
- 1) @ An amplifier is a device whose output voltage is the same as its input voltage multiplied by some constant gain.
 - DR; is the input resistance, that is the resistance between the input terminals.
 - © Ro is the output resistance, a resistor in series with the voltage output. It can load the circuit and reduce the gain of the amprifier.
- R; = ∞ , and $R_0 = 0$.
 - DA buffer amplifier is a voltage follower. It tracks the input voltage to the output terminals. They are used as impedance transformers or power amplifiers. It requires Avo = 1V/V.
 - (c) The gain-bandwidth product is the bondwidth achieved when a unity gain is desired. If we double the gain, we get half the bandwidth. The gain-bandwidth is specified on the op-amps data sheets.

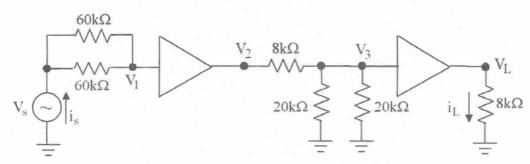
3. Use the circuit below:

Ampl is a CA3140 and Ampl is an LM741. (See attached datasheet information)

- (a) State each amplifiers frequency response transfer function (V₁/V_{in} and V₀/V₁)
- (b) State the overall transfer function (V_o/V_{in})

DC gain:
$$\frac{V_1}{V_{in}} = \frac{-5k}{1k} = -5\frac{V_V}{V_{in}}$$

frequency:
$$\left| \frac{-5}{(1+\frac{5}{900KHz})} - \frac{V_1}{Vin} \right|$$


Amp 2:
$$f_7=1MHZ$$
, DC gain: $V_7=\begin{pmatrix} 30K\\TK+1 \end{pmatrix}$

$$f_{3db} = \frac{1}{31} = 32.3 \text{ K} + 72$$

frequency: $\frac{31}{V_1} = \frac{31}{(1+\frac{5}{32.3}\text{ K} + 12)}$

(b)
$$\frac{V_0}{V_{in}} = \frac{V_0}{V_i} \cdot \frac{V_1}{V_{in}} = \frac{155}{(1 + \frac{5}{900 \text{KHZ}})(1 + \frac{5}{32.3 \text{KHZ}})}$$

 v_s is an AC signal. Both amplifiers have the following characteristics: A_{vo} =20, R_i =10k Ω , R_o =2k Ω , Clipping levels: L=+12V (unloaded)

- (a) Redraw this 2 stage amplifier using the amplifier model. Make sure to label V_S , V_1 , V_2 , V_3 , and V_0 on the schematic.
- (b) Find $A_v = \frac{v_L}{v_S}$. Express your answer as a ratio(V/V) and in dB. [Round answer to the nearest whole number]
- (c) Find $A_i = \frac{i_L}{i_S}$. Express your answer as a ratio(A/A) and in dB. [Round the answer to the nearest

whole number]

$$30k = (60k||60k|)$$
 $2k$
 $8k$
 $30k = (60k||60k|)$
 $10k$
 1

b)
$$V_{1} = \frac{8 \times .20 V_{3}}{10 \times 10^{10}} = \frac{4}{5} .20 V_{3}$$

$$V_{2} = \frac{5 \times .20 V_{1}}{5 \times +10 \times 10^{10}} = \frac{1}{3} .20 V_{1}$$

$$V_{3} = \frac{5 \times .20 V_{1}}{5 \times +10 \times 10^{10}} = \frac{1}{3} .20 V_{1}$$

$$V_{4} = \frac{4}{3} (20) = \frac{80 V_{1}}{3} (20) = \frac{80 V_{2}}{3} (20) =$$

c)
$$V_{L} = i_{L} \cdot 8K$$
, $V_{S} = i_{S} (40K)$
 $\vdots \frac{V_{L}}{V_{S}} = \frac{i_{L} \cdot 8K}{i_{S} \cdot 40K} = \frac{80}{3}$ $\vdots \frac{i_{L}}{i_{S}} = \frac{80}{3} (\frac{40}{8}) = \frac{400}{3} \frac{V_{L} \approx 43dB}{3}$

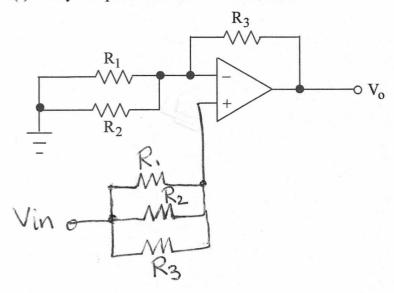
5. (a) Use the circuit shown below for this problem and #6. The ampirituris a CA3140

(i) If Vin = 1mV, what will Vo measure (do not consider any imperfections)?

