for TPT, the inter-
mediate TI phase disappears and the phase transition occurs
between a NI and a gapless state directly. According to the
Lindemann melting criterion, the solid melts when σ exceeds
a threshold value typically between 5% and 20% of the NN
distance) [36]. Therefore, our results suggest the persistence
of topological states even above melting temperature, i.e.,
the possible existence of “topological liquid.”

Finally, we add the critical transition points (1/γ, Lc) for
TPTs of both random-vacancy and thermal-disorder lattices
into Figure 3. Remarkably, they follow the same linear scaling
relation as obtained above for various crystal and quasicrystal
lattices.

6. Discussion

We note that the linear scaling as discovered by TB calcula-
tions and analyses from the “atomic limit” to TI is physically
related to the well-known concept of deformation potential
[26, 27] underlying the linear dependence of semiconductor
band gap on external strain. This implies that by measuring
the band gap as a function of strain (a manifestation of aver-
age bond length L) for a chosen semiconductor, one will be
able to predict the critical point for TPT in the band evolu-
tion diagram (Figure 1) as well as how much strain is needed
to convert this semiconductor into a TI. We are currently
exploring this interesting possibility. Furthermore, the linear
scaling will help us to better understand the physical nature
of TPTs in terms of local atomic environment. There exists
a critical atomic density below which the average bond length
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Figure 3: Linear scaling of TPT. The linear scaling relation between
the critical value of average bond length Lc and the reciprocal
electron hopping potential (1/γ) for TPT in all the studied 2D
periodic, quasicrystalline, and disorder lattices, including oblique
(monoclinic), rectangular (orthorhombic), rhombic or centered
rectangular (orthorhombic), trigonal (hexagonal), square (tetragonal),
honeycomb, Lieb, decorated-trigonal (DT), semiregular-Archimedean
(SA), Penrose-type, and Ammann-Beenker-type (AB) lattices (see
Figure S4 in Supplementary Materials). The red “_” and black “+”
denote trigonal lattices with random vacancies and thermal disorder,
respectively. The data marked by filled (open) symbols are calculated
using the power-law (exponentially) decay function for the radial
dependence of electron hoppings.
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is too large so that the topological state would never occur
[18, 19]. Experimentally, our finding suggests that topologi-
cal states can be quite robust against a high degree of struc-
tural disorder that usually occurs during a nonequilibrium
growth process. This may significantly ease the fabrication
of topological materials for practical applications.

Finally, it is interesting to note that for crystals one can
identify whether it is a TI by symmetry analysis of band
topology to determine if TPT has occurred by linking the
solid crystal to the atomic crystal assumed with the same
symmetry, which have provided a powerful method to dis-
cover topological crystals [37–39]. However, our studies

show that the TPT occurs regardless of symmetry, i.e., sym-
metry is a convenient means to determine the TPT in crys-
tals, but not a mandatory condition. In addition, with
certain crystalline symmetry constraint, topological semi-
metals can also occur around the critical point in the band
evolution diagram we proposed. Although the illustrative
calculation in this work is based on a specific model, the
essential band inversion mechanism is not limited to the s
and p orbitals, and other types of band inversion mechanisms
between different orbitals are also feasible to achieve similar
phase evolution diagrams. The unified view we provide here
is applicable to any TPT that is triggered by a band-inversion
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size of energy gap.

5Research



mechanism, such as 2D/3D NI to topological (crystalline)
insulator and 2D NI to Chern insulator transitions. However,
it should not apply to TPTs that do not involve band inver-
sion, such as quantum Hall effect hosted by a topological flat
band [40] or a transition from a Dirac semimetal to TI upon
opening a SOC gap like in graphene. Our discovery may also
shed light on understanding topological effects in other fields
such as topological photonics [41], phononics [42], mechan-
ics [43], metamaterials [44], and topolectrical circuits [45].
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