(ii) If the finite gain, A_0 is considered, what will Vo measure?

For small input signals, what is the 3db bandwidth of the circuit (in Hz)?

- 6. (a) For an output signal of 2sin(10t), considering the slew rate effect, what is the limiting frequency of the circuit?
 - (b) For Vin=1mV, consider the effect of the input offset voltage (v_{in}=0V). (i.e. find output value when input =0) and state the resultant value for Vo.
 - (c) How should the circuit be modified to minimize the effect of the input bias current? Redraw the circuit showing the modifications.


$$V_{in} \circ \frac{V_{in}}{R_{1}=2k\Omega} = \frac{10k}{2k} = -5V \qquad \therefore V_{0} = -5(\text{ImV}) = \frac{-5\text{mV}}{-5\text{mV}}$$

$$V_{0} = \frac{-10k}{2k} = -5V \qquad \therefore V_{0} = -5(\text{ImV}) = \frac{-5\text{mV}}{-5\text{mV}}$$

$$V_{0} = \frac{-82}{1+(1+82)} = \frac{-4.99}{100} = \frac{-4.99}{100}$$

$$V_{0} = -4.99 (\text{ImV}) = \frac{-4.99}{100} = \frac{-4.99}{100} = \frac{-4.99}{100} = \frac{-4.99}{100} = \frac{-4.99}{100} = \frac{-30\text{mV}}{100} = \frac$$

7. Redraw or add to the schematic below to show how to reduce the **input bias current**. State the symbolic value(s) of any components added to the schematic.

8. You are given the following characteristics for a real amplifier along with the circuit on the right.

Op amp Characteristics

Input offset voltage:

$$V_{ios} := 2.0 \cdot mV$$

Input offset current:

$$I_{OS} := 100 \cdot nA$$

Input bias current:

$$I_{iB} := 500 \cdot nA$$

Input resistance:

$$R_i := 2 \cdot M\Omega$$

Output resistance:

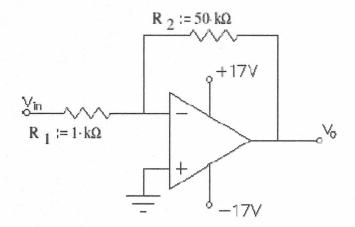
$$R_0 := 75 \cdot \Omega$$

Open-loop gain:

$$A_{01} = 106 \cdot dB$$

Unity-gain bandwidth:

$$f_T := 4 \cdot MHz$$


Output swing limits:

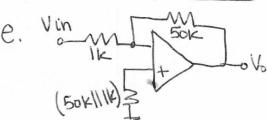
L+=V+-2V

$$L = V + 2V$$

Slew rate:

$$SR := 2 \cdot \frac{V}{uS}$$

- (a) What is the voltage gain of the circuit? (make sure the sign is right)
- (b) For small input signals, what is the bandwidth of the circuit?
- (c) For an output signal of 12Vpp, what is the bandwidth of the circuit?
- 9. (a) What is the maximum peak-to-peak output you can get without clipping?
 - (b) What is the input impedance?
 - (c) What is the output impedance?


Hint: Express A₀₁ as a factor, then use the following expression to find the output impedance with feedback

$$R_{\text{owf}} = \frac{R_{\text{o}}}{1 + A_{\text{o}1} \cdot \frac{R_{1}}{R_{1} + R_{2}}}$$

- (d) Find the effect of the input offset voltage (v_{in}=0V).
- (e) How should the circuit be modified to minimize the effect of the input bias current? Show the modification on the schematic above and find the value of any added parts.

$$\theta_{1}a. A_{v} = -\frac{R_{2}}{R_{1}} = -\frac{50}{100}$$

d.
$$V_0 = 50(2m) = 100mV$$

